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POISSON COMPLEXES AND SUBELLIPTICITY

CHARLES ROCKLAND

0. Introduction

Let

(0.1) E° - ^ * E1 - ^ > - ^ > EN

be a complex of first-order differential operators on a (compact) ^-dimensional
manifold X, and let

(0.2) 0-+E°

be the associated top-symbol complex on Γ*Z/{0}. If the bundles E* are
given Hermitian metrics we may define the adjoint operators D*.

Definition 0.1. We say that (0.1) is J-subelliptic at position i if and only if
an estimate

(0.3) \\u\\ι/2 < CΛHDrt + IIA*-i«llo + Hlo} , u e Q(K,E<)

holds for each compact subset K c; X. Here the norms are Sobolev norms.
Hormander [7] showed that the estimate (0.3) depends only on the behavior

of the top-symbol complex (0.2) in the neighborhood of the characteristic
variety, and, in fact, is equivalent to certain "test-estimates" at each point of
the characteristic variety.

Guillemin [4], [5], by introducing the notion of asymptotic derivative, was
able to reformulate the test-estimates of Hormander as /^-exactness of certain
asymptotic test-complexes associated to (0.2). Using this new formulation of
J-subellipticity he was able to show that J-subellipticity is independent of the
choice of Hermitian metrics for the bundles Ei (despite the fact that the adjoint
operators D* are defined in terms of the Hermitian metrics), and that J-subel-
lipticity is invariant under formal pseudo-differential conjugations of the origi-

Communicated by D. C. Spencer, September 5, 1972. Most of the results in this
paper are contained in the author's thesis [9]. The author would like to express his
gratitude to his advisor Professor D. C. Spencer for his encouragement and forbearance
during this work, and to the N.S.F. and the Mathematics Department of Princeton Uni-
versity for financial support.
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nal complex (0.1). He then showed that if (0.1) is formally exact in the sense
of Goldschmidt [3], i.e., is a Spencer complex, then, in the neighborhood of a
Cohen-Macaulay point of the characteristic variety, (0.1) can be almost-con-
jugated into a direct sum of a symbol-exact complex and a so-called Poincare
complex. (Theorem 2 in [5] asserting the existence of a full formal conjugation
is probably a little too strong.) The symbol-exact complex is automatically \-
subelliptic and the Poincare complex, in the case of simple characteristics, is
J-subelliptic if and only if a Levi-form criterion holds.

In this paper we show that the study of ^-subellipticity for a Spencer com-
plex is carried out most naturally by restricting attention to the top-symbol
complex and by working always over the cotangent space rather than over the
base. We also show that this is the natural setting for the normal-form decom-
position of the Spencer complex.

In § 1 we introduce the notion of Poisson complex on a symplectic manifold
M and show how to associate the notion of J-subellipticity to a Poisson com-
plex. The top-symbol complex (0.2) is Poisson, M being T*Z/{0}, and the
notions of J-subellipticity for (0.1) and for the Poisson complex (0.2) coincide
in this case. We show that if a Poisson complex is a direct sum of two subcom-
plexes, then each of these subcomplexes is Poisson, and, moreover, that the
original Poisson complex is J-subelliptic if and only if each of the subcomplexes
is |-subelliptic.

In §2 we give a new proof, differing in essential points from that of Guille-
min, that the top-symbol complex of a Spencer complex can, in a conic neigh-
borhood in T*X/{0} of a Cohen-Macaulay point, be written as a direct sum
of two subcomplexes, one exact and the other a top-symbol Poincare complex.
Note that the bundles occurring in these subcomplexes are not required to be
pull-backs to Γ*X/{0} of bundles on X. By the results of § 1, to analyze £-
subellipticity for the Spencer complex it suffices to analyze J-subellipticity for
an exact Poisson complex and for a top-symbol Poincare Poisson complex.
Thus we are able to conclude, in § 3, with the Levi-form criterion for J-sub-
ellipticity in the case of simple characteristics. We remark that in this top-
symbol, cotangent space approach there is no need to perform formal pseudo-
differential conjugations. Indeed, invariance under formal pseudo-differential
conjugation and independence of choice of Hermitian metrics for our bundles
over X is essentially equivalent to independence of choice of Hermitian metrics
over T*X/{0} for our bundles.

We are grateful to Professor Victor Guillemin for making available to us
unpublished manuscripts of his work and for several helpful conversations. In
particular, the proof of Lemma 1.10 came out of a conversation with him.

Various details which are omitted here may be found in the unpublished
notes of Guillemin [4] or in the author's thesis [9].

We conclude this section by noting that W. J. Sweeney [10] has recently
given a new formulation of r-subellipticity, in particular J-subellipticity, which,
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among other things, shows independence of choice of Hermitian metrics and
invariance under formal pseudo-differential conjugation.

1. Poisson complexes and J-subellipticity

Let

(1.1) E°-^>Eι^-> P-+ EN

be a complex of bundle maps on a symplectic manifold M, i.e.,

(1.2) pί+1-pί = 0.

Choose local canonical coordinates (x19 , xn9 ξ 15 , ξn) and local frames
for our bundles.

Definition 1.1. The complex (1.1) is a Poisson complex if and only if
there exist bundle maps qι: Eί —> Eί+1 such that

(1.3) 2 ^ | ^ = Qί+Ψ + Pί+V -

Lemma 1.2. The condition that (1.1) be a Poisson complex is intrinsic, i.e.,
does not depend on the choice of local canonical coordinates or local frames.

