MODELS OF THE RIEMANNIAN MANIFOLDS \boldsymbol{O}_{n}^{2} IN THE LORENTZIAN 4-SPACE

MASAO MAEDA \& TOMINOSUKE OTSUKI

1. Introduction

We denote by O_{n}^{2} the 2-dimensional Riemannian manifold defined on the unit disk $D^{2}: u^{2}+v^{2}<1$ in the $u v$-plane with the following metric:

$$
\begin{equation*}
d s^{2}=\left(1-u^{2}-v^{2}\right)^{n-2}\left\{\left(1-v^{2}\right) d u^{2}+2 u v d u d v+\left(1-u^{2}\right) d v^{2}\right\} \tag{1.1}
\end{equation*}
$$

which is called the Otsuki manifold (of type number n) following W. Y. Hsiang and H. B. Lawson who treated it in [3] for any integer $n \geq 2$ and in particular for the case where $n=2$. The second auther of this paper studied it about the angular periodicity of geodesics in [4], [5] and [6].

On the other hand, O_{0}^{2} is the hyperbolic plane H^{2} of curvature -1 , and (1.1) is the metric described in the Cayley-Klein's model of $H^{2} . O_{1}^{2}$ is the hemisphere: $u^{2}+v^{2}+w^{2}=1$ and $w>0$, and (1.1) is the metric described in the plane of the equator: $w=0$ through the orthogonal projection.

As is well known, some part of H^{2} but not whole plane can be represented as a surface of revolution in the Euclidean 3 -space E^{3}. In the present paper, we shall show that $O_{n}^{2}(n>1)$ can be represented as a surface of revolution in E^{3} for the part: $u^{2}+v^{2} \leq(2 n-1) / n^{2}$, and the whole space can be done as such a surface in the Lorentzian 4-space.

2. Preliminaries

Putting $u=r \cos \theta, v=r \sin \theta$, we can write (1.1) as

$$
\begin{equation*}
d s^{2}=\left(1-r^{2}\right)^{n-2} d r^{2}+r^{2}\left(1-r^{2}\right)^{n-1} d \theta^{2} \tag{2.1}
\end{equation*}
$$

which shows that the metric (1.1) is invariant under the group of rotations around the origin of D^{2}.

Putting $E=\left(1-r^{2}\right)^{n-2}$ and $G=r^{2}\left(1-r^{2}\right)^{n-1}$, from

$$
K=-\frac{1}{\sqrt{E G}}\left\{\frac{\partial}{\partial r}\left(\frac{1}{\sqrt{E}} \frac{\partial \sqrt{G}}{\partial r}\right)\right\}
$$

we can obtain the Gaussian curvature K of O_{n}^{2}, namely,

$$
\begin{equation*}
K=\left(2 n-1-n r^{2}\right)\left(1-r^{2}\right)^{-n} \tag{2.2}
\end{equation*}
$$

which leads immediately to
Proposition 1. O_{n}^{2} is of positive Gaussian curvature for $n \geq 1$, and of negative Gaussian curvature for $0 \leq n<\frac{1}{2}$.

Next, we denote the length of curve $r=a$ by $l(a)$. Then

$$
\begin{equation*}
l(a)=2 \pi a\left(1-a^{2}\right)^{\frac{1}{2}(n-1)} \tag{2.3}
\end{equation*}
$$

from which we can easily obtain
Proposition 2. If $n>1$, then $l(a)$ is maximal when $a=n^{-\frac{1}{2}}$, and $l\left(n^{-\frac{1}{2}}\right)=$ $2 \pi\left(n e_{n-1}\right)^{-\frac{1}{2}}$, where $e_{n-1}=[1+1 /(n-1)]^{n-1}$.

3. A representation of O_{n}^{2} in E^{3}

In the following we suppose $n>1$. In the Euclidean 3 -space E^{3} with canonical coordinates x, y, z, let us consider a smooth surface of revolution M^{2} given by

$$
\begin{equation*}
p=(f(z) \cos \theta, f(z) \sin \theta, z) \tag{3.1}
\end{equation*}
$$

The induced Riemannian metric on M^{2} from E^{3} is

$$
\begin{equation*}
d s^{2}=\left\{1+\left(f^{\prime}(z)\right)^{2}\right\} d z^{2}+(f(z))^{2} d \theta^{2} \tag{3.2}
\end{equation*}
$$

where z, θ are considered as local coordinates of M^{2}.
Using the polar coordinates r, θ of R^{2} regarded as an E^{2}, we consider a mapping from a neighborhood of the origin of R^{2} to $M^{2}: O_{n}^{2} \ni(r, \theta) \rightarrow(z, \theta) \in$ M^{2}, given by

$$
\begin{equation*}
z=\varphi(r) \tag{3.3}
\end{equation*}
$$

Then from (2.1) and (3.2) it follows that this mapping is isometric if and only if the following equations are satisfied:

$$
\begin{gather*}
\left(1-r^{2}\right)^{n-2}=\left\{1+\left(f^{\prime}(\varphi(r))\right)^{2}\right\}\left(\varphi^{\prime}(r)\right)^{2} \tag{3.4}\\
r^{2}\left(1-r^{2}\right)^{n-1}=(f(\varphi(r)))^{2} \tag{3.5}
\end{gather*}
$$

