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ALMOST HERMITIAN MANIFOLDS WITH CONSTANT 
HOLOMORPHIC SECTIONAL CURVATURE 

SUM10 SAWAKI & KOUEI SEKIGAWA 

1. Introduction 

B. Smyth proved in his thesis [6] the following 
Theorem. Let M be a complex hypersurface of a Kiihlerian manifold i@ 

of constant holomorphic sectional curvature C. If M is of complex dimension 
2 2, the following statements are equivalent: 

( i M is totally geodesic in M, 
(ii)  M is of constant holomorphic sectional curvature, 
(iii) M is an Einstein manifold and at one point of M all sectional curva- 

tures of M are > i C  (resp. 5 iC) when E > 0 (resp. 5 0 ) .  
One of the purposes of the present paper is to generalize this theorem to 

almost Hermitian manifolds, and another is to prove that an F-space of con- 
stant holomorphic sectional curvature is Kahlerian. Here by an F-space we 
mean an almost Hermitian manifold M satisfying R(X, Y). F = 0 for any 
vector fields X and Y on M, where the endomorphism R(X, Y) operates on 
the almost complex structure tensor F as a derivation at each point of M. 

In 5 2, we shall state the differential-geometric properties of a complex 
hypersurface of an almost Hermitian manifold satisfying a certain condition 
and a generalization of the equivalence of the first two statements of Smyth's 
result. We proceed in 5 3 to study the same properties of "0-spaces and K- 
spaces, and to state a generalization of the result of Smyth. In fj 4 we shall 
prove some theorems for F-spaces of constant holomorphic sectional curva- 
ture. In $ 5  2 and 3, by a complex hypersurface we mean a connected almost 
complex hypersurface. 

2. Complex hypersurfaces of an almost Hermitian manifold 

Let M be an almost Hermitian manifold of complex dimension n + 1, and 
denote the almost complex structure and the Hermitian metric of M by F and 
g respectively. Moreover, let M be a complex hypersurface of M, i.e., suppose 
that there exists a complex analytic mapping f : M + M. Then for each x E M 
we identify the tangent space T,(M) with f,(T,(M)) c T~(,,(M) by means of 
f ,. Since f * o g = g' and F 0 f, = f, 0 F' where g' and F' are the Hermitian 
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metric and the almost complex structure of M respectively, g' and Ff are
respectively identified with the restrictions of the structures g and F to the
subspace/#(ΓΛ(*f)).

As is well known, we can choose the following special neighborhood U(x)
of x for a neighborhood U(f(x)) of /(*). Let {U x1} (i = 1, , In + 2) be a
system of coordinate neighborhoods of M. Then {U x1} is a system of coor-
dinate neighborhoods of M such that x2n+1 = Jt2n+2 = 0 where JC* = jc* o /.

By V we always mean the Riemannian covariant differentiation on M and
by ξ a differentiable unit vector field normal to M at each point of U(x).

If X and Y are vector fields on the neighborhood U(x), we may write

(2.1) VXY = VXY + h(X, Y)ξ + k(X, Y)Fξ ,

where VXY denotes the component of VXY tangent to M.
Lemma 2.1. (i) V is the covariant differentiation of the almost Hermi-

tian manifold M.
(ii) h and k are symmetric covariant tensor fields of degree 2 on U(x).
Proof. Making use of (2.1), we have

Y + Uf2VxY

= fλ{Xf2)Y + fJ2FxY + fJMX, Y)ξ + fJ2k(X, Y)Fξ ,

VflX(j2Y) = FflX(f2Y) + h{UX,f2Y)ξ + k{fλX,f2Y)Fξ ,

where X and Y are vector fields on U(x), and fλ and f2 are differentiable func-
tions on U(x). From the above two equations, we have

h(f,X, f2Y) = fJ2h(X, Y) , k&X, f2Y) = f

which show that h and k are tensor fields on U(x).
Thus, since VXY becomes a vector fields, from (2.1) it follows that V is a

covariant differentiation on U(x).
Next, from

VXY = VXY + KX, Y)ξ + k(X9 Y)Fξ ,

VYX = VYX + h(Y, X)ξ + k(Y, X)Fξ ,

[X, Y]s = [X, Y]M ,

we have

f (X, Y) = T(X, Y) + {h(X, Y) - h(Y, X)}ξ + {k(X, Y) - k(Y, X)}Fξ ,

where f (resp. T) is the torsion tensor of the connection on M (resp. U(x))
with respect to V (resp. V). Since f = 0, it follows that T = 0 and h and k
are symmetric.
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From Vg = 0 we have easily Vg = 0. Hence the proof is completed.
The identities g(ξ, ξ) = 1 and g(Fξ, Fξ) = 1 imply g{Vzξ, ξ) = 0 and

g(Fx(Fξ),Fξ) = 0 respectively. Therefore we may put

(2.2) Vxξ = -Λ{X) + s{X)Fξ ,

(2.3) FX(F?) = -B(X) +

where A (X) and #(Z) are tangent to M.
Lemma 2.2. (i) A, B and s, t are tensor fields on U(x) of type (1.1) and

