ALMOST HERMITIAN MANIFOLDS WITH CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

SUMIO SAWAKI \& KOUEI SEKIGAWA

1. Introduction

B. Smyth proved in his thesis [6] the following

Theorem. Let M be a complex hypersurface of a Kählerian manifold \tilde{M} of constant holomorphic sectional curvature \tilde{c}. If M is of complex dimension ≥ 2, the following statements are equivalent:
(i) M is totally geodesic in \tilde{M},
(ii) M is of constant holomorphic sectional curvature,
(iii) M is an Einstein manifold and at one point of M all sectional curvatures of M are $\geq \frac{1}{4} \tilde{c}\left(\right.$ resp. $\leq \frac{1}{4} \tilde{c}$) when $\tilde{c} \geq 0$ (resp. ≤ 0).

One of the purposes of the present paper is to generalize this theorem to almost Hermitian manifolds, and another is to prove that an F-space of constant holomorphic sectional curvature is Kählerian. Here by an F-space we mean an almost Hermitian manifold M satisfying $R(X, Y) \cdot F=0$ for any vector fields X and Y on M, where the endomorphism $R(X, Y)$ operates on the almost complex structure tensor F as a derivation at each point of M.

In §2, we shall state the differential-geometric properties of a complex hypersurface of an almost Hermitian manifold satisfying a certain condition and a generalization of the equivalence of the first two statements of Smyth's result. We proceed in $\S 3$ to study the same properties of ${ }^{*} O$-spaces and K spaces, and to state a generalization of the result of Smyth. In § 4 we shall prove some theorems for F-spaces of constant holomorphic sectional curvature. In $\S \S 2$ and 3, by a complex hypersurface we mean a connected almost complex hypersurface.

2. Complex hypersurfaces of an almost Hermitian manifold

Let \tilde{M} be an almost Hermitian manifold of complex dimension $n+1$, and denote the almost complex structure and the Hermitian metric of \tilde{M} by F and g respectively. Moreover, let M be a complex hypersurface of \tilde{M}, i.e., suppose that there exists a complex analytic mapping $f: M \rightarrow \tilde{M}$. Then for each $x \in M$ we identify the tangent space $T_{x}(M)$ with $f_{*}\left(T_{x}(M)\right) \subset T_{f_{(x)}}(\tilde{M})$ by means of f_{*}. Since $f^{*} \circ g=g^{\prime}$ and $F \circ f_{*}=f_{*} \circ F^{\prime}$ where g^{\prime} and F^{\prime} are the Hermitian
metric and the almost complex structure of M respectively, g^{\prime} and F^{\prime} are respectively identified with the restrictions of the structures g and F to the subspace $f_{*}\left(T_{x}(M)\right)$.

As is well known, we can choose the following special neighborhood $U(x)$ of x for a neighborhood $\tilde{U}(f(x))$ of $f(x)$. Let $\left\{\tilde{U} ; \tilde{x}^{i}\right\}(i=1, \cdots, 2 n+2)$ be a system of coordinate neighborhoods of \tilde{M}. Then $\left\{U ; x^{i}\right\}$ is a system of coordinate neighborhoods of M such that $x^{2 n+1}=x^{2 n+2}=0$ where $x^{i}=\tilde{x}^{i} \circ f$.

By $\tilde{\nabla}$ we always mean the Riemannian covariant differentiation on \tilde{M} and by ξ a differentiable unit vector field normal to M at each point of $U(x)$.

If X and Y are vector fields on the neighborhood $U(x)$, we may write

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \xi+k(X, Y) F \xi \tag{2.1}
\end{equation*}
$$

where $\nabla_{X} Y$ denotes the component of $\tilde{\nabla}_{X} Y$ tangent to M.
Lemma 2.1. (i) $\bar{\nabla}$ is the covariant differentiation of the almost Hermitian manifold M.
(ii) h and k are symmetric covariant tensor fields of degree 2 on $U(x)$.

