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ALMOST HERMITIAN MANIFOLDS WITH CONSTANT
HOLOMORPHIC SECTIONAL CURVATURE

SUMIO SAWAKI & KOUEI SEKIGAWA

1. Introduction

B. Smyth proved in his thesis [6] the following

Theorem. Let M be a complex hypersurface of a Kihlerian manifold M
of constant holomorphic sectional curvature ¢. If M is of complex dimension
> 2, the following statements are _equivalent:

(i) M is totally geodesic in M,

(i) M is of constant holomorphic sectional curvature,

(iii) M is an Einstein manifold and at one point of M all sectional curva-
tures of M are >1¢ (resp. <1¢) when ¢ > 0 (resp. <0).

One of the purposes of the present paper is to generalize this theorem to
almost Hermitian manifolds, and another is to prove that an F-space of con-
stant holomorphic sectional curvature is Kéhlerian. Here by an F-space we
mean an almost Hermitian manifold M satisfying R(X,Y)-F = 0 for any
vector fields X and Y on M, where the endomorphism R(X, Y) operates on
the almost complex structure tensor F as a derivation at each point of M.

In §2, we shall state the differential-geometric properties of a complex
hypersurface of an almost Hermitian manifold satisfying a certain condition
and a generalization of the equivalence of the first two statements of Smyth’s
result. We proceed in § 3 to study the same properties of *O-spaces and K-
spaces, and to state a generalization of the result of Smyth. In § 4 we shall
prove some theorems for F-spaces of constant holomorphic sectional curva-
ture. In §§2 and 3, by a complex hypersurface we mean a connected almost
complex hypersurface.

2. Complex hypersurfaces of an almost Hermitian manifold

Let M be an almost Hermitian manifold of complex dimension # + 1, and
denote the almost complex structure and the Hermitian metric of M by F and
g respectively. Moreover, let M be a complex hypersurface of M, i.e., suppose
that there exists a complex analytic mapping f: M — M. Then for each xeM
we identify the tangent space T,(M) with f,(T.(M)) C T,,(M) by means of
fy- Since f¥og = ¢ and Fof, = f,oF where ¢’ and F’ are the Hermitian
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metric and the almost complex structure of M respectively, g and F’ are
respectively identified with the restrictions of the structures g and F to the
subspace f,(T,(M)).

As is well known, we can choose the following special neighborhood U(x)
of x for a neighborhood U (f(x)) of f(x). Let {(7 ;¥ @=1,---,2n+ 2)be a
system of coordinate neighborhoods of M. Then {U; x} is a system of coor-
dinate neighborhoods of M such that x***! = x*** = 0 where x* = X’of.

By /' we always mean the Riemannian covariant differentiation on M and
by ¢ a differentiable unit vector field normal to M at each point of U(x).

If X and Y are vector fields on the neighborhood U(x), we may write

(2.1 ViY =TxY + h(X,Y)§ + k(X, Y)FE,

where VY denotes the component of /Y tangent to M.
Lemma 2.1. (i) V is the covariant differentiation of the almost Hermi-
tian manifold M.
(i) & and k are symmetric covariant tensor fields of degree 2 on U(x).
Proof. Making use of (2.1), we have

Vf,X(sz) = flﬁX(fZY) = fl(XfZ)Y + f1fz‘7XY
= [i(( XY + fif V xY + fH0(X, Y)§ + fif.k(X, Y)FE,
Vix(t,Y) =V, x(hLY) + b X, £,V)E + k(f,X, ,Y)FE

where X and Y are vector fields on U(x), and f, and f, are differentiable func-
tions on U(x). From the above two equations, we have

(X, 1Y) = (f,h(X,Y),  k(fX,£Y) = fif,k(X,Y) ,

which show that 4 and & are tensor fields on U(x).
Thus, since VY becomes a vector fields, from (2.1) it follows that I is a
covariant differentiation on U(x).

Next, from
VY =VyY + h(X, V)& + k(X, Y)F¢ ,
VyX = VyX + h(Y,X)¢ + k(Y, X)F¢ ,
[X9 Y]ﬂ == [X, Y]M bl
we have

TX,Y)=TX,Y) + {h(X,Y) — (Y, X)} + {k(X,Y) — k(Y, X)}FE ,

where T (resp. T) is the torsion tensor of the connection on M (resp. U(x))
with respect to I (resp. V). Since T = O, it follows that T = 0 and 4 and k&
are symmetric.
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From fg = 0 we have easily g = 0. Hence the proof is completed.
:l‘he identities g(§,&) = 1 and g(F§, FE) =1 imply g(Vx£,6) = 0 and
gV x(F&), F&) = 0 respectively. Therefore we may put

(2.2) Ve = —AX) + s(X)F¢ ,
(2.3 Vx(F&) = —B(X) + uX)¢,

where A(X) and B(X) are tangent to M.