(0,1) respectively.
(ii) A and B are symmetric with respect to g, and satisfy

(2.4) KX, Y) - g(AX, Y) ,

(2.5) k(X, Y) = g(BX, Y)

for any vector fields X and Y.
Proof. For any vector field X and any differentiate function / on U(x),

we have

fpxξ = Vfxξ = ~A(fX) + s(fX)Fξ = -fA(X) + fs(X)Fξ ,

from which it follows that A(fX) = fA(X), s(fX) = fs(X). Thus A and s are
tensor fields on U(x). For ξ and any vector field Y on U(x), we have g(Y, ξ)
= 0 and therefore

in which substitution of (2.1) and (2.2) gives (2.4). However, since h is sym-
metric, from (2.4) it follows that g(AX, Y) = g(X,AY) which shows that A
is symmetric. Similarly the properties of B are verified.

Now let M be a complex hyper surf ace satisfying the condition

(2.6) h(X,Y) = k(X,FY)

for any vector fields X and Y on U(x) at every point x € M. It is easily verified
that the condition (2.6) is independent of the choice of mutually orthogonal
unit vectors ξ and Fξ normal to M.

Lemma 2.3. In a complex hypersurface M of M satisfying (2.6), we have

( i ) FA = -AF , FB = -BF ,

(ii) FA and FB are symmetric with respect to g,

(iii) B = FA .

Proof. By virture of (2.4) and (2.6), for any vector fields X and Y we have
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(2.7) g(AFX, Y )  = h(FX,  Y )  = k(FX,  F Y )  , 

(2.8) g(FAX, Y )  = -g(AX,  F Y )  = -h(X,  F Y )  = -k(FX,  F Y )  , 

which imply that g(AFX, Y )  = --g(FAX, Y ) ,  so that AF = -FA. Since A is 
symmetric, by (i) we thus have 

g(AFX, Y )  = g(FX, A Y )  = g(X,  A F Y )  , 

which shows that AF is symmetric. Similarly the properties of B are verified. 
Finally, by (2.6) and (2.5) we have 

On the other hand, we have h ( X ,  F Y )  = g(AX,  F Y )  by (2.4) and therefore 
g(AX ,  F Y )  = -g(FBX, FY) ,  from which it follows that A = -FB, i.e., 
B = FA. 

Remark. In a complex hypersurface M of M ,  h ( X ,  Y )  = k ( X ,  F Y )  is 
equivalent to B = FA. 

Since A is symmetric and FA = -AF in a complex hypersurface M of M 
satisfying (2.6), we have the following well-known 

Lemma 2.4. In a complex hypersurface M o f  M satisfying (2.6), at any 
point y E U ( X )  there exists an orthonormal basis {el, . . . , en,  Fe,, . . . , Fe,) of 
T,(M) with respect to which the matrix A is diagonal of the form 

where Ae,  = Aiei, and AFe, = -A,Fe,, i = 1, . . ., n. 
Lemma 2.5. I f  I? and R are the Riemannian curvature tensors o f  M and 

a complex hypersurface M o f  M satisfying (2.6) respectively, then for any vector 
fields X ,  Y ,  Z and W on U ( x )  we have the following Gauss equation: 

Proof. From (2.1) it follows that 
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Applying Vx to this equation and making use of (2.2) and (2.3), we obtain

VXVYW = VXVYW - h{Y, W)A{X) - k{Y, W)B{X)

(2.10) + {h(X, VYW) + X{h{Y, W)) + k{Y, W)ί(X)}ξ

+ {k{X, VYW) + X{k{Y, W)) + h{Y, W)s{X)}Fξ ,

Vιx^W = Vιx^W + h{[X, Y], W)ξ + k{[X, Y], W)Fξ .