Proof. To show independence of choice of frames we replace pi+\pl by
pi+ι = rpί+1s, pι — s~ίpίt, where r, s, t are invertible matrices. By a direct
expansion of Σj(dpί+1 /dξj)(dpί/dxj) and using the identities

(1.4) J L P + P J L = O,

(1.5) | P p + p | ^ = 0,

which follow from differentiating (1.2), we see that if (1.3) holds for some
qί+1,qί, then there exist qί+\ψ such that

(1.6) Σ d-^- — = Ψ+Ψ + Pί+Ψ
j dξ dX

To show invariance under change of local canonical coordinates it suffices
to show that condition (1.3) is equivalent to the condition:

There exist qί+\ ψ such that

(1.7) {P<+1,P*} = Ψ+V + Pί+Ψ ,
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where the left side denotes the Poisson bracket of pi+l,pl = J]j(βpi+1/dξj)
'(dpi/dxj) — {dpi+ιldxj){dpildξj)\ for Poisson brackets are invariant under
change of local canonical coordinates. To show (1.3) is equivalent to (1.7) we
use the identity

(1.8) iL ^ ^ * ^ JL
dξd

p + + + p 0 ,
dξjdxj dξj dXj dXj dξj dξjdxj

which we get by twice differentiating (1.2). Multiplying (1.3) by 2 and sub-
tracting (1.8), we can take q = 2q + d2p/dξjdXj. In the same way (1.3) fol-
lows from (1.8) by taking q = \{q - d'p/dξjdxj).

Remark. If p, V— 1 q are the first two terms in the asymptotic expansion
of a pseudo-differential operator P (see Example 1 below), then q defined above
is roughly the subprincipal part of P. See [8] for the definition.

Example 1. If

P P P
(1.9) E° > E1 > > EN

is a complex of (classical) pseudo-differential operators on a manifold X, then
the top-symbol complex

(1.10) EQ - ^ > Eι -^-> P-> EN

on Γ*X/{0} is Poisson.
Proof. Let P ~ p + q + be the asymptotic expansion associated to

P for some choice of local coordinates and local frames. Since P2 = 0, all the
terms in the asymptotic expansion of P2 must equal 0. But

Thus p2 = 0 and pq + qp — / ^ T Σ1{dpldξj)(dpldxj) = 0. q.e.d.
In particular, (0.2) is a Poisson complex.
Example 2. Let {pa}a=lt...iQ be a set of scalar functions on M, and {p, E1}

be the associated top-symbol Poincare complex (see Definition 2.1). Here E°
is taken to be the trivial line bundle over M.

Lemma 1.3. The scalar top-symbol Poincare complex {p, E1} is a Poisson
complex if and only if {pa, pβ} is in the ideal generated by the p«s.

Proof. (=» is obvious.

« = ) . Assume {pa, pβ} = Σ r/Vα,s r Then o n e verifies by direct computation
that ΣQP/dξjXdp/dXj): Λ* — Λ*+2 is given by

(1-12) w H+ ( Σ prsaβΐwa A wβ) A w .
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Define s: /\1 -> /\2 by

s: wγ^ Σsaβΐwa A wβ .
a<β

Then, setting p' = Σ P<*wa e /\\ we see that s(p') = Σ Prs

aβrw« Λ wβ, and

so (1.12) is given by r

(1.12)' w^s(j/) A w .

Define qί+1: /\ί+1-* /\ί+2 by

<?ΐ+1O«u) Λ Λ wβ(1+1))
(1.13)

= Σ ί - l V " 1 ^ ! ) Λ Λ J(wβ(i)) Λ Λ wβ(<+1) .

It is easy to see that this is antisymmetric in wα(1), , wα(ί+1), and therefore
is well-defined.

Moreover, it follows from the definition (1.13) that

(1.14) qi+1Q/ A w) + p' Λ qKw) = jQ/) Λ w

for w e /\\ That is,

(1.14)' q^p + pqί= Σ l ^ l ^ ,
θξj dXj

q.e.d.

We need to show next that the notion of |-subellipticity can be intrinsically
defined for a Poisson complex; but first we need the notion of intrinsic deriva-
tive, due to Porteous [1], and its generalization, the asymptotic derivative of
Guillemin.

Let E, F be vector bundles over a manifold M (not necessarily symplectic),
A : E —> F a bundle map, and x a point in M.

Lemma 1.4. For a tangent vector X to M at x there is a well-defined map

(1.15) ΛΣ: Kernel Ax -+FxjImage Ax .

We call the map (1.15) the intrinsic derivative of A with respect to X.
Proof. Choose local frames for E and F. Then it is meaningful to differen-

tiate the resulting matrix A with respect to X, and we thus get a map A': Ex —>
Fx. If we restrict Af to Kernel Ax and follow by the projection of Fx onto
Fx\Image ^4^ it is easy to see that the resulting map Ax is independent of our
choice of local frames, q.e.d.

Now let λ = {(xi9 λi)} be a sequence in M x R+ such that ^ —* x and
^. __> oo. We associate to the bundle map A: E —> F and the sequence λ the
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following subspaces Kλ and Rλ of Ex and Fx, respectively:

Kλ = {eeEx\^eίe EXi and / e Fx such that

et -+ e and λiAXiei -^ /} ,

(1.17) Rλ = {f e Fx\i ef e EXt, e./λ, -> 0 and AXtet -> /} .