Lemma 2.2. (i) A, B and s, t are tensor fields on U(x) of type (1.1) and
(0,1) respectively.

(i) A and B are symmetric with respect to g, and satisfy

(2.5) k(X,Y) = g(BX,Y)

for any vector fields X and Y.
Proof. For any vector field X and any differentiable function f on U(x),
we have

5 =Vixé = —AGX) + sUX)FE = —fAX) + fs(X)F§ ,

from which it follows that A(fX) = fA(X), s(fX) = fs(X). Thus A and s are
tensor fields on U(x). For & and any vector field Y on U(x), we have g(Y, &)
= 0 and therefore

g(ﬁXYa E) + g(Y9 7}(5) - O s

in which substitution of (2.1) and (2.2) gives (2.4). However, since 4 is sym-
metric, from (2.4) it follows that g(4X,Y) = g(X, AY) which shows that A4
is symmetric. Similarly the properties of B are verified.

Now let M be a complex hypersurface satisfying the condition

(2.6) hX,Y) = k(X,FY)

for any vector fields X and Y on U(x) at every point x € M. It is easily verified
that the condition (2.6) is independent of the choice of mutually orthogonal
unit vectors & and F£ normal to M.

Lemma 2.3. In a complex hypersurface M of M satisfying (2.6), we have

(i) FA = —AF , FB = —BF ,
(ii) FA and FB are symmetric with respect to g,
(iii) B =FA .

Proof. By virture of (2.4) and (2.6), for any vector fields X and ¥ we have
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(2.7) g(AFX,Y) = h(FX,Y) = k(FX,FY) ,
(2.8) g(FAX,Y) = —g(AX,FY) = —h(X,FY) = —k(FX,FY),

which imply that g(AFX,Y) = —g(FAX,Y), sothat AF = —FA. Since A is
symmetric, by (i) we thus have

8(AFX,Y) = g(FX,AY) = g(X, AFY) ,

which shows that AF is symmetric. Similarly the properties of B are verified.
Finally, by (2.6) and (2.5) we have

WX,FY) = —k(X,Y) = —g(BX,Y) = —g(FBX,FY) .

On the other hand, we have A(X,FY) = g(AX,FY) by (2.4) and therefore
g(AX,FY) = —g(FBX,FY), from which it follows that 4 = —FB, i.e.,
B = FA.

Remark. In a complex hypersurface M of M, hX,Y) = k(X,FY) is
equivalent to B = FA.

Since A is symmetric and FA = —AF in a complex hypersurface M of M
satisfying (2.6), we have the following well-known

Lemma 2.4. In a complex hypersurface M of M satisfying (2.6), at any
point y € U(x) there exists an orthonormal basis {e,, - - -, e,, Fe,, - - -, Fe,} of
T,(M) with respect to which the matrix A is diagonal of the form

— 2

Where Aei = Ziei, and AFez - —ZiFei, l == 1, LRI (B .
Lemma 2.5. If R and R are the Riemannian curvature tensors of M and
a complex hypersurface M of M satisfying (2.6) respectively, then for any vector
fields X, Y, Z and W on U(x) we have the following Gauss equation:
RX,Y,Z,W) =R(X,Y,Z, W)
(2.9) — {8(4X, 2)g(AY, W) — g(AX, W)g(AY, Z)}
— {8(FAX,Z)g(FAY ,W) — g(FAX,W)g(FAY , Z)} .

Proof. From (2.1) it follows that

VoW = VW + WY, W)E + k(Y, W)FE .
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Applying F; to this equation and making use of (2.2) and (2.3), we obtain

VoW =V VW — WY, WAX) — k(Y, W)B(X)
(2.10) + (WX, VW) + X(WY, W) + k(Y, W)UX)}&
+ {k(X, Py W) + X(k(Y, W) + h(Y, W)s(X)}F¢ ,

PixoW = Vix oW + h(IX, Y], W)E + k(LX, Y], W)FE .
Substitution of (2.10) in

RX, Y)W — RX, )W
=P W — P F W —FxoiW — WiV W — Vil s W — iy W)

gives easily

RX,Y,Z,W) = R(X,Y,Z,W) — {8(4X, 2Dh(Y, W) — gAY, 2)h(X, W)}
— {8(BX, 2)k(Y, W) — g(BY, 2)k(X, W)} ,

or (2.9) by (2.4), (2.5) and (2.6).