Substitution of (2.10) in

Ά{X, Y)W - R{X, Y)W

= pxvγw - VYVXW - Fίx,nW - (FXFYW - VYVXW - Fίx^W)

gives easily

A(X, Y, Z, W) - R(X, Y, Z, W) - {g(AX, Z)h(Y, W) - g(AY, Z)h(X, W)}

- {g(BX, Z)k(Y, W) - g(BY, Z)k(X, W)} ,

or (2.9) by (2.4), (2.5) and (2.6).
Lemma 2.6. Let M be a complex hypersurface of M and satisfy the con-

dition (2.6).
(i) If p is 2-plane tangent to M at a point of U(x), then

K(p) = K(p) - {g(AX, X)g(AY, Y) - g(AX, Y)2}

- {g(FAX, X)g(FAY, Y) - g(FAX, Y)2} ,

where X, Y form an orthonormal basis of p, and K(p) (resp. K(p)) is the sec-
tional curvature of p considered as a 2-plane tangent to M {resp. M).

(ii) // X is a unit vector tangent to M at a point of U(x), then

(2.12) H{X) = H(X) + 2{g(AX,XY + g(FAX,Xy} ,

where ίϊ{X) {resp. H{X)) is the holomorphic sectional curvature in M
{resp. M).

Proof, (i) is immediate on replacing Z and W in the Gauss equation by X
and Y respectively, and making use of the fact that A and FA are symmetric,
(ii) is also immediate on replacing Y by FX in (2.11) and making use of the
fact that FA = —AF.

Proposition 2.7. Let M be a complex hypersurface of M of constant holo-
morphic sectional curvature c. If M is of complex dimension >2 and satisfies
the condition (2.6), then at each point of M there exists a holomorphic plane
whose sectional curvature in M is c, and therefore if M is of constant
holomorphic sectional curvature c, then c = c.

Proof. Let {eλ, , en, Feλ, , Fen) be an orthonormal basis in Lemma
2.4. Since n > 2, there exist λ% and λj {i Φ ]) defined in Lemma 2.4.
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In the case where λt > 0 and λj > 0, we set

Then

Λ χ =

so that

(2.13) g(AX, X) = 0, g(FAX, X) = 0 .

In the case where λt < 0 and ̂  > 0, and in the case where λt < 0 and
/̂  < 0, we set, respectively,

X = V^A + V —Vj ^ _ V — ^ + \l —

so that we can also obtain (2.13).
Consequently, from (2.12) and (2.13) we have c = H(X) = H(X) which

proves the proposition.
Theorem 2.8 Let M be a complex hypersurjace of M of constant holo-

morphic sectional curvature c. If M is of complex dimension >2 and satisfies
the condition (2.6), then the following statements are equivalent:

(i) M is totally geodesic in M,
(ii) M is of constant holomorphic sectional curvature.
Proof. If M is totally geodesic, then A vanishes on M, and therefore from

(2.12) it follows that M is of constant holomorphic sectional curvature c.
Conversely, if M is of constant holomorphic sectional curvature c, then by
virtue of Proposition 2.7 we have, for any unit vector X tangent to M, c —
H(X) = H(X), which reduces (2.12) to g(AX,X)2 + g(FAX,X)2 = 0, so
that A — 0, that is, M is totally geodesic.

3. *O-spaces and X-spaces

An almost Hermitian manifold M is called an *0-space (or quasi-Kahlerian
manifold) [3] or a £-space (or Tachibana space or nearly Kahler manifolds) [7]
according as

(3.1) VX(F)Y + FFX(F)FY = 0 ,

or

(3.2) VZ{F)Y + FY(F)X = 0 (or equivalently VX(F)X = 0)

holds for any vector fields X and Y on M. It is well-known that a X-space is
an *0-space.
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First of all, let M be a complex hypersurface of an *0-space M. Then for
any vector fields X and Y on U(x) C M we have

FX(FY) = FFXY + FX(F)Y , FFX(FFY) = FFFX{FY) + FFX{F)FY .

Adding these equations and making use of (3.1) we obtain

(3.3) FX(FY) - FFXY = F(FXY + FFX{FY)) .

Substituting (2.1) in (3.3) gives immediately

(3.4) FX(FY) - FFXY - FFXY - FFFX(FY) = 0 ,

(3.5) h(X, FY) - h(FX, Y) = -k(X, Y) - k(FX, FY) ,

(3.6) k(X, FY) - k(FX, Y) = h(X9 Y) + h(FX, FY) .

In consequence of

(3.7) FX(F)FY - -FFX(F)Y ,

(3.4) reduces to

FX(F)Y + FFX(F)FY = 0 ,

which shows that M is also an *Ospace.
Since the left hand side of (3.5) is skew-symmetric in X, Y and the right

hand side is symmetric in X, Y due to the symmetry of h and k, we have

h(X, FY) = h(FX, Y) , k(X, Y) + k(FX, FY) = 0 .