Definition 1.5. We say that λ is an asymptotic sequence if Kλ = £ r and
i ^ = i ? r for every subsequence λf ot λ. li λ is an asymptotic sequence, then
Kλ is called the asymptotic kernel and Rλ the asymptotic image.

One shows easily that every sequence μ has an asymptotic subsequence λ.
Lemma 1.6. For αn {asymptotic) sequence λ with respect to the bundle

map A: E —• F there is a well-defined map

(1.18) Aλ:Kλ^Fx/Rλ.

We call the map (1.18) the (asymptotic) derivative of A with respect to λ.
Proof. For e in A^ choose et —* £ such that ^ ^ e * —> /, some element of

F^.. We then set Aλe = [/], the class of / in Fx/Rλ. The map is well-defined
since the difference vanishes modulo JR^ if we choose a different sequence
e't —• et with λiAXiet —* f. q.e.d.

Consider now a complex of bundle maps

(1.19) > J E - ! * F - ^ U G - > . . . .

We say that Λ is asymptotic for the complex if it is asymptotic for each map
A of the complex.

It is easy to prove the following lemma.
Lemma 1.7 The asymptotic derivative Aλ induces a map {which we con-

tinue to call Ax) on the asymptotic homology groups Hλ = Kλ[Rλ:

(1.20) >Hλ(E) - i i > Hλ(F) - ^ > Hλ(G) - > . . . .

Moreover the sequence (1.20) is a complex, i.e.,

(1.21) A\ = 0.

We also have
Lemma 1.8. The intrinsic derivative Ax induces a map (which we continue

to call AΣ) on the asymptotic homology groups Hλ:

(1.22) > Hλ(E) ^Ξ> Hλ(F) ^> Hλ(G) - > . . . .

Moreover, the sequence (1.22) is a complex, i.e.,

(1.23) A*x = 0.
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It is also easy to show that the following relations hold (where X and Y are
both tangent vectors at x):

(1.24) AxAγ + AYAX = 0 ,

(1.25) AλAχ + ΛxAλ = 0 .

We return now to the Poisson complex (1.1). Let pλ: Hλ-+ Hλ be the
asymptotic derivative (1.20), and, choosing local canonical coordinates
(x19 -9xn9ξ19 •-,£„), let

(1.26) Bλy.Hλ^Hλ,

(1.27) Cλti.Hλ^Hλ

be the maps pa/aξi9 pd/3Xi, respectively, of (1.22), where d/dξi and 3/3*4 denote
the tangent vectors associated to the coordinate functions ξt and xt.

Consider now the differential operators

(1.28) »λ

from Co(Rn, Hλ) to C"(jRn, Hλ). Here (y19 - , yn) are coordinates for Rn. Note
that pλ,Bλi, and CλΛ are constants as far as y-dependence is concerned. We
next prove a lemma which will be of critical importance in showing that ~̂
subellipticity for (1.1) is independent of the choice of Hermitian metrics for
the bundles Eι.

Lemma 1.9. The assumption that (1.1) is a Poisson complex implies {and,
in fact, is essentially equivalent to) the following:

The sequence of differential operators

(1.29) Q ( 2 T , Hλ(E°)) -f^ CZ(R\ Hx(&)) ^ \ ^ > C0"(Λ», Hλ{E»))

is a complex, i.e., gPχ'&χ = 0 .
Proof. A direct computation shows that the identity ^λ ^λ = 0 is equi-

valent to the identities (1.21), (1.23), ,(1.25), which follow simply from
the fact that (1.1) is a complex, together with the identity 2 A , A , i = 0,
which follows immediately from (1.3), i.e., the fact that (1.1) is Poisson.
q.e.d.

We shall next show
Lemma 1.10. Up to unitary equivalence, the complex (1.29) does not

depend on the choice of local canonical coordinates (xλ, '9xn9ξ19 9ξn).
Assuming this for the moment, we may conclude
Proposition 1. If {p, E1} is a Poisson complex on a symplectίc manifold M,
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then given any asymptotic sequence λ one can associate to {p,E1}, in a
completely intrinsic fashion, a complex of first-order differential operators

Proof of Lemma 1.10. We shall only sketch the main points of the argu-
ment, since the details become tedious. One sees easily that it suffices to prove
the following:

Given a scalar function r on M and (x, ξ) and (x\ ξ') two sets of local ca-

nonical coordinates at m e M, there exists a unitary operator U such that the

diagram

(1.30) u\ \u

commutes. Here £f ci L2(Rn, C) is the Schwartz space of rapidly decreasing
functions, and the differential operator R{Xιξ) is defined by

(1.31) R(x>ξ) = dr 1

Since the coefficients of RiXtξ) depend only on the first derivatives of r at a
single point m, it suffices to consider the case of (x, ξ) —» (x\ ξ') a linear ca-
nonical transformation. Aside from a simple permutation of the indices in
*i> 9 *n (and the same permutation of ξ 19 , ξn), the simplest type of ca-
nonical transformation is of the form

A = ξί , ξi = — Xi 9 w h e n i e l ;

A = xi , ξ = ξi , when / $ / ,

where / is some subset of {1, , ή). We call such transformations elementary

canonical transformations. Since (1/V— ΌiS/dy^fiη) = ηiKη) a n d yd(η) =
— (1/V— l)(d/dηi)f(y}) where ^^ denotes the Fourier transform in the i-th vari-
able, we see that, in the case of an elementary canonical transformation, we
can make (1.30) commute by taking U to the Fourier transform in the vari-
ables /. U is unitary by the Plancherel theorem.