Proof. Making use of (2.1), we have

$$
\begin{aligned}
\tilde{\nabla}_{f_{1} X}\left(f_{2} Y\right) & =f_{1} \tilde{\nabla}_{X}\left(f_{2} Y\right)=f_{1}\left(X f_{2}\right) Y+f_{1} f_{2} \tilde{\nabla}_{X} Y \\
& =f_{1}\left(X f_{2}\right) Y+f_{1} f_{2} \nabla_{X} Y+f_{1} f_{2} h(X, Y) \xi+f_{1} f_{2} k(X, Y) F \xi, \\
\tilde{\nabla}_{f_{1} X}\left(f_{2} Y\right) & =\nabla_{f_{1} X}\left(f_{2} Y\right)+h\left(f_{1} X, f_{2} Y\right) \xi+k\left(f_{1} X, f_{2} Y\right) F \xi,
\end{aligned}
$$

where X and Y are vector fields on $U(x)$, and f_{1} and f_{2} are differentiable functions on $U(x)$. From the above two equations, we have

$$
h\left(f_{1} X, f_{2} Y\right)=f_{1} f_{2} h(X, Y), \quad k\left(f_{1} X, f_{2} Y\right)=f_{1} f_{2} k(X, Y),
$$

which show that h and k are tensor fields on $U(x)$.
Thus, since $\nabla_{X} Y$ becomes a vector fields, from (2.1) it follows that V is a covariant differentiation on $U(x)$.

Next, from

$$
\begin{aligned}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \xi+k(X, Y) F \xi \\
& \tilde{\nabla}_{Y} X=\nabla_{Y} X+h(Y, X) \xi+k(Y, X) F \xi \\
& {[X, Y]_{\tilde{M}}=[X, Y]_{M},}
\end{aligned}
$$

we have

$$
\tilde{T}(X, Y)=T(X, Y)+\{h(X, Y)-h(Y, X)\} \xi+\{k(X, Y)-k(Y, X)\} F \xi
$$

where \tilde{T} (resp. T) is the torsion tensor of the connection on \tilde{M} (resp. $U(x)$) with respect to $\tilde{\nabla}$ (resp. V). Since $\tilde{T}=0$, it follows that $T=0$ and h and k are symmetric.

From $\tilde{V} g=0$ we have easily $\nabla g=0$. Hence the proof is completed.
The identities $g(\xi, \xi)=1$ and $g(F \xi, F \xi)=1$ imply $g\left(\tilde{V}_{X} \xi, \xi\right)=0$ and $g\left(\tilde{V}_{X}(F \xi), F \xi\right)=0$ respectively. Therefore we may put

$$
\begin{gather*}
\tilde{\nabla}_{X} \xi=-A(X)+s(X) F \xi \tag{2.2}\\
\tilde{\nabla}_{X}(F \xi)=-B(X)+t(X) \xi \tag{2.3}
\end{gather*}
$$

where $A(X)$ and $B(X)$ are tangent to M.
Lemma 2.2. (i) A, B and s, t are tensor fields on $U(x)$ of type (1.1) and $(0,1)$ respectively.
(ii) A and B are symmetric with respect to g, and satisfy

$$
\begin{align*}
& h(X, Y)=g(A X, Y), \tag{2.4}\\
& k(X, Y)=g(B X, Y) \tag{2.5}
\end{align*}
$$

for any vector fields X and Y.
Proof. For any vector field X and any differentiable function f on $U(x)$, we have

$$
f \tilde{\nabla}_{X} \xi=\tilde{\nabla}_{f X} \xi=-A(f X)+s(f X) F \xi=-f A(X)+f s(X) F \xi
$$

from which it follows that $A(f X)=f A(X), s(f X)=f s(X)$. Thus A and s are tensor fields on $U(x)$. For ξ and any vector field Y on $U(x)$, we have $g(Y, \xi)$ $=0$ and therefore

$$
g\left(\tilde{V}_{X} Y, \xi\right)+g\left(Y, \tilde{V}_{X} \xi\right)=0
$$

in which substitution of (2.1) and (2.2) gives (2.4). However, since h is symmetric, from (2.4) it follows that $g(A X, Y)=g(X, A Y)$ which shows that A is symmetric. Similarly the properties of B are verified.

Now let M be a complex hypersurface satisfying the condition

$$
\begin{equation*}
h(X, Y)=k(X, F Y) \tag{2.6}
\end{equation*}
$$

for any vector fields X and Y on $U(x)$ at every point $x \in M$. It is easily verified that the condition (2.6) is independent of the choice of mutually orthogonal unit vectors ξ and $F \xi$ normal to M.

