COMPACT COMPLEX SUBMANIFOLDS IMMERSED IN COMPLEX PROJECTIVE SPACES

SHOKICHI TANNO

0. Introduction

J. Simons [17], H. B. Lawson [9], and S. S. Chern-M. do Carmo-S. Kobayashi [6], etc. studied minimal submanifolds of spheres. One of the beautiful results is as follows: Let M be an n-dimensional compact submanifold minimally immersed in a unit sphere S^{n+p} of dimension $n+p$, and let S denote the square of the length of the second fundamental form. Then

$$
\begin{equation*}
\int_{M}\left[\left(2-\frac{1}{p}\right) S-n\right] S^{*} 1 \geq 0 \tag{0.1}
\end{equation*}
$$

holds, where ${ }^{*} 1$ denotes the volume element of M. Since the scalar curvature R of M is given by $R=n(n-1)-S$, (0.1) can be rewritten as an integral inequality concerning the scalar curvature. The classification of M with $S=n(2-1 / p)$ was given in [6], [9].

With respect to the complex version of (0.1), K. Ogiue [12] obtained an inequality, which was applied to scalar curvature and holomorphic pinchings in [14]. In the present paper, we generalize these results.

Let $C P^{m+q}$ be a complex projective space of complex dimension $m+q$ with the Fubini-Study metric of constant holomorphic sectional curvature 1.

Theorem A. Let M be a compact complex submanifold of complex dimension m immersed in $C P^{m+q}$, and assume that the scalar curvature R of M with respect to the induced Kählerian metric satisfies

$$
\begin{equation*}
R \geq m(m+1)-\frac{1}{3}(m+2) \tag{0.2}
\end{equation*}
$$

(1) If the inequality in (0.2) holds at some point of M, then M is imbedded as a projective subspace $C P^{m}$ in $C P^{m+q}$.
(2) If the equality in (0.2) holds on M, then $m=1$ and M is imbedded as a complex quadric $C Q^{1}$ in some $C P^{2}$ in $C P^{1+q}$.

Applying Theorem A to holomorphic or Riemannian pinchings, we have
Theorem B. Let M be a compact complex submanifold of complex dimen-

[^0]sion m immersed in $C P^{m+q}$, and assume that the holomorphic sectional curvature $K(X, J X)$ of M with respect to the induced Kählerian structure satisfies
\[

$$
\begin{array}{ll}
K(X, J X) \geq 1-\frac{m+2}{6 m^{2}} & \text { for } q \geq 2 \\
K(X, J X) \geq 1-\frac{m+2}{6 m} & \text { for } q=1 \tag{0.3}
\end{array}
$$
\]

for any tangent vector X.
(1) If the inequality in (0.3) and (0.3)' holds for some X at some point of M, then M is imbedded as a projective subspace $C P^{m}$ in $C P^{m+q}$.
(2) If the equality in (0.3) and (0.3)' holds on M, then $m=1$ and M is imbedded as a complex quadric $C Q^{1} \subset C P^{2} \subset C P^{1+q}$.

Theorem C. Let M be a compact complex hypersurface immersed in $C P^{m+1}, m \geq 2$. If the sectional curvature $K(X, Y)$ of M with respect to the induced Kählerian metric satisfies

$$
\begin{equation*}
K(X, Y) \geq \frac{1}{4}\left(1-\frac{m+2}{3 m}\right) \tag{0.4}
\end{equation*}
$$

then M is imbedded as a projective hypersurface $C P^{m}$ in $C P^{m+1}$.
If a compact complex submanifold M is imbedded in $C P^{m+q}$, then by Chow's theorem M is algebraic. K. Nomizu and B. Smyth [11], K. Nomizu [10], and K. Ogiue [16] studied imbedded (or nonsingular) submanifolds and, as a special case, compact nonsingular complex curves in $C P^{m+q}$. In § 6 , we generalize some of their theorems to the case of immersed complex curves in $C P^{1+q}$.

In § 7 we give some remarks. Throughout this paper all manifolds are assumed to be connected.

1. Preliminaries

To obtain the Laplacian of the second fundamental form for immersion of Kählerian manifolds, we first consider a submanifold M of real dimension n minimally immersed in an $(n+p)$-dimensional locally symmetric Riemannian manifold N^{\prime}, and use the same notations as those in [6] by S. S. Chern-M. do Carmo-S. Kobayashi. Let e_{1}, \cdots, e_{n+p} be a local field of orthonormal frames in N^{\prime} such that, restricted to M, the vectors e_{1}, \cdots, e_{n} are tangent to M and e_{n+1}, \cdots, e_{n+p} are normal to M. It is known that

$$
\sum_{\alpha, i, j} h^{\alpha}{ }_{i j} \Delta h^{\alpha}{ }_{i j}=\sum_{\alpha, \beta, i, j, k}\left(4 K^{\alpha}{ }_{\beta k i} h^{\beta}{ }_{j k} h^{\alpha}{ }_{i j}-K^{\alpha}{ }_{k \beta k} h^{\alpha}{ }_{i j} h^{\beta}{ }_{i j}\right)
$$