Caratheodory [2] shows that every canonical transformation can be written
as the product of an elementary canonical transformation and a canonical
transformation (x, ξ) —> (x;, ξ0 given by a generating function Q(x, f') The
generating function satisfies the conditions

(1.32 a) xf = 3β/3f , ξ = dQ/dx ,

(1.32 b) d2Q/dxdξ' is nonsingular .
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Hence to conclude our proof of the lemma it suffices to find a unitary U mak-
ing (1.30) commute in case (x, ξ) —> O', £') is given by (1.32).

We define ϋ: 9> — <f by

(1.33)

Here K is a constant to be determined later. We shall show that

(1.34) ffl I c7o[ [t

commutes. Thus by taking U equal to £/ followed by the inverse Fourier trans-
form we shall have that (1.30) commutes.

Now observe that

«7/)(z) = -K [
i dz J dz

λ 1 f)(z) = K [
i dy J J

f)(z) K [ e
dy J J i dy

e-ί^y'z)f(y)dy (by integrating by parts) .
dy

Hence

<LdQ_
x' dz

Therefore to show that (1.34) commutes it suffices to show

(1.35) *L*Q. + i L z = ^ 9 β + t y .
dx' dz dξ' dξ dy dx

Since

dr _ dr dx dr dξ_ dr_ _ 9r dx_ dr_

Ί)7~dx~dxτ 3ξW W~dxW dξ

to prove (1.35) it suffices to prove
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(1 36) —— -±- + ——
dx' dz dξ'

+

dx' dz dξ'
dy

Note that since (x, ξ) —* (x', ξ') is linear, the coefficients dx/dx', dx/dξ', dξ/dx',

d$/dξ' occuring in (1.36) are constants, independent of y, z.

Now call y = x and z = ξ', which we may do since x and ξ' are independ-

ent variables in the expression Q(x, ξ'). Thus we may rewrite (1.36) as

(1.36)'
dx dQ dx

_
dx' dξ' dξ' dx' dξ' dξ'

Now using (1.32a) we see that (1.36)' can be rewritten as

dx , , dx „ ,. dξ , , dξ „,

dx

(1.36)
dx' dξ'

But (1.36)/r obviously holds, since (x, ξ) —> (x\ ξ0 is linear. Thus we have
shown that (1.34) commutes. All that remains to be shown is that U is unitary.
Since (JC, ξ) —• (x', ξ') is linear we may assume that Q(x, ξ0 is quadratic in x
and ξ'. Thus we may write

(1.37) β(jc,fθ = <Cξ',ξ'> .

Here A, B, C are n x n matrices, and <( , ) denotes the inner product in Rn.

From (1.32 b) it follows that B is nonsingular. Thus we have

\\ϋf\\2 =

(by changing variables)

= |det B\-\2π)n/2K\\ί(B-ιy)||2 (by Plancherel)

Thus taking (2π)n/2K = |det5 | 1 / 2 we get that U is unitary, q.e.d.

We now proceed to define the notion of uniform |-subellipticity for the
Poisson complex (1.1) at the point x0 e M. If (1.1) is the top-symbol complex
of a complex of first-order pseudo-differential operators, then (1.1) will be
^-subelliptic if and only if the complex of pseudo-differential operators is \-
subelliptic. (For a proof see [4], [9].) First assume that the bundles Eι have
Hermitian metrics. If λ converges to x, identify the vector space Hx(El) with
the subspace Kk(El) Π {RJJE1))1- of 2%, and give it the induced inner product.

Definition 1.11. The Poisson complex (1.1) is ^-subelliptic at x0 if and
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only if there is a compact neighborhood Jί of x0 and a constant C > 0 such
that for every asymptotic sequence λ = {(xi9 λt)} with lim xt e Jί the following
estimate holds:

(1.38)

for every ueCo(Rn,Hλ).

It can be shown that the estimate (1.38) is equivalent to the following esti-
mates (1.39) and (1.40) (see [4] or [9]; the essential idea is contained in [6]):

(1.39) ^\u(y)\2dy < C^ \0>λu(y)\2 dy + ^\0>tu(y)\2 dy

for every u € ^(Rn, Hλ), where y 7 denotes the Schwartz space

(1.40) J \u(y)\2dy < c{J \&λu{y)\2 dy + J \&*u{y)f dy

for every ue Domain ( ^ ) Π Domain (^f). Here &λ is the minimal closed
extension of the 0>λ appearing in (1.38), and <Pf denotes its Hubert space
adjoint. From (1.39) and Lemma 1.10 we see that J-subellipticity does not
depend on the choice of local canonical coordinates. We show below that \-
subellipticity is also independent of the choice of Hermitian metrics for E\
This is not a priori clear, since &f is defined in terms of these metrics. Assum-
ing this result for the moment, we have

Proposition 2 // {p, E1} is a Poisson complex on a symplecίic manifold M
and x0 ς. M, then one can define, in a completely intrinsic fashion, the notion
of \-subellipticity at x0 of {p, E1}.