Lemma 2.3. In a complex hypersurface M of \tilde{M} satisfying (2.6), we have

$$
\begin{equation*}
F A=-A F, \quad F B=-B F \tag{i}
\end{equation*}
$$

(ii) $F A$ and $F B$ are symmetric with respect to g,

$$
\begin{equation*}
B=F A \tag{iii}
\end{equation*}
$$

Proof. By virture of (2.4) and (2.6), for any vector fields X and Y we have

$$
\begin{align*}
& g(A F X, Y)=h(F X, Y)=k(F X, F Y) \tag{2.7}\\
& g(F A X, Y)=-g(A X, F Y)=-h(X, F Y)=-k(F X, F Y) \tag{2.8}
\end{align*}
$$

which imply that $g(A F X, Y)=-g(F A X, Y)$, so that $A F=-F A$. Since A is symmetric, by (i) we thus have

$$
g(A F X, Y)=g(F X, A Y)=g(X, A F Y)
$$

which shows that $A F$ is symmetric. Similarly the properties of B are verified.
Finally, by (2.6) and (2.5) we have

$$
h(X, F Y)=-k(X, Y)=-g(B X, Y)=-g(F B X, F Y)
$$

On the other hand, we have $h(X, F Y)=g(A X, F Y)$ by (2.4) and therefore $g(A X, F Y)=-g(F B X, F Y)$, from which it follows that $A=-F B$, i.e., $B=F A$.

Remark. In a complex hypersurface M of $\tilde{M}, h(X, Y)=k(X, F Y)$ is equivalent to $B=F A$.

Since A is symmetric and $F A=-A F$ in a complex hypersurface M of \tilde{M} satisfying (2.6), we have the following well-known

Lemma 2.4. In a complex hypersurface M of \tilde{M} satisfying (2.6), at any point $y \in U(x)$ there exists an orthonormal basis $\left\{e_{1}, \cdots, e_{n}, F e_{1}, \cdots, F e_{n}\right\}$ of $T_{y}(M)$ with respect to which the matrix A is diagonal of the form

$$
\left(\begin{array}{llllll}
\lambda_{1} & & & & & \\
& \ddots & & & & \\
& & \lambda_{n} & & & \\
& & -\lambda_{1} & & \\
& & & \ddots & \\
& & & & -\lambda_{n}
\end{array}\right)
$$

where $A e_{i}=\lambda_{i} e_{i}$, and $A F e_{i}=-\lambda_{i} F e_{i}, i=1, \cdots, n$.
Lemma 2.5. If \tilde{R} and R are the Riemannian curvature tensors of \tilde{M} and a complex hypersurface M of \tilde{M} satisfying (2.6) respectively, then for any vector fields X, Y, Z and W on $U(x)$ we have the following Gauss equation:

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W) \\
& -\{g(A X, Z) g(A Y, W)-g(A X, W) g(A Y, Z)\} \tag{2.9}\\
& -\{g(F A X, Z) g(F A Y, W)-g(F A X, W) g(F A Y, Z)\}
\end{align*}
$$

Proof. From (2.1) it follows that

$$
\tilde{\nabla}_{Y} W=\nabla_{Y} W+h(Y, W) \xi+k(Y, W) F \xi
$$

Applying \tilde{V}_{X} to this equation and making use of (2.2) and (2.3), we obtain

$$
\begin{align*}
\tilde{\nabla}_{X} \tilde{V}_{Y} W= & \nabla_{X} \nabla_{Y} W-h(Y, W) A(X)-k(Y, W) B(X) \\
& +\left\{h\left(X, \nabla_{Y} W\right)+X(h(Y, W))+k(Y, W) t(X)\right\} \xi \tag{2.10}\\
& +\left\{k\left(X, \nabla_{Y} W\right)+X(k(Y, W))+h(Y, W) s(X)\right\} F \xi \\
\tilde{\nabla}_{[X, Y]} W= & \nabla_{[X, Y]} W+h([X, Y], W) \xi+k([X, Y], W) F \xi
\end{align*}
$$

Substitution of (2.10) in

$$
\begin{aligned}
& \tilde{R}(X, Y) W-R(X, Y) W \\
& \quad=\tilde{\nabla}_{X} \tilde{\nabla}_{Y} W-\tilde{\nabla}_{Y} \tilde{V}_{X} W-\tilde{\nabla}_{[X, Y]} W-\left(\nabla_{X} \nabla_{Y} W-\nabla_{Y} \nabla_{X} W-\nabla_{[X, Y]} W\right)
\end{aligned}
$$

gives easily

$$
\begin{aligned}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W)-\{g(A X, Z) h(Y, W)-g(A Y, Z) h(X, W)\} \\
& -\{g(B X, Z) k(Y, W)-g(B Y, Z) k(X, W)\}
\end{aligned}
$$

or (2.9) by (2.4), (2.5) and (2.6).
Lemma 2.6. Let M be a complex hypersurface of \tilde{M} and satisfy the condition (2.6).
(i) If p is 2-plane tangent to M at a point of $U(x)$, then