$$
\begin{align*}
& +\sum_{\alpha, i, j, k, l}\left(2 K_{k i k}^{l} h^{\alpha}{ }_{l j} h^{\alpha}{ }_{i j}+2 K^{l}{ }_{i j k} h^{\alpha}{ }_{l k} h^{\alpha}{ }_{i j}\right) \tag{1.1}\\
& -\sum_{\alpha, \beta, i, j, k, l}\left(h^{\alpha}{ }_{i k} h^{\beta}{ }_{j k}-h^{\alpha}{ }_{j k}^{\beta} h_{i k}^{\beta}\right)\left(h^{\alpha}{ }_{i l} h^{\beta}{ }_{j l}-h^{\alpha}{ }_{j l} h^{\beta}{ }_{i l}\right) \\
& -\sum_{\alpha, \beta, i, j, k, l} h^{\alpha}{ }_{i j} h^{\alpha}{ }_{k l} h^{\beta}{ }_{i j} h^{\beta}{ }_{k l},
\end{align*}
$$

where $1 \leq i, j, k, l \leq n, n+1 \leq \alpha, \beta \leq n+p, h^{\alpha}{ }_{i j}$'s denote the second fundamental forms, $\Delta h^{\alpha}{ }_{i j}$'s denote their Laplacians, and $K^{\alpha}{ }_{\beta k i}$'s denote the components of the curvature tensor of N^{\prime} with respect to the above frames (cf. [6, (2.23)]).

Now let $C P^{m+q}$ be a complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 1 , and M be a compact complex submanifold of complex dimension m immersed in $C P^{m+q}$. As is well known, M is minimal in $C P^{m+q}$. We denote the complex structure tensor by J and the Kählerian metric of $C P^{m+q}$ by $g . M$ has the induced Kählerian structure tensor (J, g) denoted by the same letters. On $C P^{m+q}$, we have

$$
\begin{equation*}
K_{B C D}^{A}=\frac{1}{4}\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}+J_{A C} J_{B D}-J_{A D} J_{B C}+2 J_{A B} J_{C D}\right), \tag{1.2}
\end{equation*}
$$

where $J_{A B}=\sum g_{A C} J^{C}{ }_{B}$, and $1 \leq A, B, C, D \leq n+p=2(m+q)$ for $n=$ $2 m, p=2 q$.

We can assume that our local field of orthonormal frames is of J-basis such that, restricted to $M,\left(e_{A}\right)=\left(e_{r}, e_{m+r}=J e_{r}, e_{a}, e_{q+a}=J e_{a}\right)$, where we use the following convension on the ranges of indices:

$$
\begin{gathered}
1 \leq A, B, C, D \leq n+p=2(m+q) \\
1 \leq r, s, t \leq m ; \quad 1 \leq i, j, k, l \leq n=2 m \\
n+1 \leq a, b \leq n+q ; \quad n+1 \leq \alpha, \beta, \gamma \leq n+p=2(m+q)
\end{gathered}
$$

and $r^{*}=m+r, a^{*}=q+a$. Such a local field of orthonormal frames is said to be adapted.

Substituting (1.2) into (1.1), we have (cf. K. Ogiue [12])

$$
\begin{align*}
\sum_{\alpha, i, j} h^{\alpha}{ }_{i j} \Delta h^{\alpha}{ }_{i j}= & -\sum_{\alpha, \beta, i, j}\left(\sum_{k} h^{\alpha}{ }_{i k} h^{\beta}{ }_{k j}-\sum_{k} h^{\beta}{ }_{i k} h^{\alpha}{ }_{k j}\right)^{2} \tag{1.3}\\
& -\sum_{\alpha, \beta, i, j, k, l} h^{\alpha}{ }_{i j} h^{\alpha}{ }_{k l} h^{\beta}{ }_{i j} h^{\beta}{ }_{k l}+\frac{1}{2}(m+2) \sum_{\alpha, i, j}\left(h^{\alpha}{ }_{i j}\right)^{2} .
\end{align*}
$$

By noticing that $\sum J_{i j} h^{a}{ }_{j k}=h^{a^{*}}{ }_{i k}$ and $\sum J_{i j} h^{a}{ }_{j k}=-\sum h^{a}{ }_{i j} J_{j k}$, a direct calculation gives (cf. K. Ogiue [16])

$$
\begin{equation*}
-\sum_{\alpha, \beta, i, k}\left(\sum_{k} h^{\alpha}{ }_{i k} h^{\beta}{ }_{k j}-\sum_{k} h^{\beta}{ }_{i k} h^{\alpha}{ }_{k j}\right)^{2}=-8 \sum_{a, b, i, j, k, l} h^{a}{ }_{i j} h^{a}{ }_{j k} h^{b}{ }_{k l} h^{b}{ }_{l i} . \tag{1.4}
\end{equation*}
$$