Similarly, from (3.6) follow

k(X, FY) = k(FX, Y) , h(X, Y) + h(FX, FY) = 0 ,

which are equivalent to the above two equations.
Hence we have
Lemma 3.1. A complex hypersurface M of an *O-space M is also an

*O-space, and satisfies

(3.8) h(X,FY) = h(FX,Y) ,

(3.9) k(X,FY) = k(FX,Y) .

Next, let M be a complex hypersurface of a £-space M. Then for vector
fields X and Y on U(x) c M we have

FX{FY) = FFXY + FX(F)Y , FY{FY) = FFYX + FY(F)X .
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Adding these equations and making use of (3.2) we obtain

(3.10) FAFY) + FY(FX) = F(FXY + FYX) .

Substituting (2.1) in (3.10) gives readily

(3.11) FAFY) + FY{FX) = FFXY + FFYX ,

(3.12) h(X, FY) + h(FX, Y) = -2k(X, Y) ,

(3.13) k(X, FY) + k(FX, Y) = -2h(X, Y) .

(3.11) reduces to

FAF)Y + FY(F)X = 0 ,

which shows that M is also a X-space. (3.12) and (3.8) imply h{X,FY) =
-k(X, Y), i.e., h(X, Y) = k(X, FY), which is equivalent to B = FA by the
remark in § 2. From (3.13) we shall get the same result.

Consequently, we have
Lemma 3.2. A complex hypersurjace M of a K-space M is also a K-space,

and satisfies

h(X, Y) = k(X, FY) (or equivalents B = FA) .

Recently, Gray [1] proved
Lemma 3.3. In a K-space M of constant holomorphic sectional curvature

c at a point x e M, we have

(3.15) Kip) = \c{\ + 3g(FX, YY} + f ||FX(F)Y||2 ,

where p is a 2-plane spanned by any two orthonormal vectors X, Y e TX(M).
Making use of these Lemmas, we can prove
Theorem 3.4. Let M be a complex hypersurface of a K-space M with

constant holomorphic sectional curvature c. If M is of complex dimension > 3 ,
then the following statements are equivalent:

( i ) M is totally geodesic in M,
(ii) M is of constant holomorphic sectional curvature,
(iii) at every point x € M, all the sectional curvatures of M satisfy

(3.16) K(p)>\c{\ + 3g(FX,Yf} ,

where p is a 2-plane spanned by any two orthonormal vectors X, Y e TX(M).
Proof. Since, by Lemma 3.2, K-space satisfies (2.6), the fact that (i) is

equivalent to (ii) is nothing but Theorem 2.8 (i). Next, if M is of constant
holomorphic sectional curvature c, then c = c by Proposition 2.7, and there-
fore by Lemma 3.3 we have, for any orthonormal vectors X, Y e TX(M) at
every point x e M,
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(3.17) K(p) = \c{\ + 3g(FX, Y)2} + WΛF)Y\\2 ,

which implies (3.16).
Finally, we shall prove that (iii) implies (i). Substituting (3.15) in (2.11),

and making use of (3.16) we can easily obtain

tWχ{F)Y\\2 + {g(AX, X)g(AY, Y) - g(AX, YY}
(3. lo)

+ {g(FAX,X)g(FAY, Y) - g(FAX, Y)2} > 0 .

Now let {e19 , en9 Feλ, , Fen} be an orthonormal basis given in Lemma
2.4, and set

X = (et + Fet)/</T , Y=(ei~ Fet)/S2 .

Since

AX = He, - FeύlJΐ , AY =

FAX = λtfβi + et)l*ί2 , FAY =

we have

g(AX,X) = 0, g(FAX,X) = λί

g(FAY, Y) = -λ, , g(FAX, Y) - 0 , g(AX, Y) =

Moreover, from Y = —FX, (3.2) and (3.7) we have

VX{F)Y = -VX(F)FX = FΓX(F)Z = 0 .

Thus (3.18) reduces to λt = 0 (/ = 1, , ή), which together with Lemma
2.4 implies that A is identically zero at each point of M, so that M is totally
geodesic in M.

Remark. It is well-known that in a K-space M of constant holomorphic
sectional curvature c, c > 0 [8]. Hence from (3.17) we have

(3.19) K(p) > \c .

However, the authors do not know whether M is totally geodesic or not if
(3.19) holds.