We are now ready to prove independence of the choice of Hermitian metrics.
As we saw earlier in Lemma 1.9 the fact that (1.1) is Poisson implies that the
sequence (1.29) is actually a complex. Hence (see [6]) one can show the fol-
lowing:

Lemma 1.12. The criterion (1.40) for \-subellipticity for the Poisson com-
plex (1.1) is equivalent to the following criterion:

There exists C > 0 such that for every asymptotic sequence λ = {(xi9 λi)}
with lim xt e Jί, the U-complex

(1.41) L\R\ Hλ(E0)) —X L2(R», Hλ(E1)) • ^ > L\R\ Hλ(EN))

is U-exact and the maps &λ are C-maps. The operators appearing in the com-
plex (1.41) are the minimal closed extensions of the operators &λ in the complex
(1.29). To say that &λ is a C-map means that for every g in Range &λ there
exists f in Domain &λ such that g = &j and such that \\f\\ < C\\g\\.
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From this lemma we get
Corollary 1.13. The \-subellipticity of the Poisson complex (1.1) does not

depend on the choice of Hermitian metrics for the bundles Eι.
Proof. The maps &λ in the complex (1.29) were defined independently of

any choice of Hermitian metrics. Hence, if we make two different choices of
Hermitian metrics, all we change is the inner products on the finite dimensional
vector spaces El, and any two such norms are equivalent. One verifies easliy
that the equivalence may be made uniform in Jf. Thus changing Hermitian
metrics on the Eι involves at most a change in the choice of uniform constant
C in the statement of the lemma, q.e.d.

Aside from the fact that it allows us to intrinsically define the notion of
^-subellipticity of a Poisson complex, the independence of choice of Hermitian
metrics allows us to prove the following important result:

Proposition 3. Suppose the Poisson complex {p, E1} is the direct sum of
two subcomplexes {p, Ei) and {p, E\). Then {p, E1} is \-subelliptic at xoeM if
and only if each subcomplex {p, El} and {p, E\) is \-subelliptic at x0.

In order for J-subellipticity of {p, El} and {p, El} to be defined we need the
following lemma.

Lemma 1.14. // the Poisson complex {p, E1} is the direct sum of two sub-
complexes {p, El} and {p, E\}, then each of these subcomplexes is a Poisson
complex.

Proof. Let π\ and π\ be the complementary projections of Eι onto El

a and
El. By hypothesis we have

(1.42) πap = pπa , πbp = pπb .

Choose frames for El and for E\ and use these as frames for E\ With respect
to these frames the matrices πa and πb have constant coefficients. Hence we
may differentiate (1.42) and get

/i ΛΠ\ dp dp dp dp
(1.43)

 πa
 =

 πa
,
 πa

 = — τ τ
α
,

Oξj oξj OXj OXj

and the analogous identities for πb. Thus applying πa on both the left and right
of both sides of the identity (1.3), we get

(1.44) Σ | f ~~ π" = haiπa)p + P(πaqπa) .
dξj dXj

We also get the analogous identity for πb. Adding, we get

ί1-4^) Σ ~ - ~ = (τraqπa + πbqπb)p + p(πaqπa + πbqπb) .
dξ d



POISSON COMPLEXES AND SUBELLIPTICITY 83

We choose our frames in such a way that

(1.46) Ea,

and, similarly, for E δ . Hence by restricting (1.45) to Ea and to Eb we can
conclude that {p, Ei) and {p, EJ} are Poisson.

Proo/ of Proposition 3. Since the criterion for |-subellipticity is indepen-
dent of the choice of Hermitian metrics we may, having chosen arbitrary
metrics for the bundles E\ and E\, give the bundle E1 = E\ 0 E\ the corre-
sponding direct sum metric. Thus we have the orthogonal decomposition

(1.47) #/£*) = Hλ(Ei) Θ Hλ{E\) ,

and hence the criterion of Lemma 1.12 for J-subellipticity clearly holds for
{/?, E1} if and only if it holds for {p, Ei) and for {p, E\).

2. The top-symbol decomposition

We assume now that the complex (0.1) is a Spencer complex, i.e., formally
exact in the sense of Goldschmidt [3]. We consider the top-symbol complex
(0.2) as lying over T$X/{0} the complexified cotangent space of X.

The main goal of this section is to prove
Proposition 4. // (JC0, ζ0) <=. T$X/{0} is Cohen-Macaulay, then in some conic

neighborhood Γ of (xo,ζo) we can decompose the top-symbol complex (0.2):
{σ{Xtζ)(D),E\XfO} into the direct sum of two subcomplexes

(2.1) {σ ( β f C ) (D),(E* α ) ( Λ f C ) },

(2.2) {σ ( β f C )(D), (£<)<*.«}.

Moreover, the complex (2.1) is exact for every (x,ζ) eΓ, and the complex
(2.2) is a top-symbol Poincare complex built out of q commuting bundle maps
Pi: E°b —• £J, / = 1, , q, where q is the codimension of the characteristic
variety of {£>,£*}.

Remarks. 1. Observe that the bundles Eι

a and E\ are bundles over the conic
neighborhood Γ c : T$X/{0}, and are not necessarily pullbacks of bundles sit-
ting over the manifold X. The splitting is very definitely taking place "upstairs".

2. Clearly, by restriction, the proposition also holds if we replace T$X/{0}
by T*X/{0}. This is the version which we shall use in conjunction with § 1.

We next define the terms "top-symbol Poincare complex" and "Cohen-
Macaulay".