By w^{4} and $w^{A}{ }_{B}$ we denote the dual of e_{A} and the connection forms on $C P^{m+q}$. Since J is parallel ($J^{i}{ }_{B, C}=0$), we have

$$
\sum J^{A}{ }_{B, C} w^{C}=d J^{A}{ }_{B}+\sum w^{A}{ }_{C} J^{C}{ }_{B}-\sum w^{C}{ }_{B} J^{A}{ }_{C}=0 .
$$

By putting $A=i$ and $B=\beta$, the above equation becomes $\sum w^{i}{ }_{\alpha} J^{\alpha}{ }_{\beta}-\sum w^{j}{ }_{\beta} J^{i}{ }_{j}$ $=0$. Because $w^{\alpha}{ }_{i}=\sum h^{\alpha}{ }_{i j} w^{j}$ and $w^{\alpha}{ }_{i}=-w^{i}{ }_{\alpha}$, we get

$$
\begin{equation*}
\sum_{\alpha} h^{\alpha}{ }_{i k} J^{\alpha}{ }_{\beta}=\sum_{j} h^{\beta}{ }_{j k} J^{i}{ }_{j} . \tag{1.5}
\end{equation*}
$$

Now we put $S_{\alpha \beta}=\sum h^{\alpha}{ }_{i j} h^{\beta}{ }_{i j}$. Then by (1.5) we have

$$
\begin{aligned}
\sum_{\alpha, \beta} J^{\alpha}{ }_{r} S_{\alpha \beta} J^{\beta}{ }_{j} & =\sum_{\alpha, \beta, i, j}\left(J^{\alpha}{ }_{r} h^{\alpha}{ }_{i j}\right)\left(h^{\beta}{ }_{i j} J^{\beta}{ }_{j}\right)=\sum_{i, j, k, l}\left(h^{\gamma}{ }_{l j} J^{i}{ }_{l}\right)\left(h_{k j}^{\delta} J^{i}{ }_{k}\right) \\
& =\sum_{i, j, k, l} h^{r}{ }_{l j} h^{\delta}{ }_{k j}\left(-J^{\dagger}{ }_{i} J^{i}{ }_{k}\right)=S_{r \delta},
\end{aligned}
$$

which means that $S_{\alpha \beta}$ is diagonalized to the form
at a (fixed) point x of M, by operating an orthogonal transformation (or real representation of a unitary transformation) to e_{α}-part of adapted frames; $\left(e_{\alpha}\right) \rightarrow\left({ }^{\prime} e_{\alpha}=\sum U^{\beta}{ }_{\alpha} e_{\beta}\right)$, where $U^{\beta}{ }_{\alpha}$ are constant and ($\left.{ }^{\prime} e_{A}\right)=\left(e_{i},{ }^{\prime} e_{\alpha}\right)$ is defined on the domain where $\left(e_{A}\right)$ is defined. The eigenvalues S_{a} are all real and nonnegative.

Let S denote the square of the length of the second fundamental form. Then

$$
\sum_{\alpha, \beta, i, j}{ }^{\prime} h^{\alpha}{ }_{i j} h^{\beta}{ }_{i j}=\sum_{\alpha, i, j}{ }^{\prime} h^{\alpha}{ }_{i j}{ }^{\prime} h^{\alpha}{ }_{i j}=S=\sum_{\alpha} S_{\alpha}=2 \sum_{a} S_{a}
$$

at x, where ' $h^{\alpha}{ }_{i j}$'s denote the components with respect to the new frame field (' e_{A}). By (1.3) and (1.4), we get

$$
\begin{equation*}
-\sum_{\alpha, i, j} h^{\alpha}{ }_{i j} \Delta^{\prime} h^{\alpha}{ }_{i j}=8 \sum_{a, b, i, j, k, l}{ }^{\prime} h^{a}{ }_{i j}^{\prime} h^{a}{ }_{j k}^{\prime} h_{k l}^{b}{ }_{k l} h^{b}{ }_{l i}+2 \sum_{a} S_{a}^{2}-\frac{1}{2}(m+2) S \tag{1.6}
\end{equation*}
$$

at x. Now we show that

$$
\begin{equation*}
8 \sum_{i, j, k, l}{ }^{\prime} h^{a}{ }_{i j}{ }^{\prime} h^{a}{ }_{j k}{ }^{\prime} h^{b}{ }_{k l}{ }^{\prime} h^{b}{ }_{l i} \leq 4 S_{a} S_{b} \tag{1.7}
\end{equation*}
$$

holds at x. Since $h^{b}{ }_{k l}$ is symmetric in k and l, as is well known, by operating an orthogonal transformation (or real representation of a unitary transformation) to e_{i}-part of adapted frames: $\left(e_{i}\right) \rightarrow\left({ }^{*} e_{i}=\sum U^{j}{ }_{i} e_{j}\right)$, where $U^{j}{ }_{i}$ are constant, (${ }^{\prime} h^{b}{ }_{k l}$) is diagonalized to the following form

$$
\begin{equation*}
\left({ }^{*} h_{k l}^{b}\right)_{x}=\left(\right), \quad 0 \leq \lambda_{1} \leq \cdots \leq \lambda_{m} \tag{1.8}
\end{equation*}
$$