4. F-spaces

Recall that an almost Hermitian manifold M of dimension 2n is called an
F-space if R(X, Y) F = 0 holds for any vector fields X and Y on M. Of
course, a Kahlerian manifold is an F-space, and an almost Kahlerian manifold
or a X-space satisfying R(X, Y) F = 0 is Kahlerian [5]. However, an example
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of a nonkahlerian *<9-space satisfying R(X, Y) F = 0 has been recently given
by Yanamoto [9].

Now for an F-space M of constant holomorphic sectional curvature c we
have (cf. [2, pp. 165-166])

R(X, Y, Z, W) = \c{g(X, Z)g(Y, W) - g(X, W)g(Y, Z)

(4.1) + g(X, FZ)g(Y, FW) - g(X, FW)g(Y, FZ)

+ 2g(X,FY)g(Z,FW)},

where X, Y, Z and W are any tangent vectors at a point of M, since R(X, Y)F
= 0 means that

R(X, Y, Z, W) = R(X, Y, FZ, FW) = R(FX, FY, Z, W) .

On replacing Z and W in (4.1) by mutually orthogonal unit vectors X and
Y respectively, we obtain

Hence we have the following theorem which is a generalization of the corre-
sponding result in a Kahlerian manifold [10].

Theorem 4.1. An F-space M of constant holomorphic sectional curvature
c is an Einstein space. When c Φ 0, the sectional curvature K(p) of a 2-plane
p spanned by any two orthonormal vectors X and Y in M satisfies the
inequalities:

\c < K(p) <c forc>0, \c > K(p) >c forc<0,

where the equality \c = K(p) occurs when g(X, FY) = 0, and K(p) = c occurs
wheng(X,FY) = ± 1 .

Proof. It is sufficient to prove the first assertion of the theorem. Let
Rjίhk> gji and Ff be the local components of R, g and F respectively, and put
Rjihk = 8kaRjiha and FH = giaFja. Then (4.1) can be written as

(4.2) RJihk = -ic(gjhgik - gjkgίh + FhjFki - FkjFhί + 2FίjFkh) .

Transvecting (4.2) with gih we have

(4.3) Rjk = i(n + l)cgjk ,

so that our space is Einsteinian. q.e.d.
Applying FbFa to (4.2), we have

VbVaRjίhk = -\c{{VbVaFhJ)Fkί + FhjVbVaFkί - (FbFaFkj)Fhi

-FkjFbFaFhί + 2{FbFaFi3)Fkh + 2FίjFbFaFktL}
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(4.4) -\c{{VaFhj)VbFki + {VbFhj)VaFkί}

+ \c{(VaFkj)VbFhi + {VbFkj)VaFhί}

- \c{{VaFi3)VbFkh + {VbFi3)VbFkh} .

Since R(X, Y)F = 0 means that FbFaFhj is symmetric in a, b, the right hand
side of (4.4) is symmetric in a, b. Thus from (4.4) we have

Lemma 4.2. In an F-space of constant holomorphic sectional curvature,
we have

VbVaRHhk - VaVbRmk = 0 , i.e., R(X, Y) R = 0 .

Next, calculating the square of both sides of (4.2) we have

RJthkR'ih* = 2c2n(n + 1)

and therefore

(4.5) RjihJcR
jihk - 2RηVn{n + 1)] ,

since C = R/[n(n + 1)] from (4.3). Hence we obtain

Lemma 4.3. In an F-space of constant holomorphic sectional curvature,
the length of the tensor Rjihk is constant.

On the other hand, the following two lemmas are known.
Lemma 4.4 (Lichnerowicz [4], Yano [10]). In a Riemannian manifold, we

have

FhRίk - VkRih)

where Δ and Hji^^X^ are the Laplacian and the components of R(X, Y) R
respectively.

Lemma 4.5 (Sawaki [5]). An almost Hermitian manifold M is Kάhlerian
if it satisfies:

(i) Λ(Z,Y) F = 0, FzR(X,Y)-F = 0
for any vector fields X, Y and Z on M,

(ii) the rank of the Ricci form is maximum.
Making use of the above results, we can prove
Theorem 4.6. // M is an F-space of nonzero constant holomorphic sec-

tional curvature, then M is Kάhlerian.
Proof. By virtue of Theorem 4.1, Lemma 4.2 and Lemma 4.3, from

Lemma 4.4 we have VsRjίhk — 0, so that M is locally symmetric. Thus from
Lemma 4.5 it follows that M is Kahlerian.
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