Lemma 2.6. Let M be a complex hypersurface of M and satisfy the con-
dition (2.6).

(i) If p is 2-plane tangent to M at a point of U(x), then

K(p) = K(p) — {8(4X, X)g(AY,Y) — g(4X, Y)?}

(2.11) — {g(FAX,X)g(FAY,Y) — g(FAX,Y)} ,

where X,Y form an orthonormal basis of p, and K(p) (re~sp. K(p)) is the sec-
tional curvature of p considered as a 2-plane tangent to M (resp. M).
(ii) If X is a unit vector tangent to M at a point of U(x), then

(2.12) HX) = HX) + 2{g(4X, X)* + g(FAX, X)*} ,

where H(X) (resp. H(X)) is the holomorphic sectional curvature in M
(resp. M).

Proof. (i) is immediate on replacing Z and W in the Gauss equation by X
and Y respectively, and making use of the fact that 4 and FA are symmetric.
(ii) is also immediate on replacing Y by FX in (2.11) and making use of the
fact that FA = — AF.

Proposition 2.7. Let M be a complex hypersurface of M of constant holo-
morphic sectional curvature &. If M is of complex dimension >?2 and satisfies
the condition (2.6), then at each point of M there exists a holomorphic plane
whose sectional curvature in M is &, and therefore if M is of constant
holomorphic sectional curvature c, then ¢ = ¢.

Proof. Let{e,---,e,,Fe, ---,Fe,} be an orthonormal basis in Lemma
2.4. Since n > 2, there exist 2; and 2; (i # j) defined in Lemma 2.4.
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In the case where 4, > 0 and 2; > 0, we set

X = + 2]')_}(\/1;31; + \/Z;Fej) .

Then
AX — V2.8, — VA Fe, ,  FAX = VaaFe; + Ve, ,
A + 2* (A + 2p*
so that
(2.13) gA4X,X) =0, g(FAX,X)=0.

In the case where 1, < 0 and 2; > 0, and in the case where 4; < 0 and
1; < 0, we set, respectively,

x — Ve + Ve, . x— V=2e; + V—2Fe;
; — )¢ (=25 — )}

so that we can also obtain (2.13).

Consequently, from (2.12) and (2.13) we have ¢ = H(X) = H(X) which
proves the proposition.

Theorem 2.8. Let M be a complex hypersurface of M of constant holo-
morphic sectional curvature ¢. If M is of complex dimension >2 and satisfies
the condition (2.6), then the following statements are equivalent:

(i) M is totally geodesic in M,

(i) M is of constant holomorphic sectional curvature.

Proof. 1If M is totally geodesic, then A vanishes on M, and therefore from
(2.12) it follows that M is of constant holomorphic sectional curvature &.
Conversely, if M is of constant holomorphic sectional curvature ¢, then by
virtue of Proposition 2.7 we have, for any unit vector X tangent to M, ¢ =
H(X) = H(X), which reduces (2.12) to g(4X,X)* + g(FAX,X)* =0, so
that 4 = 0, that is, M is totally geodesic.

b

3. *O-spaces and K-spaces

An almost Hermitian manifold M is called an *O-space (or quasi-Kéhlerian
manifold) [3] or a K-space (or Tachibana space or nearly Kdhler manifolds) [7]
according as

3.1 Vy(F)Y + P py(F)FY =0,
or
(3.2) P F)Y + FPy(FH)X =0  (or equivalently //,(F)X = 0)

holds for any vector fields X and Y on M. It is well-known that a K-space is
an *QO-space.
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First of all, let M be a complex hypersurface of an *O-space M. Then for
any vector fields X and Y on U(x) C M we have

Ve(FY) = F7yY + Vx(F)Y ,  Ppx(FFY) = FVpx(FY) + Vpx(F)FY .
Adding these equations and making use of (3.1) we obtain
3.3) Ve(FY) — VpxY = FWY + Vpx(FY)) .

Substituting (2.1) in (3.3) gives immediately

3.4 Vy(FY) — VypyY — FV Y — FV(FY) =0,
(3.5) WX,FY) — h(FX,Y) = —k(X,Y) — k(FX,FY) ,
(3.6) k(X,FY) — k(FX,Y) = h(X,Y) + h(FX,FY) .