$$
\begin{align*}
\tilde{K}(p)= & K(p)-\left\{g(A X, X) g(A Y, Y)-g(A X, Y)^{2}\right\} \\
& -\left\{g(F A X, X) g(F A Y, Y)-g(F A X, Y)^{2}\right\} \tag{2.11}
\end{align*}
$$

where X, Y form an orthonormal basis of p, and $\tilde{K}(p)(r e s p . K(p))$ is the sectional curvature of p considered as a 2-plane tangent to \tilde{M} (resp. M).
(ii) If X is a unit vector tangent to M at a point of $U(x)$, then

$$
\begin{equation*}
\tilde{H}(X)=H(X)+2\left\{g(A X, X)^{2}+g(F A X, X)^{2}\right\} \tag{2.12}
\end{equation*}
$$

where $\tilde{H}(X)$ (resp. $H(X)$) is the holomorphic sectional curvature in \tilde{M} (resp. M).
Proof. (i) is immediate on replacing Z and W in the Gauss equation by X and Y respectively, and making use of the fact that A and $F A$ are symmetric. (ii) is also immediate on replacing Y by $F X$ in (2.11) and making use of the fact that $F A=-A F$.

Proposition 2.7. Let M be a complex hypersurface of \tilde{M} of constant holomorphic sectional curvature \tilde{c}. If M is of complex dimension ≥ 2 and satisfies the condition (2.6), then at each point of M there exists a holomorphic plane whose sectional curvature in M is \tilde{c}, and therefore if M is of constant holomorphic sectional curvature c, then $c=\tilde{c}$.

Proof. Let $\left\{e_{1}, \cdots, e_{n}, F e_{1}, \cdots, F e_{n}\right\}$ be an orthonormal basis in Lemma 2.4. Since $n \geq 2$, there exist λ_{i} and $\lambda_{j}(i \neq j)$ defined in Lemma 2.4.

In the case where $\lambda_{i}>0$ and $\lambda_{j}>0$, we set

$$
X=\left(\lambda_{i}+\lambda_{j}\right)^{-\frac{1}{2}}\left(\sqrt{\lambda_{j}} e_{i}+\sqrt{\lambda_{i}} F e_{j}\right) .
$$

Then

$$
A X=\frac{\sqrt{\lambda_{j}} \lambda_{i} e_{i}-\sqrt{\lambda_{i}} \lambda_{j} F e_{j}}{\left(\lambda_{i}+\lambda_{j}\right)^{\frac{1}{2}}}, \quad F A X=\frac{\sqrt{\lambda_{j}} \lambda_{i} F e_{i}+\sqrt{\lambda_{i}} \lambda_{j} e_{j}}{\left(\lambda_{i}+\lambda_{j}\right)^{\frac{1}{2}}}
$$

so that

$$
\begin{equation*}
g(A X, X)=0, \quad g(F A X, X)=0 \tag{2.13}
\end{equation*}
$$

In the case where $\lambda_{i}<0$ and $\lambda_{j}>0$, and in the case where $\lambda_{i}<0$ and $\lambda_{j}<0$, we set, respectively,

$$
X=\frac{\sqrt{\lambda_{j}} e_{i}+\sqrt{-\lambda_{i}} e_{j}}{\left(\lambda_{j}-\lambda_{i}\right)^{\frac{1}{2}}}, \quad X=\frac{\sqrt{-\lambda_{j}} e_{i}+\sqrt{-\lambda_{i}} F e_{j}}{\left(-\lambda_{j}-\lambda_{i}\right)^{\frac{1}{2}}},
$$

so that we can also obtain (2.13).
Consequently, from (2.12) and (2.13) we have $\tilde{c}=H(\tilde{X})=H(X)$ which proves the proposition.

Theorem 2.8. Let M be a complex hypersurface of \tilde{M} of constant holomorphic sectional curvature \tilde{c}. If M is of complex dimension ≥ 2 and satisfies the condition (2.6), then the following statements are equivalent:
(i) M is totally geodesic in \tilde{M},
(ii) M is of constant holomorphic sectional curvature.

Proof. If M is totally geodesic, then A vanishes on M, and therefore from (2.12) it follows that M is of constant holomorphic sectional curvature \tilde{c}. Conversely, if M is of constant holomorphic sectional curvature c, then by virtue of Proposition 2.7 we have, for any unit vector X tangent to $M, \tilde{c}=$ $H(\tilde{X})=H(X)$, which reduces (2.12) to $g(A X, X)^{2}+g(F A X, X)^{2}=0$, so that $A=0$, that is, M is totally geodesic.