Since we may suppose $f \geq 0$, from (3.5) we get

$$
\begin{equation*}
f(\varphi(r))=r\left(1-r^{2}\right)^{\frac{1}{2}(n-1)} . \tag{3.6}
\end{equation*}
$$

Differentiating (3.6), we have

$$
\begin{equation*}
f^{\prime}(\varphi(r)) \frac{d \varphi}{d r}=\left(1-r^{2}\right)^{\frac{1}{2}(n-3)}\left(1-n r^{2}\right) \tag{3.7}
\end{equation*}
$$

and substitution of this in (3.4) gives

$$
(d \varphi / d r)^{2}=r^{2}\left(1-r^{2}\right)^{n-3} \lambda(r),
$$

where

$$
\begin{equation*}
\lambda(r)=2 n-1-n^{2} r^{2} \tag{3.8}
\end{equation*}
$$

Since we may suppose that $\varphi(r)$ is monotone increasing, we obtain
(3.9) $\varphi(r)=\int_{0}^{r} t\left(1-t^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{\lambda(t)} d t \quad$ for $0 \leq r \leq \frac{\sqrt{2 n-1}}{n}$.

Now let

$$
\begin{equation*}
r=\psi(z) \tag{3.10}
\end{equation*}
$$

be the inverse function of $\varphi(r)$. Then (3.6) implies

$$
\begin{equation*}
f(z)=\psi(z)\left\{1-(\psi(z))^{2}\right\}^{\frac{z}{2}(n-1)} \tag{3.11}
\end{equation*}
$$

Finally, putting

$$
\begin{equation*}
\varphi\left(n^{-\frac{1}{2}}\right)=a, \quad \varphi(\sqrt{2 n-1} / n)=b \tag{3.12}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
f(a)=\frac{1}{\sqrt{n}}\left(1-\frac{1}{n}\right)^{\frac{1}{(n-1)}}=\frac{1}{\sqrt{n e_{n-1}}} \\
f(b)=\frac{\sqrt{2 n-1}}{n}\left(1-\frac{2 n-1}{n^{2}}\right)^{\frac{1}{2}(n-1)}=\frac{\sqrt{2 n-1}}{n e_{n-1}} \tag{3.13}\\
\lim _{n \rightarrow \infty} \frac{f(b)}{f(a)}=\sqrt{\frac{2}{e}}
\end{gather*}
$$

Furthermore from (3.7), (3.8) and (3.9) it follows that

$$
\begin{equation*}
f^{\prime}(z)=\left(1-n r^{2}\right) r^{-1}(\lambda(r))^{-\frac{1}{2}}, \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime}(0)=+\infty, \quad f^{\prime}(a)=0, \quad f^{\prime}(b)=-\infty \tag{3.15}
\end{equation*}
$$

Thus we have
Theorem 1. O_{n}^{2} can be represented as a surface of revolution: $(f(z) \cos \theta$, $f(z) \sin \theta, z)$ in E^{3} for $0 \leq r \leq \sqrt{2 n-1} / n$, where $z=\varphi(r)$ and $f(z)$ are given by (3.9), (3.10) and (3.11).

Remark. The profile curve \mathscr{C} of the surface of revolution in Theorem 1 is given by

$$
\begin{equation*}
x=r\left(1-r^{2}\right)^{\frac{1}{2}(n-1)}, \quad z=\varphi(r) \tag{3.16}
\end{equation*}
$$

Let k_{1} (= the curvature of \mathscr{C}) and k_{2} be the principal curvatures of this surface. Then as is well known

$$
k_{1}=-f^{\prime \prime}(z)\left\{1+\left(f^{\prime}(z)\right)^{2}\right\}^{-3 / 2}, \quad k_{2}=x^{-1}\left\{1+\left(f^{\prime}(z)\right)^{2}\right\}^{-1 / 2} .
$$

By using (3.14) and (3.16), we can easily obtain

$$
\begin{equation*}
k_{1}=\frac{2 n-1-n r^{2}}{\left(1-r^{2}\right)^{n / 2} \sqrt{\lambda(r)}}, \quad k_{2}=\frac{\sqrt{\lambda(r)}}{\left(1-r^{2}\right)^{n / 2}}, \tag{3.17}
\end{equation*}
$$

from which follow

$$
\lim _{z \rightarrow b} k_{1}=+\infty, \quad \lim _{z \rightarrow b} k_{2}=0
$$

4. A surface theory in the Lorentzian 3-space

In this section, for our purpose we give a brief theory of surfaces in the Lorentzian 3-space.