Definition 2.1. Let E° be a vector bundle over a manifold M, and suppose
that p19 , pq are commuting bundle maps from E° to E°. Then the associat-
ed top-symbol Poincare complex {p, E1} is defined as follows: Let W be a q-
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dimensional vector space over C, with distinguished basis w19 ,wq. Then
for / = 0, , q let

(2.3) E* = E>® /\*W ,

and define p: Eι -> Eί+1 by

(2.4)

where ez e EQ and >v7 € / \ W .
Remark. From the fact that ptpj = Pjpt and that wt Λ Wj = — H^ Λ w^

it follows that {p, E1} is indeed a complex.
Definition 2.2. The cotangent vector (x, ζ) is characteristic if and only if

the top-symbol complex (0.2) fails to be exact at (x, ζ).
Definition 2.3. The characteristic vector (x, ζ) is Cohen-Macaulay if and

only if the top-symbol complex (0.2) is exact at Eι for every / > q, where q
is the codimension of the characteristic variety if x.

Remarks. 1. The Cohen-Macaulay property is generic, i.e., for every x e X
the set of Cohen-Macaulay points in i^x is a Zariski-open set.

2. Some hypothesis such as Cohen-Macaulay is clearly needed in our pro-
position in order to obtain an exact subcomplex complementary to a top-sym-
bol Poincare complex. For example, the Cohen-Macaulay hypothesis prevents
the top-symbol complex (0.2) from containing a direct sum of two top-symbol
Poincare complexes of different lengths. Moreover, it is not clear how, without
some special hypothesis, one can obtain any complementary subcomplex to a
top-symbol Poincare complex. Indeed, in our proof that there exists a com-
plementary subcomplex (2.1) the Cohen-Macaulay hypothesis plays a critical
role. It is precisely this hypothesis which allows us to recursively define Fι in
Lemma 2.15.

Now let E = ®Eι be the direct sum of the bundles in (0.1). Then we may
view D as a differential operator from E to E, and we have D2 = 0. Since D
is first-order we have that σ(D){xXι + ζ2) = a(D)(x^x) + σ(Z>)(jc,ζ2), and
since D2 = 0 we have that (σ(D)(x, ζ))2 = 0 for every ζ. Hence we can con-
clude

(2.5) σ(D)(x, O σ(P)(x, ζ2) + σ(D)(x, ζ2)-σ(D)(x, ζ,) = 0.

Thus we have the following lemma.
Lemma 2.4. We can make Ex a (left) graded module over /\*(T%X)X, the

exterior algebra over T$(X)X, by means of the definitions:

(2.6) ζ Λ e = σ(x>ζ)(D)e for e € Ex and ζeT*(X)x,

Λ e ) for e t Exζ/\e ζλ/\

and ζ = ζx Λ A ζk.
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Starting with the well-known formula

(2.8) ZX/ψ) = σAί(D)ψ +

we can prove easily
Lemma 2.5. For every smooth section ψ of E and for every ί-form w we

have

(2.9) D(w A ψ) = dw A ψ + (- l)*w Λ £>ψ .

Now suppose that we are given a non-characteristic fibration π: X —> Y (Y
a manifold) i.e., for each point * € X the complexified normal space Nx to the
fiber through x is non-characteristic for {D, E1}. That is, each ζ Φ 0 e Nx is
non-characteristic.

This fibration gives a decrasing filtration of E, namely 2Γ' j(Eι) Z> 5Γ '7 + 1(E ί),
where

(2.10) ^ i ( E 0 * - £*, Π (A'(NX)EX) .

One can show (using Lemma 2.9) that, assuming dim /̂V .̂ is independent of x,
?Γ j{Eι) is a vector bundle.

Definition 2.6. We set 2?° * = the quotient bundle E^^^E^.
Remark. Observe that E°>° = E°.
From (2.9) we can conclude
Lemma 2.7. From the complex {D^E1} we obtain an induced complex

{3, E0'1} of first-order differential operators. Moreover, σ{x>ζ)(D): E0/ -> E°f+1

is given by

(2.11) σ{xΛ)φ): [e]-^ [ζ A e] ,

where e e Eι

x, and [ ] denotes coset in the quotient space.
Remark. From the last statement we see that σ{Xtζ)(D) = 0 if ζ e Nx. That

is, D differentiates only in directions tangential to the fibers of π. Hence we
may restrict {D, E0'1} to any fiber of π, and thus get a complex of differential
operators on the fiber. It can be shown that these fiber complexes are also
Spencer complexes.

Guillemin [4] proves that if (x09 ζ0) is a Cohen-Macaulay point, then it is
possible to construct a special non-characteristic fibration. More precisely,

Lemma 2.8. Let {D, E1} be a Spencer complex on a manifold X of dimen-
sion n, with q equal to the codimension of the characteristic variety. Let (x0, ζ0)
be a Cohen-Macaulay point of the characteristic variety. Then in a neighbor-
hood of x0 (which we continue to call X)we can define a non-characteristic
fibration π: X —• Y satisfying the following two properties:

(1) The fibers Z of the fibration have codimension q.
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(2) Let ηQ = **(ζ0), w/zere r. Z-^X is the injection into X of the fiber of
π through x0. Then the symbol complex

Π

w e rac/ α/ ^v^ry position except at E°x>°.
Remarks. 1. We can choose a coordinate neighborhood V of x0 in Z ,

with coordinates y19 , yq, x19 , xn_q so that the fibration TΓ takes the form

(2.13) π: (y19 •• -,yq,x19 •• ,JCn_ί) ^ (3Ί, * • ?3
;

Q)

For x € F and ζ e T%(X)X we shall often write

(2.14) ζ = (£,,) = Σ ξkdyk + UΣηιdxι .