at the point, where ${ }^{*} h^{b}{ }_{k l}$'s denote the components with respect to $\left({ }^{*} e_{A}\right)=$ (${ }^{2} e_{i},{ }^{\prime} e_{\alpha}$). Then

$$
\begin{aligned}
8_{i, j, k, l} \sum_{i}{ }^{*} h^{a}{ }_{i j} * h^{a}{ }_{j k}{ }^{*} h^{b}{ }_{k l}{ }^{*} h^{b}{ }_{l i} & =8 \sum_{i, j}\left(* h^{a}{ }_{i j}\right)^{2}\left(* h^{b}{ }_{i i}\right)^{2} \\
& \leq 4 \sum_{i, j}\left(* h^{a}{ }_{i j}\right)^{2}\left(\lambda_{m}{ }^{2}+\lambda_{m}{ }^{2}\right) \\
& =4 S_{a}\left(2 \lambda_{m}{ }^{2}\right) \leq 4 S_{a} S_{b}
\end{aligned}
$$

at x, where we have used

$$
\begin{equation*}
2 \lambda_{m}{ }^{2} \leq 2 \sum_{r} \lambda_{r}^{2}=S_{b} . \tag{1.9}
\end{equation*}
$$

Consequently, (1.6) and (1.7) imply

$$
\begin{align*}
-\sum_{\alpha, i, j}{ }^{*} h^{\alpha}{ }_{i j} \Delta^{*} h_{i j}^{\alpha} & \leq 4 \sum_{a, b} S_{a} S_{b}+2 \sum_{a} S_{a}{ }^{2}-\frac{1}{2}(m+2) S \tag{1.10}\\
& =4\left(\sum_{a} S_{a}\right)^{2}+\left[2\left(\sum_{a} S_{a}\right)^{2}-4 \sum_{a<b} S_{a} S_{b}\right]-\frac{1}{2}(m+2) S \\
& \leq 6\left(\sum_{a} S_{a}\right)^{2}-\frac{1}{2}(m+2) S=\frac{3}{2} S^{2}-\frac{1}{2}(m+2) S \tag{1.11}
\end{align*}
$$

at x. Since S is independent of the choice of adapted frames, and $\sum h^{\alpha}{ }_{i j} \Delta h^{\alpha}{ }_{i j}$ is also invariant under orthogonal transformations of the adapted frames, we have

$$
-\sum_{\alpha, i, j} h^{\alpha}{ }_{i j} \Delta h^{\alpha}{ }_{i j} \leq \frac{3}{2} S^{2}-\frac{1}{2}(m+2) S
$$

on the domain where $\left(e_{A}\right)$ is defined. On the other hand,

$$
\begin{equation*}
-\sum_{\alpha, i, j} h^{\alpha}{ }_{i j} \Delta h^{\alpha}{ }_{i j}=\sum_{\alpha, i, j, k}\left(h^{\alpha}{ }_{i j k}\right)^{2}-\frac{1}{2} \Delta S, \tag{1.12}
\end{equation*}
$$

where $h^{\alpha}{ }_{i j k}$'s are defined by the first equation of (2.1)(cf. [6]). Integration of (1.12) and relations above yield the following integral inequalities:

$$
\begin{equation*}
0 \leq \int_{M} \sum_{\alpha, i, j, k}\left(h^{\alpha}{ }_{i j k}\right)^{2} * 1 \leq \int_{M} \frac{1}{2}\left[3 S^{2}-(m+2) S\right] * 1 . \tag{1.13}
\end{equation*}
$$

Theorem 1. Let M be a compact complex submanifold of complex dimension m immersed in $C P^{m+q}$. Then the square S of the length of the second fundamental form satisfies

$$
\begin{equation*}
\int_{M}[3 S-(m+2)] S^{*} 1 \geq 0 . \tag{1.14}
\end{equation*}
$$

Consequently, we have
Theorem 2. Let M be a compact complex submanifold of complex dimension m immersed in $C P^{m+q}$, and assume that $S \leq \frac{1}{3}(m+2)$ holds on M.
(1) If inequality holds at some point of M, then $S=0$.
(2) Otherwise, $S=\frac{1}{3}(m+2)$.

Proof. If $S<\frac{1}{3}(m+2)$ on M, (1.14) implies $S=0$ on M since S is nonnegative.

If $S<\frac{1}{3}(m+2)$ on a nonempty open set W and $S=\frac{1}{3}(m+2)$ on the nonempty closed set $M-W$, then we have $S=0$ on W. This is a contradiction since S is continuous.