Let R^{3} denote the Cartesian product $R \times R \times R$ where R is the set of real numbers. On R^{3} with the canonical coordinates x_{1}, x_{2}, x_{3}, the Euclidean 3-space E^{3} and the Lorentzian 3 -space L^{3} are defined by the metrices

$$
E^{3}: d s^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}, \quad L^{3}: d s^{2}=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}
$$

respectively. We denote the inner products, in E^{3} and L^{3}, of any two vectors $X=\sum X_{i} \partial / \partial x_{i}$ and $Y=\sum Y_{i} \partial / \partial x_{i}$ by

$$
\begin{align*}
& (X, Y)=X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3} \tag{4.1}\\
& \langle X, Y\rangle=X_{1} Y_{1}+X_{2} Y_{2}-X_{3} Y_{3} \tag{4.2}
\end{align*}
$$

respectively, denote the symmetry of E^{3} with respect to the $x_{1} x_{2}$-plane by φ, and extend φ to vectors as follows:

$$
\begin{equation*}
\varphi(X)=X_{1} \partial / \partial x_{1}+X_{2} \partial / \partial x_{2}-X_{3} \partial / \partial x_{3} . \tag{4.3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\langle X, Y\rangle=(X, \varphi(Y))=(\varphi(X), Y) \tag{4.4}
\end{equation*}
$$

Let $X \wedge Y$ be the outer product of X and Y in E^{3}, that is,

$$
\begin{aligned}
X \wedge Y= & \left(X_{2} Y_{3}-X_{3} Y_{2}\right) \frac{\partial}{\partial x_{1}}+\left(X_{3} Y_{1}-X_{1} Y_{3}\right) \frac{\partial}{\partial x_{2}} \\
& +\left(X_{1} Y_{2}-X_{2} Y_{1}\right) \frac{\partial}{\partial x_{3}}
\end{aligned}
$$

and let $\{X, Y\}$ denote the space spanned by X and Y. Then we obtain easily
Lemma 1. $\varphi(X \wedge Y) \in\{X, Y\}$ if and only if $X \wedge Y$ is a null vector of L^{3}.
Now let M be a surface in R^{3}, and M_{x} the tangent space at $x \in M$. Let N_{x} and \tilde{N}_{x} be the normal tangent spaces of M_{x} in E^{3} and L^{3}, and denote the normal bundles of M in E^{3} and L^{3} by $N(M)$ and $\tilde{N}(M)$, respectively. By virtue of (4.4), we have immediately
Lemma 2. $\tilde{N}_{x}=\varphi\left(N_{x}\right)$.
A point of $x \in M$ is said to be regular if \tilde{N}_{x} is linearly independent of M_{x}. For any tangent vector fields $X, Y \in$ the set $\Gamma(T(M))$ of smooth cross sections of the tangent bundle $T(M)$ of M, we have

$$
\begin{equation*}
d_{X} Y=\nabla_{X} Y+T_{X} Y \tag{4.5}
\end{equation*}
$$

where $d_{X} Y$ is the ordinary derivative of Y with respect to X in $R^{3}, \nabla_{X} Y \in$ $\Gamma\left(T(M)\right.$), and $T_{X} Y \in \Gamma(N(M))$.

Supposing every point of M is regular in L^{3}, we have the following formula with respect to L^{3} analogous to (4.5) :

$$
\begin{equation*}
d_{X} Y=\tilde{\nabla}_{X} Y+\tilde{T}_{X} Y, \quad \tilde{\nabla}_{X} Y \in \Gamma(T(M)), \quad \tilde{T}_{X} Y \in \Gamma(\tilde{N}(M)) \tag{4.6}
\end{equation*}
$$

Let $\left(x, e_{1}, e_{2}, e_{3}\right)$ be an orthonormal frame of E^{3} at $x \in M$ such that $e_{3} \in N_{X}$. Then

$$
\begin{equation*}
T_{X} Y=A(X, Y) e_{3} \tag{4.7}
\end{equation*}
$$

where $A(X, Y)$ is the 2 nd fundamental form of M in E^{3}.
Proposition 3. For any $X, Y \in \Gamma(T(M))$ at any regular point of M in L^{3}, we have