3. $* O$-spaces and K-spaces

An almost Hermitian manifold \tilde{M} is called an $* O$-space (or quasi-Kählerian manifold) [3] or a K-space (or Tachibana space or nearly Kähler manifolds) [7] according as

$$
\begin{equation*}
\tilde{\nabla}_{X}(F) Y+\tilde{\nabla}_{F X}(F) F Y=0 \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.\tilde{\nabla}_{X}(F) Y+\tilde{\nabla}_{Y}(F) X=0 \quad \text { (or equivalently } \tilde{\nabla}_{X}(F) X=0\right) \tag{3.2}
\end{equation*}
$$

holds for any vector fields X and Y on \tilde{M}. It is well-known that a K-space is an ${ }^{*} O$-space.

First of all, let M be a complex hypersurface of an $* O$-space \tilde{M}. Then for any vector fields X and Y on $U(x) \subset M$ we have

$$
\tilde{\nabla}_{X}(F Y)=F \tilde{\nabla}_{X} Y+\tilde{\nabla}_{X}(F) Y, \quad \tilde{\nabla}_{F X}(F F Y)=F \tilde{\nabla}_{F X}(F Y)+\tilde{\nabla}_{F X}(F) F Y .
$$

Adding these equations and making use of (3.1) we obtain

$$
\begin{equation*}
\tilde{\nabla}_{X}(F Y)-\tilde{V}_{F X} Y=F\left(\tilde{V}_{X} Y+\tilde{V}_{F X}(F Y)\right) . \tag{3.3}
\end{equation*}
$$

Substituting (2.1) in (3.3) gives immediately

$$
\begin{align*}
& \nabla_{X}(F Y)-\nabla_{F X} Y-F \nabla_{X} Y-F \nabla_{F X}(F Y)=0, \tag{3.4}\\
& h(X, F Y)-h(F X, Y)=-k(X, Y)-k(F X, F Y), \tag{3.5}\\
& k(X, F Y)-k(F X, Y)=h(X, Y)+h(F X, F Y) \tag{3.6}
\end{align*}
$$

In consequence of

$$
\begin{equation*}
\nabla_{X}(F) F Y=-F \nabla_{X}(F) Y, \tag{3.7}
\end{equation*}
$$

(3.4) reduces to

$$
\nabla_{X}(F) Y+\nabla_{F X}(F) F Y=0
$$

which shows that M is also an $* O$-space.
Since the left hand side of (3.5) is skew-symmetric in X, Y and the right hand side is symmetric in X, Y due to the symmetry of h and k, we have

$$
h(X, F Y)=h(F X, Y), \quad k(X, Y)+k(F X, F Y)=0 .
$$

Similarly, from (3.6) follow

$$
k(X, F Y)=k(F X, Y), \quad h(X, Y)+h(F X, F Y)=0
$$

which are equivalent to the above two equations.
Hence we have
Lemma 3.1. A complex hypersurface M of an ${ }^{*} O$-space \tilde{M} is also an *O-space, and satisfies

$$
\begin{align*}
& h(X, F Y)=h(F X, Y) \tag{3.8}\\
& k(X, F Y)=k(F X, Y) \tag{3.9}
\end{align*}
$$

Next, let M be a complex hypersurface of a K-space \tilde{M}. Then for vector fields X and Y on $U(x) \subset M$ we have

$$
\tilde{\nabla}_{X}(F Y)=F \tilde{\nabla}_{X} Y+\tilde{\nabla}_{X}(F) Y, \quad \tilde{\nabla}_{Y}(F Y)=F \tilde{V}_{Y} X+\tilde{V}_{Y}(F) X
$$

Adding these equations and making use of (3.2) we obtain

$$
\begin{equation*}
\tilde{\nabla}_{X}(F Y)+\tilde{V}_{Y}(F X)=F\left(\tilde{V}_{X} Y+\tilde{\nabla}_{Y} X\right) . \tag{3.10}
\end{equation*}
$$

Substituting (2.1) in (3.10) gives readily

$$
\begin{align*}
& \nabla_{X}(F Y)+\nabla_{Y}(F X)=F \nabla_{X} Y+F \nabla_{Y} X \tag{3.11}\\
& h(X, F Y)+h(F X, Y)=-2 k(X, Y) \tag{3.12}\\
& k(X, F Y)+k(F X, Y)=-2 h(X, Y) \tag{3.13}
\end{align*}
$$

(3.11) reduces to

$$
\nabla_{X}(F) Y+\nabla_{Y}(F) X=0
$$

which shows that M is also a K-space. (3.12) and (3.8) imply $h(X, F Y)=$ $-k(X, Y)$, i.e., $h(X, Y)=k(X, F Y)$, which is equivalent to $B=F A$ by the remark in § 2. From (3.13) we shall get the same result.