2. Complex submanifolds with $S=\frac{1}{3}(m+2)$

Let M be a compact complex submanifold of complex dimension m immersed in $C P^{m+q}$ with $S=\frac{1}{3}(m+2)$. Then we have equality in (1.9), (1.11) and (1.13). By (1.13) and (1.11), we have

$$
\begin{gather*}
\sum_{k} h^{\alpha}{ }_{i j k} w^{k}=d h^{\alpha}{ }_{i j}-\sum_{k} h^{\alpha}{ }_{k j} w^{k}{ }_{i}-\sum_{k} h^{\alpha}{ }_{i k} w^{k}{ }_{j}+\sum_{\beta} h^{\beta}{ }_{i j} w_{\beta}^{\alpha}=0, \tag{2.1}\\
\sum_{a<b} S_{a} S_{b}=0 . \tag{2.2}
\end{gather*}
$$

We consider these at an arbitrarily fixed point x as in § 1. By (2.2) at most one S_{a} is nonvanishing. Since $S=2 \sum S_{a}=\frac{1}{3}(m+2)$, changing the order if necessary we have $S_{n+1}=\frac{1}{6}(m+2), S_{a}=0$ for $a \geq n+2$. Denote by [S] the field of operators to normal vectors such that $[S] X=\sum S^{\alpha}{ }_{\beta} X^{\beta} e_{\alpha}$, where $S^{\alpha}{ }_{\beta}=\sum g^{\alpha \gamma} S_{\gamma \beta}$ and X^{β},s denote the components of a vector field X normal to M. Then we see that $[S] J=J[S]$. Let $Y, Z_{a}(a \geq n+2), J Y, J Z_{a}$ be fields (on a domain D in M) of normal vectors such that they are orthonormal at x and satisfy

$$
([S] Y)_{x}=\frac{1}{6}(m+2) Y_{x}, \quad\left([S] Z_{a}\right)_{x}=0
$$

Define E_{n+1} and $E_{a}(a \geq n+2)$ by $E_{n+1}=[S] Y$ and $E_{a}=\left([S]-\frac{1}{6}(m+2)\right) Z_{a}$ for $a \geq n+2$. Then $E_{a}, J E_{a}(a=n+1, \cdots, n+q)$ are differentiable. E_{n+1} satisfies $[S] E_{n+1}=\frac{1}{6}(m+2) E_{n+1}$ on D, since $\left([S]-\frac{1}{6}(m+2)\right)[S] Y=0$ which follows from the fact that $\left(t-\frac{1}{6}(m+2)\right) t$ is the minimal polynomial of [S]. Similarly, we have $[S] E_{a}=0$ for $a \geq n+2$. Therefore, if we take a sufficiently small domain D_{0} in D, we have e_{n+1} and $J e_{n+1}$ (normalizing E_{n+1}
and $J E_{n+1}$) and $e_{a}, J e_{a}$ for $a \geq n+2$ (orthonormalizing within $E_{a}, J E_{a}$ for $a \geq n+2$) such that
holds on D_{0} with respect to the new frame field $\left(e_{\alpha}\right)$ which is assumed to be an extended frame field on a domain in $C P^{m+q}$ containing D_{0}.

Next, putting $\lambda_{m}=\lambda$, by equality in (1.9) we have (for $b=n+1$)
at x. We show that there is a local field on D_{1} in D_{0} of adapted frames such that (2.3) and (2.4) hold on D_{1}. Denote by $[h]$ the field of linear operator such that $[h] X=\left(\sum h^{n+1 i}{ }_{j} X^{j} e_{i}\right)$ where $h^{n+1 i}{ }_{j}=\sum g^{i k} h^{n+1}{ }_{k j}$ and X^{j} 's denote components of a vector field X on M. Then $[h]$ satisfies $[h] J=-J[h]$ and $[h][h] J$ $=J[h][h]$. From (2.3) it follows that $[h][h]$ has exactly two eigenvalues 0 and λ^{2}, where $\lambda^{2}=(m+2) / 12$ by $S=2 \sum S_{a}=4 \lambda^{2}$. Hence, similar to [S] we have a local field (on D_{1} in D_{0}) of orthonormal frames $e_{1}, \cdots, e_{m}, J e_{1}, \cdots, J e_{m}$ such that

$$
\begin{aligned}
& {[h][h] e_{m}=\lambda^{2} e_{m}, \quad[h][h] J e_{m}=\lambda^{2} J e_{m},} \\
& {[h][h] e_{i}=0 \quad \text { for } i=1, \cdots, m-1}
\end{aligned}
$$

Since ($e_{1}, \cdots, e_{m-1}, J e_{1}, \cdots, J e_{m-1}$) defines a ($2 m-2$)-dimensional distribution on D_{1}, its distribution is the same as the distribution $\{X ;[h] X=0\}$. If we restrict $[h]$ to the field of 2-planes spanned by $\left(e_{m}, J e_{m}\right)$, $[h]$ has two eigenvalues λ and $-\lambda$. Therefore we have a local field of frames $e_{m}, J e_{m}$ (denoted by the same letters) such that $[h] e_{m}=\lambda e_{m}$ and $[h] J e_{m}=-\lambda J e_{m}$. We extend (e_{i}) on a domain in $C P^{m+q}$ containing D_{1}. Summerizing, we have a local field of adapted frames $\left(e_{A}\right)$ such that $S_{\alpha \beta}$ is diagonal with nonvanishing S_{n+1}, and $h^{n+1}{ }_{i j}, h^{n+q+1}{ }_{i j}$ are diagonal as in (2.3), (2.4), holding on D_{1}. From now on in this section, we use this $\left(e_{A}\right)$.