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y-\frac{A(X, Y)}{\left\langle e_{3}, e_{3}\right\rangle} \operatorname{Proj} \varphi\left(e_{3}\right), \tag{4.8}\\
\tilde{T}_{X} Y=\frac{A(X, Y)}{\left\langle e_{3} e_{3}\right\rangle} \varphi\left(e_{3}\right) \tag{4.9}\\
\operatorname{Proj} \varphi\left(e_{3}\right)=\left\langle e_{1}, e_{3}\right\rangle e_{1}+\left\langle e_{2}, e_{3}\right\rangle e_{2} \tag{4.10}
\end{gather*}
$$

Proof. At a regular point, we easily obtain

$$
\begin{equation*}
e_{3}=-\operatorname{Proj} \varphi\left(e_{3}\right) /\left\langle e_{3}, e_{3}\right\rangle+\varphi\left(e_{3}\right) /\left\langle e_{3}, e_{3}\right\rangle \tag{4.11}
\end{equation*}
$$

Substitution of (4.11) in (4.5) gives

$$
d_{X} Y=\nabla_{X} Y+A(X, Y)\left\{-\operatorname{Proj} \varphi\left(e_{3}\right)+\varphi\left(e_{3}\right)\right\} /\left\langle e_{3}, e_{3}\right\rangle
$$

which implies (4.8) and (4.9). q.e.d.

Now let us consider a surface of revolution around the x_{3}-axis in L^{3} given by

$$
\begin{equation*}
p=(x \cos \theta, x \sin \theta, f(x)) \tag{4.12}
\end{equation*}
$$

Take the orthonormal frame (p, e_{1}, e_{2}, e_{3}) of E^{3} given by

$$
\begin{aligned}
e_{1} & =\left(1+f^{\prime 2}\right)^{-\frac{1}{2}}\left(\cos \theta, \sin \theta, f^{\prime}\right), \\
e_{2} & =(-\sin \theta, \cos \theta, 0)=\varphi\left(e_{2}\right) \\
e_{3} & =\left(1+f^{\prime 2}\right)^{-\frac{1}{2}}\left(-f^{\prime} \cos \theta,-f^{\prime} \sin \theta, 1\right), \\
\varphi\left(e_{3}\right) & =\left(1+f^{\prime 2}\right)^{-\frac{1}{2}}\left(-f^{\prime} \cos \theta,-f^{\prime} \sin \theta,-1\right),
\end{aligned}
$$

from which we obtain

$$
\begin{equation*}
\left\langle e_{3}, e_{3}\right\rangle=-1 / \mu=-\left\langle e_{1}, e_{1}\right\rangle, \quad\left\langle e_{2}, e_{2}\right\rangle=1 \tag{4.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\left(1+f^{\prime 2}\right) /\left(1-f^{\prime 2}\right) \tag{4.14}
\end{equation*}
$$

so that $\left(e_{1}, e_{2}, \varphi\left(e_{3}\right)\right)$ is an orthogonal basis of L^{3}.
In the following, we consider the case where

$$
\begin{equation*}
\left|f^{\prime}(x)\right|<1 \tag{4.15}
\end{equation*}
$$

Then putting

$$
\begin{equation*}
\tilde{\boldsymbol{e}}_{1}=\sqrt{\mu} e_{1}, \quad \tilde{\boldsymbol{e}}_{2}=e_{2}, \quad \tilde{\boldsymbol{e}}_{2}=\sqrt{\mu} \varphi\left(e_{3}\right), \tag{4.16}
\end{equation*}
$$

we see that $\left(p, \tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}\right)$ is an orthonormal frame of L^{3} in the following sense:

$$
\begin{aligned}
& \left\langle\tilde{e}_{1}, \tilde{e}_{1}\right\rangle=\left\langle\tilde{e}_{2}, \tilde{e}_{2}\right\rangle=-\left\langle\tilde{e}_{3}, \tilde{e}_{3}\right\rangle=1, \\
& \left\langle\tilde{e}_{1}, \tilde{e}_{3}\right\rangle=\left\langle\tilde{e}_{2}, \tilde{e}_{3}\right\rangle=\left\langle\tilde{e}_{1}, \tilde{e}_{2}\right\rangle=0 .
\end{aligned}
$$

Proposition 4. For a surface M of revolution around the x_{3}-axis in L^{3} with the profile curve $x_{3}=f\left(x_{1}\right)$ such that $\left|f^{\prime}\left(x_{1}\right)\right|<1$, its principal curvatures \tilde{k}_{1} and \tilde{k}_{2} satisfy the following equations:

$$
\begin{equation*}
\tilde{k}_{1}=-\mu^{3 / 2} k_{1}, \quad \tilde{k}_{2}=-\mu^{1 / 2} k_{2} \tag{4.17}
\end{equation*}
$$

where k_{1} and k_{2} are the principal curvatures of M considered as a surface in E^{3}.
Proof. Let us compute the principal curvatures \tilde{k}_{1} and \tilde{k}_{2} of the surface M in L^{3} by means of the frame ($p, \tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}$) stated above. Define the 2 nd fundamental form $\tilde{A}(X, Y)$ of M in L^{3} by

$$
\begin{equation*}
\tilde{T}_{X} Y=\tilde{A}(X, Y) \tilde{e}_{3}, \quad X, Y \in \Gamma(T(M)) \tag{4.18}
\end{equation*}
$$

