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THE FIRST BETTI NUMBER OF A COMPACT
ALMOST TACHIBANA SPACE

SEIICHI YAMAGUCHI

0. Introduction

It is well known that the p-th Betti number of a compact Kahlerian space is
zero or even if p is odd [2]. A similar result is known for a compact Sasakian
space [1], [6], [7]. In particular, the first Betti number is zero or even in a
compact Sasakian space.

The purpose of this paper is to give the analogy for the first Betti number
of a compact Tachibana space (=nearly Kahler space [3], =£-sρace [4]).

1. Preliminaries

Let M be an π-dimensional almost Hermitian space with positive definite
metric g = (g^) and almost complex structure / = (//), (/,/>••• = 1, , n).

A 1-form u in M is called a covariant almost analytic form [4] if it satisfies
the equation

or equivalently

FjVt'Ur) - FitffUr) = Jjr(FrUt - FiUr) ,

where F denotes the operator of covariant derivative with respect to the Rie-
mannian connection.

An almost Hermitian space is called an almost Tachibana space (resp. a
Kahlerian space) if the associated 2-form / = \Jjtdxj Λ dxι is a Killing 2-
form (resp. parallel), where we put Jjt = gίrJjr and {x1} is a local coordinate
system of M.

Then the following theorems are known:
Theorem A [9]. A necessary and sufficient condition for a 1-form u in a

compact Kahlerian space to be covariant analytic is that the ί-form u be har-
monic.

Theorem B [4]. In a compact almost Tachibana space, a necessary and
sufficient condition for a ί-form u = (w*) to be covariant almost analytic is that
u and ΰ = (//wr) both be harmonic.
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Throughout this paper, we shall deal with an almost Tachibana space M,
that is, an almost Hermitian space satisfying

(LI) FjJih + FtJJh = 0.

We shall recall the identities in M} which are necessary for later use.
The following relations are well known [4], [8], [9]:

(1.2) J/Rrί + JirRrj = 0 ,

(1.3) FΨrJji = RjrJί - ¥rSRrsji

Next, let u be any 1-form. Then by virtue of the Ricci's identity we can obtain

(1.4) /"FrF,κ4 = -iJr'Rr.i% -

If u is a harmonic 1-form, then we have

(1.5) FjUi - FiUj = 0 , FrFrUi - R/u, = 0 ,

which are valid in any Riemannian space.

2. Theorems

Let us prove the following theorem.
Theorem 2.1. In a compact almost Tachibana space M, if u is a harmonic

1-form, then ΰ = (//wr) is also so.
Proof. Since u is a harmonic 1-form, we have

F«(//Wr) - FjVfUr) = lUrFJ/ + JjrFrUi - J/FrUj ,

and therefore

^Ur) + (JjΨiUjFW'Ur)

W'Ur) + XUrFjJWΨS1

(/K,) ~ Ji'FjU.] + SiUrFjJWFrtl*

= -WuJFΨiVfUr) + (Psus)FV/FjUr) + SQirFjW

+ iFΨiV' uJfUr) - FVjsusJ/FjUr) .

On the other hand, making use of (1.1), , (1.5) we easily see that
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rrVr'P.Ui) = PrPr(JiSUs) , (UrFiJf)JiψiuJ = 0 .

Hence, by Green's theorem and the obvious fact that Fr(Jr

sus) = 0, the theo-

rem is proved.

As a corollary of this theorem, we obtain

Theorem 2.2. The first Betti number of a compact almost Tachίbana space

is zero or even.

By virtue of Theorem B and Theorem 2.1, we get

Theorem 2.3. In a compact almost Tachίbana space, a necessary and suf-

ficient condition for a 1-form u to be covariant almost analytic is that u be

harmonic.
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