Clearly, ^ = ΣΓ=~î ι ^ ι is ̂ *(C)> and Nx is spanned by dy19 , dyβ. We shall
let /\%(dy) denote the exterior algebra at x generated by the cotangent vectors
dyi9 - ,dyq.

2. Since (2.12) holds at (xo,7]o), it also holds in some conic neighborhood
Γ of (JC0, η0) in the bundle of cotangent vectors tangential to the fibers of π. Let
Γ equal the set of all cotangent vectors ζ such that c*(ζ) e /\ Clearly Γ is a
conic neighborhood of (JC0, ζ0).

Guillemin also proves
Lemma 2.9. (1) Ex is a free graded /\*(dy) module.
(2) LetE0/ be any subspace of Ex complementary to ̂ ΊiE1)^ i.e., EX

Λ 0
&Ί(Eι)x = Ex. Then for any eλ Φ 0, , eN Φ 0 with et e E0/ and any

μi> - ->VN £ At(4y)y w e h a v e μι= = PN = ° if t*iei + + μ^x = 0
Furthermore, Ex and f\*(dy) (S)c(TiiE°/) a r e canonically isomorphic as graded
f\x(dy)-modules (in the obvious way).

Remark. Under the above isomorphism

(2.15) E%^ Σ M
i + j = k

(2.16) ^(E*), = Σ M(dy)ΘE° i .
i + j = k

We are now ready to get on with the actual proof of Proposition 4.
Our procedure will be first to construct the top-symbol Poincare complex

(2.2), and second to find a complementary complex (2.1).
Definition 2.10. Let (x, rj) e Γ. Then define

(£?)(,.,> = {ee Ex\η A ee

= {eεE°x\vΛee/\x(dy)®Ex}.
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Remarks. 1. (El)lXtV) may be thought of as the "flip-flop" space associated
to the fiber cotangent vector η. Indeed, it is the set of all e in Ex such that the
fiber vector η applied to e is equal to a sum of base cotangent vectors applied
to elements of E°x, i.e.,

(2.18) η A e = Σdyk Λ ek = Σdyk®ek
k=l k=\

with ek € E°x, and the second equality being the isomorphism of Lemma 2.9
(2).

2. Clearly (E°b)(XtV) may vary with η as well as x. This is one important
reason why the splitting in Proposition 4 must take place over Ί%X rather
than X.

One sees easily
Lemma 2.11. (E°)(ίΓi?) = {e e El\σ{X>η)(D)e = 0}.

Remark. Using this lemma and the fact that (2.12) holds for every (x, η)
e Γ, we see that E°b has constant rank and hence is a bundle.

Lemma 2.12. η A (E°b)(x,v) c /\ i (*0 ® (EΌ^
Proof. Let e e (Eζ){Xjη). Referring to (2.18) we want to show that η A ek e

ΛUd y) (8) El for each k. Applying "η Λ " to both sides of (2.18) we get

(2.19) 0=-Σdy*®(qΛek).
k = l

Choose any subspace E°Λ complementary to ^ ( E 1 ) * - Then we may write, in
accordance with (2.15),

For each k, η A ek e Eλ

x. We want to show that when we write η A ek in ac-
cordance with the above formula the component in E0/ equals 0. But this is
easy to see from (2.19) and Lemma 2.9 (2).

Definition 2.13. Let (JC, η) 6 f. We define, for i = 0, , N,

(2.20) (Eί) ( Λ f f ) = ( £ ° ) ( ^ <g> /\i(dy) .

Lemma 2.14. Let (x, ζ) e Γ. Then ζ A maps (Ei)(XίV) into (El+1)(XtV), and
the complex {ζ Λ, El} is a top-symbol Poincare complex.

Proof. We write ζ = (f, γj) where ξ = Σk=iξkdyk and (x, η) e Γ. By Lemma
2.12, η A maps E\ into E\ and, indeed, we may define bundle maps

(2.21) -ak(x,η):El^El

by —ak(x, η)e = ̂ fc, where η A e = Σl=iek ® ̂ fc We also have

(2.22) f Λ: ^ Σ ^ ® 4
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Thus

(2.23)
£ •-»• Σ (Sk — ak(χ> ή))e <S) dyk .

Since ζ Λ is a /\ *-anti-morphism, it is clear from the preceding that

(2.24)

E\

e<g)w^Σ(ξk- ak{x, η))e ® {dyk A
k = l

Since (C Λ) (ζ Λ) = 0, it follows that

(f k - aΛx, η)) (ξι - aι(x, y))
(2 2 .

= (f Ϊ - at(x, η)) (?fc - ak(x, η)) ,

and hence {ζ Λ, ^ } is the top-symbol Poincare complex associated with the
q commuting maps

Remark. Observe that our top-symbol Poincare complex is completely in-
trinsic, modulo the choice of non-characteristic fibration π. The complementary
complex (2.1) which we shall construct below is not so intrinsic in character.

Before turning to the actual construction of (2.1) we shall first sketch the
idea behind it.