From (4.9), (4.13), (4.16) and (4.18), it follows that

$$
\begin{equation*}
\tilde{A}(X, Y)=-\sqrt{\mu} A(X, Y) \tag{4.19}
\end{equation*}
$$

Putting

$$
X=X_{1} e_{1}+X_{2} e_{2}=\tilde{X}_{1} \tilde{e}_{1}+\tilde{X}_{2} \tilde{e}_{2}, \quad Y=Y_{1} e_{1}+Y_{2} e_{2}=\tilde{Y}_{1} \tilde{e}_{1}+\tilde{Y}_{2} \tilde{e}_{2}
$$

we have

$$
\tilde{X}_{1}=\mu^{-\frac{1}{2}} X_{1}, \quad \tilde{X}_{2}=X_{2}, \quad \tilde{Y}_{1}=\mu^{-\frac{1}{2}} Y_{1}, \quad \tilde{Y}_{2}=Y_{2} .
$$

Thus by noticing that $A(X, Y)=k_{1} X_{1} Y_{1}+k_{2} X_{2} Y_{2}, \tilde{A}(X, Y)=\tilde{k}_{1} \tilde{X}_{1} \tilde{Y}_{1}+$ $\tilde{k}_{2} \tilde{X}_{2} \tilde{Y}_{2}$, from (4.19) we can easily obtain (4.17).

Proposition 5. Let M be a surface in L^{3} such that every point is regular. With respect to an orthonormal frame ($p, \tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}$) of M in L^{3}, we have

$$
\begin{equation*}
\tilde{R}_{1212}=\tilde{A}_{11} \tilde{A}_{22}-\tilde{A}_{12} \tilde{A}_{12} \tag{4.20}
\end{equation*}
$$

where $\tilde{A}_{\alpha \beta}=\tilde{A}\left(\tilde{e}_{\alpha}, \tilde{e}_{\beta}\right)$.
Proof. For any $X, Y, Z \in \Gamma(T(M))$, we have

$$
d_{X} Y=\tilde{V}_{X} Y+\tilde{A}(X, Y) \tilde{e}_{3}, \quad \tilde{R}(X, Y) Z:=\tilde{V}_{X} \tilde{\nabla}_{Y} Z-\tilde{V}_{Y} \tilde{V}_{X} Z-\tilde{\nabla}_{[X, Y]} Z
$$

where \tilde{R} is the curvature tensor of M in L^{3}. From the above first equation follow immediately

$$
d_{X} d_{Y} Z=\tilde{\nabla}_{X} \tilde{\nabla}_{Y} Z+\tilde{A}(Y, Z) d_{X} \tilde{e}_{3} \quad\left(\bmod \tilde{e}_{3}\right), \quad d_{X} \tilde{e}_{3} \in \Gamma(T(M))
$$

Substitution of these equations in the identity $d_{X} d_{Y} Z-d_{Y} d_{X} Z-d_{[X, Y]} Z=0$ gives

$$
\begin{equation*}
\tilde{R}(X, Y) Z=\tilde{A}(X, Z) d_{Y} \tilde{e}_{3}-\tilde{A}(Y, Z) d_{X} \tilde{e}_{3} \tag{4.21}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\langle d_{\tilde{e}_{\alpha}} \tilde{e}_{3}, \tilde{e}_{\beta}\right\rangle & =-\left\langle\tilde{e}_{3}, d_{\tilde{e}_{\alpha}} \tilde{e}_{\beta}\right\rangle=-\left\langle\tilde{e}_{3}, \tilde{T}_{\tilde{e}_{\alpha}} \tilde{e}_{\beta}\right\rangle \\
& =-\tilde{A}\left(\tilde{e}_{\alpha}, \tilde{e}_{\beta}\right)\left\langle\tilde{e}_{3}, \tilde{e}_{3}\right\rangle=\tilde{A}_{\alpha \beta} .
\end{aligned}
$$