In (2.1) we put $(\alpha=n+1 ; i=m ; j \neq m, j \neq n)$ and $(\alpha=n+1 ; i=$ $m+m ; j \neq m, j \neq n)$. Then

$$
\begin{equation*}
w_{j}^{m}=w^{m+m}{ }_{j}=0 \quad \text { for } j \neq m, j \neq m+m=n . \tag{2.5}
\end{equation*}
$$

Since

$$
\begin{aligned}
d w_{j}^{m} & =-\sum_{k} w_{k}^{m} \wedge{w^{k}}_{j}+\Omega^{m}{ }_{j} \\
& =-\sum_{k} w_{k}^{m} \wedge w_{j}^{k}+\frac{1}{4} \sum_{k, l}\left[{K^{m}}_{j k l}+\sum_{\alpha}\left(h_{m k}^{\alpha} h_{j l}^{\alpha}-h^{\alpha}{ }_{m l} h^{\alpha}{ }_{j k}\right)\right] w^{k} \wedge w^{l}
\end{aligned}
$$

by (1.2) and (2.5), we have

$$
0=d w_{r}^{m}=\frac{1}{4}\left(w^{m} \wedge w^{r}+w^{m+m} \wedge w^{m+r}\right)
$$

for $r \neq m$ on D_{1}. Since w^{m} and w^{m+m} are nonvanishing, $m \neq 1$ gives a contradiction, so that $m=1$, and $S=1$ and $\lambda^{2}=\frac{1}{4}$ follow. Thus the curvature form of M is given by
$\Omega^{1}{ }_{2}=w^{1} \wedge w^{2}+w_{1}{ }_{1} \wedge w^{3}{ }_{2}+w^{3+q}{ }_{1} \wedge w^{3+q}{ }_{2}=\left(1-2 \lambda^{2}\right) w^{1} \wedge w^{2}=\frac{1}{2} w^{1} \wedge w^{2}$.
which implies that the Kählerian manifold M is of constant curvature $\frac{1}{2}$, and is therefore simply connected. Hence M is complex analytically isometric to a 1-dimensional complex quadric $C Q^{1}$ in $C P^{2}$. Applying E. Calabi's rigidity theorem [4, Theorems 9, 10], we thus have

Theorem 3. Let M be a compact complex submanifold of complex dimension m immersed in $C P^{m+q}$. If $S=\frac{1}{3}(m+2)$ holds on M, then $m=1$ and M is imbedded as a complex quadric $C Q^{1}$ in some $C P^{2}$ in $C P^{1+q}$.

3. Scalar curvature

The scalar curvature R of a complex submanifold of complex dimension m immersed in $C P^{m+q}$ is given by (cf. K. Ogiue [14], etc.)

$$
\begin{equation*}
R=m(m+1)-S \tag{3.1}
\end{equation*}
$$

By Theorems 1, 2, and 3, we have
Theorem 4. For a compact complex submanifold M of complex dimension m immersed in $C P^{m+q}$, the scalar curvature R of M with respect to the induced Kählerian structure satisfies

$$
\begin{equation*}
\int_{M}\left(3 m^{2}+2 m-2-3 R\right)\left(m^{2}+m-R\right)^{*} 1 \geq 0 \tag{3.2}
\end{equation*}
$$

Assume that on M, R satisfies

$$
\begin{equation*}
R \geq m(m+1)-\frac{1}{3}(m+2) \tag{3.3}
\end{equation*}
$$

(1) If the inequality in (3.2) holds at some point of M, then $R=m(m+1)$ holds on M and M is imbedded as a projective subspace $C P^{m}$ in $C P^{m+q}$.
(2) If the equality in (3.2) holds on M, then $m=1$ and $R=1$, and M is imbedded as a complex quadric $C Q^{1} \subset C P^{2} \subset C P^{1+q}$.

It may be remarked that in (3.2), etc. the codimension q is not involved.

4. Holomorphic pinchings

Denote by $K\left(e_{i}, e_{j}\right)=K_{i j}$ the sectional curvature for a 2-plane (e_{i}, e_{j}) (with respect to the induced Kählerian structure on M). Then

$$
\begin{equation*}
R=2 \sum_{r} \sum_{s \neq r}\left(K_{r s}+K_{r s^{*}}\right)+2 \sum_{r} K_{r r^{*}} \tag{4.1}
\end{equation*}
$$

If the holomorphic sectional curvature is δ-pinched ; i.e., if $\delta \leq K(X, J K) \leq 1$, then we have (cf. M. Berger [2])

$$
\begin{equation*}
K_{r s}+K_{r s^{*}} \geq \delta-\frac{1}{2} \quad \text { for } r \neq s \tag{4.2}
\end{equation*}
$$

By noticing that the holomorphic sectional curvature of M is actually ≤ 1 (cf. (4.7) below) and considering (4.1) and (4.2), we thus get

$$
\begin{equation*}
R \geq m(2 \delta m-m+1) \tag{4.3}
\end{equation*}
$$

Theorem 5. Let M be a compact complex submanifold of complex dimension m immersed in $C P^{m+q}$, and assume that on M the holomorphic sectional curvature with respect to the induced Kählerian structure satisfies

$$
\begin{equation*}
K(X, J X) \geq 1-\frac{m+2}{6 m^{2}} \tag{4.4}
\end{equation*}
$$

(1) If the inequality in (4.4) holds for some X at some point of M, then M is imbedded as a projective subspace $C P^{m}$ in $C P^{m+q}$.
(2) If the equality in (4.4) holds on M, then $m=1, K(X, J X)=\frac{1}{2}$, and M is imbedded as a complex quadric $C Q^{1} \subset C P^{2} \subset C P^{1+q}$.