In consequence of
3.7 Vy(F)FY = —FV (F)Y ,
(3.4) reduces to

Vx(B)Y + Vex(F)FY =0,

which shows that M is also an *O-space.
Since the left hand side of (3.5) is skew-symmetric in X,Y and the right
hand side is symmetric in X, Y due to the symmetry of 4 and k, we have

h(X,FY) = h(FX,Y) , k(X,Y) + k(FX,FY) =0.
Similarly, from (3.6) follow
k(X,FY) = k(FX,Y) , hX,Y) + h(FX,FY) =0,

which are equivalent to the above two equations.

Hence we have

Lemma 3.1. A complex hypersurface M of an *O-space M is also an
*(O-space, and satisfies

3.8) h(X,FY) = (FX,Y),
3.9 k(X,FY) = k(FX,Y) .

Next, let M be a complex hypersurface of a K-space M. Then for vector
fields X and Y on U(x) C M we have

VAFY) = FP,Y + P (F)Y , Vy(FY) = F7yX + Vx(F)X .
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Adding these equations and making use of (3.2) we obtain

(3.10) Ve(FY) + Vy(FX) = FZ Y + Vv X) .
Substituting (2.1) in (3.10) gives readily

(3.11) V(FY) + Vy(FX) = FV,Y + FIyX ,
(3.12) WX,FY) + h(FX,Y) = —2k(X,Y) ,
(3.13) k(X,FY) + k(FX,Y) = —2h(X,Y) .

(3.11) reduces to
VX(F)Y + VY(F)X =0 )

which shows that M is also a K-space. (3.12) and (3.8) imply A(X,FY) =
—k(X,Y), i.e., i(X,Y) = k(X, FY), which is equivalent to B = FA by the
remark in § 2. From (3.13) we shall get the same result.

Consequently, we have

Lemma 3.2. A complex hypersurface M of a K-space M is also a K-space,
and satisfies

hMX,Y) = k(X,FY) (or equivalently B = FA) .

Recently, Gray [1] proved
Lemma 3.3. In a K-space M of constant holomorphic sectional curvature
¢ at a point x e M, we have

(3.15) K(p) = 3e{1 + 38(FX,Y)} + §|V(B)Y|,

where p is a 2-plane spanned by any two orthonormal vectors X,Y e T.(M).

Making use of these Lemmas, we can prove

Theorem 3.4. Let M be a complex hypersurface of a K-space M with
constant holomorphic sectional curvature ¢. If M is of complex dimension >3,
then the following statements are equivalent:

(i) M is totally geodesic in M,

(ii) M is of constant holomorphic sectional curvature,

(iii)) at every point x e M, all the sectional curvatures of M satisfy

(3.16) K®) > 1e{1 + 3g(FX, Y)Y},

where p is a 2-plane spanned by any two orthonormal vectors X,Y ¢ T ,(M).

Proof. Since, by Lemma 3.2, K-space satisfies (2.6), the fact that (i) is
equivalent to (ii) is nothing but Theorem 2.8 (i). Next, if M is of constant
holomorphic sectional curvature ¢, then ¢ = & by Proposition 2.7, and there-
fore by Lemma 3.3 we have, for any orthonormal vectors X,Y ¢ T (M) at
every point x € M,
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(3.17) K(p) = 1&{1 + 3g(FX,Y)*} + ||V (F)Y|?,

which implies (3.16).

Finally, we shall prove that (iii) implies (i). Substituting (3.15) in (2.11),
and making use of (3.16) we can easily obtain
7 PY|P + {g(4X, X)g(AY,Y) — g(AX, Y)?}

(3.18)
+ {8(FAX, X)g(FAY,Y) — g(FAX,Y)’} > 0 .

Now let {e,, - - -, e,, Fe, - - -, Fe,} be an orthonormal basis given in Lemma
2.4, and set

X =(e; + Fe)/v/ 2, Y = (e; — Fe) /v 2 .
Since
AX = A(e; — Fep) |V 2, AY = 2(e; + Fe) [V 2 ,
FAX = 2(Fe; + e)/v2 ,  FAY = 3(Fe, —e)|v/ 2 ,
we have
gAX,X) =0, g(FAX,X) = 2,
g(FAY,Y) = —1;, g(FAX,Y) =0, 8AX,Y) =12, .
Moreover, from Y = —FX, (3.2) and (3.7) we have
V(F)Y = —V(F)FX = F/ ((F)X = 0 .

Thus (3.18) reduces to 2, =0 (@ =1, .-+, n), which together with Lemma
2.4 implies that A4 is identically zero at each point of M, so that M is totally
geodesic in M.

Remark. It is well-known that in a K-space M of constant holomorphic
sectional curvature ¢, ¢ > 0 [8]. Hence from (3.17) we have

(3.19) K(p) > 3¢ .