Hence we can easily obtain (4.10) from $\tilde{R}_{1212}:=\left\langle\tilde{R}\left(\tilde{e}_{1}, \tilde{e}_{2}\right) \tilde{e}_{1}, \tilde{e}_{2}\right\rangle$.
Using Proposition 5 for the surface in Proposition 4, we obtain

$$
\tilde{K}=-\tilde{R}_{1212}=-\tilde{A}_{11} \tilde{A}_{22}=-\tilde{k}_{1} \tilde{k}_{2}=-\mu k_{1} k_{2}
$$

where \tilde{K} is the Gaussian curvature of M.
Supposing the curve $x_{3}=f\left(x_{1}\right)$ as is shown in Fig. 1, i.e.,

$$
\begin{equation*}
-1<f^{\prime}\left(x_{1}\right)<0, \quad f^{\prime \prime}\left(x_{1}\right)>0 \tag{4.22}
\end{equation*}
$$

we have

Fig. 1

$$
k_{1}=f^{\prime \prime}\left(1+f^{\prime 2}\right)^{-3 / 2}, \quad k_{2}=f^{\prime}\left(1+f^{\prime 2}\right)^{-1 / 2} / x_{1}
$$

and therefore

$$
\begin{equation*}
\tilde{K}=-f^{\prime} f^{\prime \prime}\left(1-f^{\prime 2}\right)^{-2} / x_{1} . \tag{4.23}
\end{equation*}
$$

5. A representation of O_{n}^{2} in L^{4}

We showed in $\S 3$ that the subdomain of $O_{n}^{2}(0 \leq r \leq \sqrt{2 n-1} / n)$ is represented as a surface of revolution in E^{3}, but we could not extend it over $r=\sqrt{2 n-1} / n$. In this section, we shall do it in the Lorentzian 4 -space $L^{4}\left(\supset E^{3}\right)$ defined by the metric:

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}+d z^{2}-d w^{2} \tag{5.1}
\end{equation*}
$$

on R^{4} with the canonical coordinates x, y, z, w as a surface of revolution around the $z w$-plane.

Using the complex coordinate $\eta=u+i v$ on D^{2}, we can write the metric (1.1) of O_{n}^{2} as

$$
\begin{equation*}
d s^{2}=\frac{1}{4}(1-\eta \bar{\eta})^{n-2}\left\{\bar{\eta}^{2} d \eta^{2}+2(2-\eta \bar{\eta}) d \eta d \bar{\eta}+\eta^{2} d \bar{\eta}^{2}\right\} . \tag{5.2}
\end{equation*}
$$

Putting $\xi=x+i y$ and $\zeta=z+i w$, by Theorem 1 we can write the representation of $O_{n}^{2}(0 \leq r \leq \sqrt{2 n-1} / n)$ in $E^{3} \subset L^{4}$ as

$$
\begin{equation*}
\xi=\eta(1-\eta \bar{\eta})^{\frac{1}{2}(n-1)}, \quad \zeta=\int_{0}^{r} t\left(1-t^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{\lambda(t)} d t \tag{5.3}
\end{equation*}
$$

where E^{3} is considered as a hypersurface of L^{4} defined by $w=0$.
Noticing the expressions of the righthand side of (5.3), we define a mapping

$$
O_{n}^{2}(\sqrt{2 n-1} / n \leq r<1) \rightarrow L^{3} \subset L^{4}
$$

given by

$$
\begin{equation*}
\xi=\eta(1-\eta \bar{\eta})^{\frac{1}{2}(n-1)}, \quad \zeta=b+i \int_{\sqrt{2 n-1} / n}^{r} t\left(1-t^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{-\lambda(t)} d t \tag{5.4}
\end{equation*}
$$

where L^{3} is given by $z=b((3.12))$ in L^{4}.

Theorem 2. The mapping (5.4) is an isometric imbedding of $O_{n}^{2}(\sqrt{2 n-1} / n$ $\leq r<1)$ into L^{3}.

Proof. From (5.3) an elementary calculation gives

$$
d \xi d \bar{\xi}+d \zeta d \zeta=\frac{1}{4}(1-\eta \bar{\eta})^{n-2}\left\{\bar{\eta}^{2} d \eta^{2}+2(2-\eta \bar{\eta}) d \eta d \bar{\eta}+\eta^{2} d \bar{\eta}^{2}\right\} .
$$

Since in L^{4}, (5.1) can be written as $d s^{2}=\operatorname{Re}(d \xi d \bar{\xi}+d \zeta d \zeta)$, from (5.2) it thus follows that (5.4) is an isometric immersion of $O_{n}^{2}(\sqrt{2 n-1} / n \leq r<1)$ in L^{4}. We can easily see that (5.4) is one-to-one. q.e.d.