Proof. By (4.3) and (4.4) we have $S \leq \frac{1}{3}(m+2)$. Thus we have either $M=C P^{m}$ or $M=C Q^{1}$. The inequality in (4.4) for some X implies $K(X, J X)>\frac{1}{2}$ and $M \neq C Q^{1}$, and hence $M=C P^{m}$. The equality in (4.4) on M implies $K(X, J X) \neq 1$ and $M \neq C P^{m}$, and hence $M=C Q^{1}$.

If $q=1$, then (4.4) is improved.
Theorem 6. Let M be a compact complex hypersurface immersed in $C P^{m+1}$. If the holomorphic sectional curvature of M with respect to the induced Kählerian structure satisfies

$$
\begin{equation*}
K(X, J X) \geq 1-\frac{m+2}{6 m} \tag{4.5}
\end{equation*}
$$

then we have the conclusions (1), (2) of Theorem 5.
Proof. From the expression of the sectional curvature $K(X, Y)$:

$$
\begin{equation*}
K(X, Y)=\frac{1}{4}\left[1+3(g(X, J X))^{2}\right]+\sum_{\alpha}\left[h^{\alpha}(X, X) h^{\alpha}(Y, Y)-\left(h^{\alpha}(X, Y)\right)^{2}\right] \tag{4.6}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
K(X, J X)=1-2 \sum_{\alpha}\left[h^{\alpha}(X, X)\right]^{2} \tag{4.7}
\end{equation*}
$$

Since $q=1$, we can diagonalize ($h^{n+1}{ }_{i j}$) to the form (1.8), so that $K_{r r^{*}}=$ $1-2 \lambda_{r}{ }^{2}$. Putting $K_{r r^{*}} \geq \delta$, we have $1-\delta \geq 2 \lambda_{r}{ }^{2}$, which, together with $S=2 S_{n+1}=4 \sum \lambda_{r}^{2}$, yields

$$
\begin{equation*}
2 m(1-\delta) \geq S \tag{4.8}
\end{equation*}
$$

Thus $\frac{1}{3}(m+2) \geq 2 m(1-\delta)$ implies $\frac{1}{3}(m+2) \geq S$ for $\delta=1+\frac{1}{6}(m+2) / m$. Then the rest of the proof is the same as that of Theorem 5.

Corollary. Let M be a compact complex hypersurface immersed in $C P^{3}$. If the holomorphic sectional curvature of M satisfies

$$
\begin{equation*}
K(X, J X) \geq 2 / 3 \tag{4.9}
\end{equation*}
$$

then M is imbedded as a projective hypersurface $C P^{2}$ in $C P^{3}$.
Remark. For an imbedded hypersurface " $K(X, J X)>\frac{1}{2}$ " is the best result (cf. K. Ogiue [16, Theorem 3.2]).

5. Positive curvature

By a similar technique as in the proof of Theorem 3.3 in [16], we have
Theorem 7. Let M be a compact complex hypersurface immersed in $C P^{m+1}$ where $m \geq 2$. If the sectional curvature of M with respect to the induced Kählerian structure satisfies

$$
\begin{equation*}
K(X, Y) \geq \frac{1}{4}\left(1-\frac{m+2}{3 m}\right) \tag{5.1}
\end{equation*}
$$

then M is imbedded as a projective hypersurface $C P^{m}$ in $C P^{m+1}$.
Proof. We first diagonalize $\left(h_{i j}^{n+1}\right)$ as in (1.8), and then use (4.6) to obtain

$$
\begin{equation*}
K\left(e_{r}+e_{s}, J e_{r}-J e_{s}\right)=\frac{1}{4}-\frac{1}{2}\left(\lambda_{r}^{2}+\lambda_{s}^{2}\right) \tag{5.2}
\end{equation*}
$$

for $r \neq s$. By putting $K(X, Y) \geq \delta$ we thus have $\frac{1}{2}-2 \delta \geq \lambda_{r}{ }^{2}+\lambda_{s}{ }^{2}$. According as the dimension m is even or odd, let $m=2 w$ or $m=2 w+1$. By noticing that $\lambda_{1}{ }^{2}=\min \left\{\lambda_{i}{ }^{2}\right\} \leq \frac{1}{4}-\delta$, we get

$$
\begin{aligned}
& S=4 \sum_{r} \lambda_{r}^{2}=4\left[\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\cdots+\left(\lambda_{2 w-1}{ }^{2}+\lambda_{2 w}{ }^{2}\right)\right] \leq m(1-4 \delta), \\
& S=4\left[\lambda_{1}^{2}+\left(\lambda_{2}^{2}+\lambda_{3}^{2}\right)+\cdots+\left(\lambda_{2 w}{ }^{2}+\lambda_{2 w+1}{ }^{2}\right)\right] \leq m(1-4 \delta),
\end{aligned}
$$

respectively. Thus $m(1-4 \delta) \leq \frac{1}{3}(m+2)$ implies $S \leq \frac{1}{3}(m+2)$ for $\delta=$ $\frac{1}{4}\left[1-\frac{1}{3}(m+2) / m\right]$. Since $m \geq 2$, Theorems 3 and 4 complete the proof.