By Lemma 2.9 (2), we have that for any choice of £ M complementary to
^ ( E * ) , i = 1, . . ,9N, there is a canonical isomorphism between E and
( Σ f £ ° *) (x) /\*(dy). We also know that, for any choice of £° *, ξ A maps EQ>1

into E M (x) /\*(dy). Suppose it is possible to choose the E M in such a way that
η Λ maps E M into EQ>ί+\ and a subspace E^ complementary to E°b such that
27 Λ maps E°a into E0 '1. Then setting

(2.26) El = (El <g> ΛfcWy)) θ ( θ (E0Λ

we clearly have a subcomplex (2.1) of the top-symbol complex {ζΛ,Ek}
complementary to (2.2), i.e.,

(2.27) C Λ : £ * ^ ^ + 1 , E* θ £J - £* .

We shall show below that the Cohen-Macaulay hypothesis, in the form of
condition (2.12), is precisely the tool we need to construct such E°^η)9 varying
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with η as well as x. Moreover, it will allow us to prove that (2.1) as defined
above in (2.26) is exact.

Lemma 2 15. We can recursively define subspaces F\XiV) cz Ex9 i =
0, , N, such that

(2.28) El v , v

(2.29) Ex = trm* θ η A F\-)v) ®F\Xiη), i = 1, ., N.

Moreover, we can arrange that the Fι are smooth bundles.
Assume the lemma for the moment. Then we see immediately that E°a and

E0'1 defined by

(2.30) El = F° ,

(2.31) E0'* = η A F*-1 © F* , / = 1, - , iV ,

satisfy the desired properties: η A E°a c E0*1 and η A E0^ ^ E°>i+\
Proof of Lemma 2.15. We define (Fl){x,v) £ 2?5* recursively as follows:

Choose F° C J 5 M = E° to be any bundle complementary to EJ and having
defined F\ choose Fί+1 to be a complement in E°>ί+1 to σ(Xιη)φχP). That is,

(2.32) E0 = E ° δ Θ F 0 ,

(2.33) #>•* =° σ^.^ί^CF*"1) θ f* , i = 1, , N .

Now observe that since E°b = Kernel σίx>η)(D) and condition (2.12) Zio/ds for
(JC, ̂ ) € Γ, it follows that the complex

(2.34) 0 - Pi σ('"Λβ\ £"/ g ( " t ) 0 ) , <r(* τ)(i5)» £••* -> 0

is exact. From (2.33) and the exactness of (2.34) we conclude:

Sublemma. σix>η)φ) is injective on Fι for every i = 0, , N.
Next choose (F%XfV) c Ex such that

(2.35) [F*] - f* ,

(where [ ] denotes coset in E0Λ) and such that

(2.36) JF* Π ^ ( β * ) = {0} .

It is easy to see that we can find such F\ and can even choose them to be
smooth bundles. We can take F° = F\ and so (2.32) becomes

£° = E°b 0 F° .

Moreover, recalling (2.11) we see, from (2.33) and the sublemma and from the
way we defined F\ that
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Eι = ^GE*) 0 η A Fι~ι 0 F* , i = 1, ••-,# .

q.e.d.

To complete the proof of Proposition 4 it suffices to show that the complex
(2.1) constructed above is exact for every (x, ζ) e Γ. Define

(2 37) Ej,i=ί& t®Λ1(dy) ί > 0 ,

a \E>a®/\i(dy) i = 0 .

Then

(2-38) £* = © Eί>* ,
i + j = k

where we think of / as the filtration degree. Writing ζ = (ξ, rj) we see that £Λ
raises nitration degree by one, and η/\ does not raise filtration degree. We have
the diagram:

ί Λ t

(2.39)

I I I
0 0 0

Lemma 2.16. The complex (2.1)

for every (x, ζ) € Γ.
Proof. Case 1: f ψ 0. Since f is non-characteristic, all the columns in

diagram (2.39) are exact at every position. Hence by a standard spectral
sequence argument all the cohomology groups of the complex (2.1) vanish.

Case 2: ξ = 0. By (2.11) the complex {ηΛ,E0/} is just the complex
(2.34) brought "off the quotient level", and we observed earlier that (2.34) is
exact. Since each row of diagram (2.39) is just a direct sum of copies of
{η Λ, E0/}, it follows that {η Λ, E\} is exact, q.e.d.

This completes the proof of Proposition 4.
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3. Conclusion: The Levi-form criterion for i-subellipticity

One sees easily that an exact Poisson complex is always ^-subelliptic.
One can also prove the following proposition (see [4] or [9]; this is also essen-
tially contained in [7]):

Proposition 5. Let {p, E1} be a top-symbol Poincarέ complex associated to
scalar bundle maps p19 ,pq from E° to E°; i.e., pt is a scalar times the
identity matrix. Assume that {p, E1} is Poisson. Then a necessary and sufficient
condition for {p, E1} to be \-subelliptic at position Ek at the real characteristic
point (x0, ξQ) is the following:

(3.1) The q X q Hermitian matrix (1/V — l){Pί,Pj}(xQ,ζ0), the "Levi-form",
has at least k + 1 negative or at least q — k + 1 positive eigenvalues.

In [5] Guillemin gives conditions, which we shall loosely call "simple char-
acteristics", under which the top-symbol Poincare complex derived in Pro-
position 4 is scalar. Hence from Proposition 3, 4, and 5 we see that under the
assumption of simple characteristics we get a Levi-form criterion for J-sub-
ellipticity for a Spencer complex {D,E1}. In fact, one can show that, under
the simple characteristics hypothesis, we may take as the p19 , pq appearing
in the Levi-form any set of local parameters at (*0, ξ0) for the complex charac-
teristic variety. (See [5] for a detailed statement.)
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