Consequently, we have
Lemma 3.2. A complex hypersurface M of $a K$-space \tilde{M} is also a K-space, and satisfies

$$
h(X, Y)=k(X, F Y) \quad(\text { or equivalently } B=F A)
$$

Recently, Gray [1] proved
Lemma 3.3. In a K-space \tilde{M} of constant holomorphic sectional curvature \tilde{c} at a point $x \in \tilde{M}$, we have

$$
\begin{equation*}
\tilde{K}(p)=\frac{1}{4} \tilde{c}\left\{1+3 g(F X, Y)^{2}\right\}+\frac{3}{4}\left\|\tilde{\boldsymbol{V}}_{X}(F) Y\right\|^{2}, \tag{3.15}
\end{equation*}
$$

where p is a 2-plane spanned by any two orthonormal vectors $X, Y \in T_{x}(\tilde{M})$.
Making use of these Lemmas, we can prove
Theorem 3.4. Let M be a complex hypersurface of a K-space \tilde{M} with constant holomorphic sectional curvature \tilde{c}. If M is of complex dimension ≥ 3, then the following statements are equivalent:
(i) M is totally geodesic in \tilde{M},
(ii) M is of constant holomorphic sectional curvature,
(iii) at every point $x \in M$, all the sectional curvatures of M satisfy

$$
\begin{equation*}
K(p) \geq \frac{1}{4} \tilde{c}\left\{1+3 g(F X, Y)^{2}\right\} \tag{3.16}
\end{equation*}
$$

where p is a 2-plane spanned by any two orthonormal vectors $X, Y \in T_{x}(M)$.
Proof. Since, by Lemma 3.2, K-space satisfies (2.6), the fact that (i) is equivalent to (ii) is nothing but Theorem 2.8 (i). Next, if M is of constant holomorphic sectional curvature c, then $c=\tilde{c}$ by Proposition 2.7, and therefore by Lemma 3.3 we have, for any orthonormal vectors $X, Y \in T_{x}(M)$ at every point $x \in M$,

$$
\begin{equation*}
K(p)=\frac{1}{4} \tilde{c}\left\{1+3 g(F X, Y)^{2}\right\}+\frac{3}{4}\left\|\nabla_{X}(F) Y\right\|^{2}, \tag{3.17}
\end{equation*}
$$

which implies (3.16).
Finally, we shall prove that (iii) implies (i). Substituting (3.15) in (2.11), and making use of (3.16) we can easily obtain

$$
\begin{align*}
& \frac{3}{4}\left\|\tilde{\nabla}_{X}(F) Y\right\|^{2}+\left\{g(A X, X) g(A Y, Y)-g(A X, Y)^{2}\right\} \\
& \quad+\left\{g(F A X, X) g(F A Y, Y)-g(F A X, Y)^{2}\right\} \geq 0 \tag{3.18}
\end{align*}
$$

Now let $\left\{e_{1}, \cdots, e_{n}, F e_{1}, \cdots, F e_{n}\right\}$ be an orthonormal basis given in Lemma 2.4, and set

$$
X=\left(e_{i}+F e_{i}\right) / \sqrt{2}, \quad Y=\left(e_{i}-F e_{i}\right) / \sqrt{2} .
$$

Since

$$
\begin{aligned}
A X & =\lambda_{i}\left(e_{i}-F e_{i}\right) / \sqrt{2}, & A Y & =\lambda_{i}\left(e_{i}+F e_{i}\right) / \sqrt{2}, \\
F A X & =\lambda_{i}\left(F e_{i}+e_{i}\right) / \sqrt{2}, & F A Y & =\lambda_{i}\left(F e_{i}-e_{i}\right) / \sqrt{2},
\end{aligned}
$$

we have

$$
\begin{aligned}
& g(A X, X)=0, \quad g(F A X, X)=\lambda_{i} \\
& g(F A Y, Y)=-\lambda_{i}, \quad g(F A X, Y)=0, \quad g(A X, Y)=\lambda_{i}
\end{aligned}
$$

Moreover, from $Y=-F X$, (3.2) and (3.7) we have

$$
\tilde{\nabla}_{X}(F) Y=-\tilde{V}_{X}(F) F X=F \tilde{\nabla}_{X}(F) X=0 .
$$

Thus (3.18) reduces to $\lambda_{i}=0(i=1, \cdots, n)$, which together with Lemma 2.4 implies that A is identically zero at each point of M, so that M is totally geodesic in \tilde{M}.