Now, the first equation of (5.4) shows that the image of the mapping (5.4) is a surface of revolution in L^{4} around the $z w$-plane. The profile curve of the surface in L^{3} is given by

$$
\begin{equation*}
x=r\left(1-r^{2}\right)^{\frac{1}{(n-1)}}, \quad w=\int_{\sqrt{2 n-1} / n}^{r} t\left(1-t^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{-\lambda(t)} d t . \tag{5.5}
\end{equation*}
$$

Differentiating (5.5) we obtain

$$
\begin{gather*}
\frac{d w}{d x}=\frac{r \sqrt{-\lambda(r)}}{1-n r^{2}} \tag{5.6}\\
\frac{d^{2} w}{d x^{2}}=-\frac{2 n-1-n r^{2}}{\left(1-n r^{2}\right)^{3} \sqrt{-\left(1-r^{2}\right)^{n-3} \lambda(r)}} . \tag{5.7}
\end{gather*}
$$

Since $n>1$ and $1-n r^{2}<0$ for $\sqrt{2 n-1} / n<r$, (5.6) and (5.7) imply

$$
\begin{align*}
& \left.\frac{d w}{d x}\right|_{r=\sqrt{2 n-1} / n}=0,\left.\quad \frac{d w}{d x}\right|_{r=1}=-1, \\
& \frac{d^{2} w}{d x^{2}}>0, \quad-1<\frac{d w}{d x}<0 \quad \text { for } \frac{\sqrt{2 n-1}}{n}<r<1 . \tag{5.8}
\end{align*}
$$

The last inequality shows that the profile curve satisfies the condition in Proposition 4. By means of (5.5), (5.6), $(5,7)$ and (2.2), and using $w(x)$ for $f\left(x_{1}\right)$ in (4.23) we can easily see that in L^{3} the Gaussian curvature \tilde{K} of the surface of revolution is equal to the Gaussian curvature K of O_{n}^{2}.

Thus putting (5.3) and (5.4) together we get an isometric imbedding of O_{n}^{2} into L^{4}, the image of which is a surface of revolution around the $z w$-plane with the profile curve $\mathscr{C}=\mathscr{C}_{0} \cup \mathscr{C}_{1}$ where \mathscr{C}_{0} and \mathscr{C}_{1} are given by

$$
\mathscr{C}_{0}:\left\{\begin{array}{l}
x=r\left(1-r^{2}\right)^{\frac{1}{2}(n-1)} \tag{5.9}\\
z=\varphi(r)=\int_{0}^{r} t\left(1-t^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{\lambda(t)} d t, \\
w=0, \quad(0 \leq r \leq \sqrt{2 n-1} / n),
\end{array}\right.
$$

(5.10) $\mathscr{C}_{1}:\left\{\begin{array}{l}x=r\left(1-r^{2}\right)^{\frac{1}{2}(n-1)}, \quad z=b, \\ w=\int_{\sqrt{2 n-1} / n}^{r} t\left(1-t^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{-\lambda(t)} d t, \quad\left(\frac{\sqrt{2 n-1}}{n} \leq r<1\right) .\end{array}\right.$

Fig, 2
Proposition 6. The profile curve $\mathscr{C}=\mathscr{C}_{0} \cup \mathscr{C}_{1}$ is C^{1} and not C^{2}. The sub$\operatorname{arcs} \mathscr{C}_{0}$ and \mathscr{C}_{1} are C^{ω}.

Proof. We have

$$
\begin{aligned}
\frac{d x}{d r} & =\left(1-n r^{2}\right)\left(1-r^{2}\right)^{\frac{1}{2}(n-3)} \\
\frac{d^{2} x}{d r^{2}} & =-(n-1) r\left(3-n r^{2}\right)\left(1-r^{2}\right)^{\frac{1}{2}(n-5)}
\end{aligned}
$$

For \mathscr{C}_{0}, we have

$$
\frac{d z}{d r}=r\left(1-r^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{\lambda(r)}, \quad \frac{d^{2} z}{d r^{2}}=\frac{\left(1-r^{2}\right)^{\frac{1}{2}(n-5)} P(r)}{\sqrt{\lambda(r)}},
$$

where

$$
\begin{align*}
& P(r)=2 n-1-\left(4 n^{2}-5 n+2\right) r^{2}+n^{2}(n-1) r^{4} \tag{5.11}\\
& \text { Since }\left.P(r)\right|_{r=\sqrt{2 n-1} / n}=-(2 n-1)(n-1)^{2} / n^{2}<0
\end{align*}
$$

we get

$$
\begin{equation*}
\frac{d z}{d r} \rightarrow+0, \quad \frac{d^{2} z}{d r^{2}} \rightarrow-\infty \quad \text { as } r \rightarrow \frac{\sqrt{2 n-1}}{n}-0 \tag{5.12}
\end{equation*}
$$

Next, for \mathscr{C}_{1} we have

$$
\frac{d w}{d r}=r\left(1-r^{2}\right)^{\frac{1}{2}(n-3)} \sqrt{-\lambda(r)}, \quad \frac{d^{2} w}{d r^{2}}=-\frac{\left(1-r^{2}\right)^{\frac{1}{2}(n-5)} P(r)}{\sqrt{-\lambda(r)}}
$$

so that

$$
\begin{equation*}
\frac{d w}{d r} \rightarrow+0, \quad \frac{d^{2} w}{d r^{2}} \rightarrow+\infty \quad \text { as } r \rightarrow \frac{\sqrt{2 n-1}}{n}+0 \tag{5.13}
\end{equation*}
$$