However, the authors do not know whether M is totally geodesic or not if
(3.19) holds.

4. F-spaces

Recall that an almost Hermitian manifold M of dimension 2 is called an
F-space if R(X,Y)-F = 0 holds for any vector fields X and ¥ on M. Of
course, a K#hlerian manifold is an F-space, and an almost Kdhlerian manifold
or a K-space satisfying R(X, Y)-F = 0 is Kéhlerian [5]. However, an example
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of a nonkihlerian *O-space satisfying R(X, Y)-F = 0 has been recently given
by Yanamoto [9].

Now for an F-space M of constant holomorphic sectional curvature ¢ we
have (cf. [2, pp. 165-166])

(4.1 + 8(X,FZ2)8(Y,FW) — g(X, FW)g(Y, FZ)
+ 28(X, FY)8(Z, FW)} ,

where X, Y, Z and W are any tangent vectors at a point of M, since R(X,Y)-F
= 0 means that

R(X,Y,Z,W) = R(X,Y,FZ,FW) = R(FX,FY,Z, W) .

On replacing Z and W in (4.1) by mutually orthogonal unit vectors X and
Y respectively, we obtain

K(p) = ic{l + 3g(X,FY)} .

Hence we have the following theorem which is a generalization of the corre-
sponding result in a K#hlerian manifold [10].

Theorem 4.1. An F-space M of constant holomorphic sectional curvature
¢ is an Einstein space. When ¢ # 0, the sectional curvature K(p) of a 2-plane
p spanned by any two orthonormal vectors X and Y in M satisfies the
inequalities :

le<Kp)<c forc>0, le>Kp)>c forc<O0,

where the equality t¢ = K(p) occurs when g(X, FY) = 0, and K(p) = c occurs
when g(X,FY) = +1. '

Proof. It is sufficient to prove the first assertion of the theorem. Let
R;;.*, g;; and F;* be the local components of R, g and F respectively, and put
Rjink = 8raRyin® and F;; = g, F;*. Then (4.1) can be written as

(4.2)  Rype = —5c(8in8ix — 8in&in + FniFri — FisFri + 2F;;Fys) .
Transvecting (4.2) with g* we have
4.3) Rj, = 4(n + Degyy

so that our space is Einsteinian. q.e.d.
Applying V.V, to (4.2), we have

ViV aRjine = —3C{(WoV oFn)Fri + FriV oV oF vy — VoV oFi))F s
—Fy VoV oFri + 200V oF i )Fn, + 2F; VoV oFin}
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4.4) —ﬁc{(Vthj)Vkai + (Vthj)VaFki}
+ 1c{VoFi )WV oF i + (VoF i)V o F i}
- %c{(VaFij)Vkan + (VbFij)Vkah} .

Since R(X,Y)-F = 0 means that ',/ ,F}; is symmetric in a, b, the right hand
side of (4.4) is symmetric in a, b. Thus from (4.4) we have

Lemma 4.2. In an F-space of constant holomorphic sectional curvature,
we have

ViV aRjink — VoV Ry =0, ie., R(X,Y)-R=0.
Next, calculating the square of both sides of (4.2) we have
Rjin R = 2¢*n(n + 1)
and therefore
4.5) R RI" = 2R*/[n(n + 1)],

since C = R/[n(n + 1)] from (4.3). Hence we obtain

Lemma 4.3. In an F-space of constant holomorphic sectional curvature,
the length of the tensor R;;,; is constant.

On the other hand, the following two lemmas are known.

Lemma 4.4 (Lichnerowicz [4], Yano [10]). In a Riemannian manifold, we
have

AR ;1 RIM®) = 2(F R j151)VRI™ — 4RI (VR — ViRyz)
— 4RIMH g

where 4 and H;;,* ., X*Y" are the Laplacian and the components of R(X,Y)-R
respectively.

Lemma 4.5 (Sawaki [S]). Arn almost Hermitian manifold M is Kdihlerian
if it satisfies:

(i) RX,Y)-F=0, V,RIX,Y)-F =0
for any vector fields X,Y and Z on M,

(ii) the rank of the Ricci form is maximum.

Making use of the above results, we can prove

Theorem 4.6. If M is an F-space of nonzero constant holomorphic sec-
tional curvature, then M is Kihlerian.

Proof. By virtue of Theorem 4.1, Lemma 4.2 and Lemma 4.3, from
Lemma 4.4 we have VR, = 0, so that M is locally symmetric. Thus from
Lemma 4.5 it follows that M is Kdhlerian.
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