Remark. It is well-known that in a K-space M of constant holomorphic sectional curvature $\tilde{c}, \tilde{c}>0$ [8]. Hence from (3.17) we have

$$
\begin{equation*}
K(p) \geq \frac{1}{4} \tilde{c} . \tag{3.19}
\end{equation*}
$$

However, the authors do not know whether M is totally geodesic or not if (3.19) holds.

4. F-spaces

Recall that an almost Hermitian manifold M of dimension $2 n$ is called an F-space if $R(X, Y) \cdot F=0$ holds for any vector fields X and Y on M. Of course, a Kählerian manifold is an F-space, and an almost Kählerian manifold or a K-space satisfying $R(X, Y) \cdot F=0$ is Kählerian [5]. However, an example
of a nonkählerian * O-space satisfying $R(X, Y) \cdot F=0$ has been recently given by Yanamoto [9].

Now for an F-space M of constant holomorphic sectional curvature c we have (cf. [2, pp. 165-166])

$$
\begin{aligned}
R(X, Y, Z, W)=\frac{1}{4} c\{ & g(X, Z) g(Y, W)-g(X, W) g(Y, Z) \\
& +g(X, F Z) g(Y, F W)-g(X, F W) g(Y, F Z) \\
& +2 g(X, F Y) g(Z, F W)\}
\end{aligned}
$$

where X, Y, Z and W are any tangent vectors at a point of M, since $R(X, Y) \cdot F$ $=0$ means that

$$
R(X, Y, Z, W)=R(X, Y, F Z, F W)=R(F X, F Y, Z, W)
$$

On replacing Z and W in (4.1) by mutually orthogonal unit vectors X and Y respectively, we obtain

$$
K(p)=\frac{1}{4} c\left\{1+3 g(X, F Y)^{2}\right\} .
$$

Hence we have the following theorem which is a generalization of the corresponding result in a Kählerian manifold [10].

Theorem 4.1. An F-space M of constant holomorphic sectional curvature c is an Einstein space. When $c \neq 0$, the sectional curvature $K(p)$ of a 2-plane p spanned by any two orthonormal vectors X and Y in M satisfies the inequalities:

$$
\frac{1}{4} c \leq K(p) \leq c \quad \text { for } c>0, \quad \frac{1}{4} c \geq K(p) \geq c \quad \text { for } c<0
$$

where the equality $\frac{1}{4} c=K(p)$ occurs when $g(X, F Y)=0$, and $K(p)=c$ occurs when $g(X, F Y)= \pm 1$.

Proof. It is sufficient to prove the first assertion of the theorem. Let $R_{j i n}{ }^{k}, g_{j i}$ and $F_{j}{ }^{i}$ be the local components of R, g and F respectively, and put $R_{j i n k}=g_{k a} R_{j i h}{ }^{a}$ and $F_{j i}=g_{i a} F_{j}{ }^{a}$. Then (4.1) can be written as

$$
\begin{equation*}
R_{j i h k}=-\frac{1}{4} c\left(g_{j h} g_{i k}-g_{j k} g_{i h}+F_{h j} F_{k i}-F_{k j} F_{h i}+2 F_{i j} F_{k h}\right) . \tag{4.2}
\end{equation*}
$$

Transvecting (4.2) with $g^{i n}$ we have

$$
\begin{equation*}
R_{j k}=\frac{1}{2}(n+1) c g_{j k}, \tag{4.3}
\end{equation*}
$$

so that our space is Einsteinian. q.e.d.
Applying $\nabla_{b} \nabla_{a}$ to (4.2), we have

$$
\begin{aligned}
& \nabla_{b} \nabla_{a} R_{j i n k}=-\frac{1}{4} c\left\{\left(\nabla_{b} \nabla_{a} F_{h j}\right) F_{k i}+F_{h j} \nabla_{b} \nabla_{a} F_{k i}-\left(\nabla_{b} \nabla_{a} F_{k j}\right) F_{h i}\right. \\
&\left.-F_{k j} \nabla_{b} \nabla_{a} F_{h i}+2\left(\nabla_{b} \nabla_{a} F_{i j}\right) F_{k h}+2 F_{i j} \nabla_{b} \nabla_{a} F_{k h}\right\}
\end{aligned}
$$