These relations imply the proposition.
In conclusion, we obtain
Theorem 3. The surface of revolition in L^{4} around the zw-plane with the profile curve $\mathscr{C}=\mathscr{C}_{0} \cup \mathscr{C}_{1}$ given by (5.9) and (5.10) is a C^{1}-model of O_{n}^{2} and the parts corresponding to \mathscr{C}_{0} and \mathscr{C}_{1} are analytic models of $O_{n}^{2}(0 \leq r \leq$ $\sqrt{2 n-1} / n)$ and $O_{n}^{2}(\sqrt{2 n-1} / n \leq r \leq 1)$, respectively.

Examples. I) When $n=2, \mathscr{C}_{0}$ and \mathscr{C}_{1} are given by

$$
\mathscr{C}_{0}:\left\{\begin{array}{l}
x=r \sqrt{1-r^{2}} \\
z=\frac{1}{2}\left\{\sqrt{3}-\sqrt{1-r^{2}} \sqrt{3-4 r^{2}}\right\}+\frac{1}{4} \log \frac{2 \sqrt{1-r^{2}}+\sqrt{3-4 r^{2}}}{2+\sqrt{3}} \\
w=0, \quad \text { for } 0 \leq r \leq \frac{1}{2} \sqrt{3}
\end{array}\right.
$$

and

$$
\begin{gathered}
a=\frac{1}{2}\left(\sqrt{3}-\frac{1}{2}\right)-\frac{1}{4} \log \frac{2+\sqrt{3}}{1+\sqrt{2}} \\
b=\frac{1}{2} \sqrt{3}-\frac{1}{4} \log (2+\sqrt{3}) ; \\
\mathscr{C}_{1}:\left\{\begin{array}{l}
x=r \sqrt{1-r^{2}}, \quad z=b, \\
w=\frac{1}{8} \pi-\frac{1}{2} \sqrt{1-r^{2}} \sqrt{4 r^{2}-3}-\frac{1}{4} \sin ^{-1} 2 \sqrt{1-r^{2}} \\
\text { for } \frac{1}{2} \sqrt{3} \leq r<1 .
\end{array}\right.
\end{gathered}
$$

II) When $n=3, \mathscr{C}_{0}$ and \mathscr{C}_{1} are given by

$$
\begin{array}{r}
\mathscr{C}_{0}: \quad x=r\left(1-r^{2}\right), \quad z=\frac{1}{27}\left\{5 \sqrt{5}-\left(5-9 r^{2}\right)^{3 / 2}\right\}, \quad w=0 \\
\text { for } 0 \leq r \leq \sqrt{5} / 3
\end{array}
$$

or

$$
\begin{aligned}
& x=\left\{\frac{4}{9}+\left(\frac{5 \sqrt{5}}{27}-z\right)^{2 / 3}\right\}\left\{\frac{5}{9}-\left(\frac{5 \sqrt{5}}{27}-z\right)^{2 / 3}\right\}^{1 / 2} \\
& \text { for } 0 \leq z \leq 5 \sqrt{5} / 27
\end{aligned}
$$

and

$$
\begin{gathered}
a=\frac{1}{27}(5 \sqrt{5}-2 \sqrt{2}), \quad b=\frac{5 \sqrt{5}}{27} \\
\mathscr{C}_{1}: \quad x=r\left(1-r^{2}\right), \quad z=b, \quad w=\left(r^{2}-5 / 9\right)^{3 / 2}, \quad \text { for } \sqrt{5} / 3 \leq r<1
\end{gathered}
$$

or

$$
x=\left(4 / 9-w^{2 / 3}\right)\left(5 / 9+w^{2 / 3}\right)^{1 / 2}, \quad \text { for } 0 \leq w<8 / 27
$$

References

[1] S. S. Chern, M. do Carmo \& S. Kobayashi, Minimal Submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer, Berlin, 1970, 60-75.
[2] S. Furuya, On periods of periodic solutions of a certain nonlinear differential equation, Japan-United States Seminar on Ordinary Differential and Functional Equations, Springer, Berlin, 1971, 320-323.
[3] W. Y. Hsiang \& H. B. Lawson, Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1970) 1-38.
[4] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970) 145-173.
[5] -, On integral inequalities related with a certain nonlinear differential equation, Proc. Japan Acad. 48 (1972) 9-12.
[6] -_, On a 2-dimensional Riemannian manifold, Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 401-414.

Tokyo Institute of Technology