$$
\begin{align*}
& -\frac{1}{4} c\left\{\left(\nabla_{a} F_{h j}\right) \nabla_{b} F_{k i}+\left(\nabla_{b} F_{h j}\right) \nabla_{a} F_{k i}\right\} \tag{4.4}\\
& +\frac{1}{4} c\left\{\left(\nabla_{a} F_{k j}\right) \nabla_{b} F_{h i}+\left(\nabla_{b} F_{k j}\right) \nabla_{a} F_{h i}\right\} \\
& -\frac{1}{2} c\left\{\left(\nabla_{a} F_{i j}\right) \nabla_{b} F_{k h}+\left(\nabla_{b} F_{i j}\right) \nabla_{b} F_{k h}\right\} .
\end{align*}
$$

Since $R(X, Y) \cdot F=0$ means that $\nabla_{b} \nabla_{a} F_{h j}$ is symmetric in a, b, the right hand side of (4.4) is symmetric in a, b. Thus from (4.4) we have

Lemma 4.2. In an F-space of constant holomorphic sectional curvature, we have

$$
\nabla_{b} \nabla_{a} R_{j i n k}-\nabla_{a} \nabla_{b} R_{j i \hbar k}=0, \quad \text { i.e., } \quad R(X, Y) \cdot R=0 .
$$

Next, calculating the square of both sides of (4.2) we have

$$
R_{j i h k} R^{j i n k}=2 c^{2} n(n+1)
$$

and therefore

$$
\begin{equation*}
R_{j i n k} R^{j i n k}=2 R^{2} /[n(n+1)] \tag{4.5}
\end{equation*}
$$

since $C=R /[n(n+1)]$ from (4.3). Hence we obtain
Lemma 4.3. In an F-space of constant holomorphic sectional curvature, the length of the tensor $R_{j i n k}$ is constant.

On the other hand, the following two lemmas are known.
Lemma 4.4 (Lichnerowicz [4], Yano [10]). In a Riemannian manifold, we have

$$
\begin{aligned}
\Delta\left(R_{j i n k} R^{j i n k}\right)= & 2\left(\nabla_{s} R_{j i h k}\right) \nabla^{s} R^{j i h k}-4 R^{j i h k} \nabla_{j}\left(\nabla_{h} R_{i k}-\nabla_{k} R_{i h}\right) \\
& -4 R^{j i n k} H^{s}{ }_{i h k, s j}
\end{aligned}
$$

where Δ and $H_{j i n}{ }^{k}{ }_{, s t} X^{s} Y^{t}$ are the Laplacian and the components of $R(X, Y) \cdot R$ respectively.
Lemma 4.5 (Sawaki [5]). An almost Hermitian manifold M is Kählerian if it satisfies:
(i) $R(X, Y) \cdot F=0, \quad \nabla_{Z} R(X, Y) \cdot F=0$
for any vector fields X, Y and Z on M,
(ii) the rank of the Ricci form is maximum.

Making use of the above results, we can prove
Theorem 4.6. If M is an F-space of nonzero constant holomorphic sectional curvature, then M is Kählerian.

Proof. By virtue of Theorem 4.1, Lemma 4.2 and Lemma 4.3, from Lemma 4.4 we have $\nabla_{s} R_{j i n k}=0$, so that M is locally symmetric. Thus from Lemma 4.5 it follows that M is Kählerian.

Bibliography

[1] A. Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970) 283-309.
[2] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. II, John Wiley, New York, 1969.
[3] S. Kotō, Some theorems on almost Kählerian spaces, J. Math. Soc. Japan 12 (1960) 422-433.
[4] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
[5] S. Sawaki, Sufficient conditions for an almost Hermitian manifold to be Kählerian, Hokkaido Math. J. (1972).
[6] B. Smyth, Differential geometry of complex hypersurfaces, Thesis, Brown University, 1966.
[7] S. Tachibana, On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. J. 11 (1959) 351-363.
[8] K. Takamatsu, Some properties of constant scaler curvature, Bull. Fac. Ed. Kanazawa Univ. 19 (1968) 25-27.
[9] H. Yanamoto, On orientable hypersurface of R^{7} satisfying $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{F}=0$, Res. Rep. Nagaoka Tech. College 8 (1972) 9-14.
[10] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965.

Nigata University, Nigata, Japan