Remarks. (i) For $m=1$, Theorem 6 is valid.
(ii) (5.1) means that M is δ^{\prime}-pinched, $\delta^{\prime} \geq \frac{1}{4}\left[1-\frac{1}{3}(m+2) / m\right]$. In fact, we have $K(X, J X) \leq 1$ by (4.7), and $K(X, Y) \leq 1$ by Theorem 8.2 of R. L. Bishop and S. I. Goldberg [3].
(iii) Theorem 7 is a generalization of the results of K. Nomizu [10, Theorem 2], and K. Abe [1, Corollary 4.2.1].

6. Singular or nonsingular complex curves

Theorem 8. Let M be a compact complex curve immersed in $C P^{1+q}$. If the sectional curvature of M with respect to the induced Kählerian structure is $\geq \frac{1}{2}$ and the inequality holds at some point, then M is a projective line.

Proof. This follows from Theorem 5 with $m=1$.
Remark. For a compact nonsingular complex curve, Theorem 8 was obtained by K. Nomizu and B. Smyth [11, Theorem 9] for $q=1$, and by K. Ogiue [16, Theorem 4.1].

Theorem 9. Let M be a compact complex curve immersed in $C P^{1+q}$. If the sectional curvature of M with respect to the induced Kählerian structure satisfies $\frac{1}{2} \leq K(X, Y)<1$, then M is imbedded as a complex quadric $C Q^{1} \subset$ $C P^{2} \subset C P^{1+q}$.

Proof. If $K(X, Y) \geq \frac{1}{2}$, we have $M=C P^{1}$ or $M=C Q^{1} . K(X, Y) \neq 1$ implies $M=C Q^{1}$.

Remark. For a compact nonsingular complex curve, see [11], [16].

7. Remarks

(i) It is known that an odd-dimensional unit sphere $S^{2 r+1}(1)$ (of constant sectional curvature 1) is a circle bundle over a complex projective space $C P^{r}(4)$
(of constant holomorphic sectional curvature 4) (i.e., Hopf fibration π : $S^{2 r+1}$ $\left.\rightarrow C P^{r}\right)$. Corresponding to the Kählerian structure on $C P^{r}(4)$ we have a Sasakian structure on $S^{2 r+1}(1)$.

For a compact complex submanifold M of complex dimension m immersed in $C P^{r}(4)(r=m+q)$ we have an invariant Sasakian submanifold $\pi^{-1} M$ in $S^{2 r+1}(1)$ of real dimension $u=2 m+1$. Since invariant submanifolds are minimal (cf. for example, [20]), J. Simons' result (0.1) is applied to $\pi^{-1} M$ and hence also to M. In the latter case, (3.3) becomes

$$
\begin{equation*}
R>m(m+1)-\left(m+\frac{1}{2}\right) /(4-1 / p) \tag{7.1}
\end{equation*}
$$

(ii) By using (3.10) in [6] K. Ogiue [14] generalized (7.1) to

$$
\begin{equation*}
R>m(m+1)-(m+2) /(4-1 / p) \tag{7.2}
\end{equation*}
$$

(iii) (3.3) is a generalization of (7.2). Consequently (3.3) can be extended to a proposition for an invariant Sasakian submanifold of $S^{2 r+1}(1)$, which is better than Theorem 4.2 in [20]. Since the scalar curvature R^{\prime} of $\pi^{-1} M$ in $S^{2 r+1}(1)$ and the scalar curvature R^{*} of M in $C P^{r}(4)$ are related by $R^{\prime}=R^{*}$ $-\left(\operatorname{dim} \pi^{-1} M-1\right)\left(c f\right.$. (5.12) in [19]), we have $R^{\prime}=4 R-2 m$, where R denotes the scalar curvature of M as a submanifold of $C P^{r}=C P^{r}(1)$. Therefore we obtain the following result:

Let N be an invariant submanifold of $S^{2 r+1}(1)$ as a Sasakian manifold, let $\operatorname{dim} N=u=2 m+1$, and assume that the scalar curvature R^{\prime} of N satisfies

$$
\begin{equation*}
R^{\prime} \geq u(u-1)-\frac{2}{3}(u+3) \tag{7.3}
\end{equation*}
$$

If the inequality holds at some point of N, then $R^{\prime}=u(u-1)$ and $N=S^{u}(1)$ in $S^{2 r+1}(1)$; if the equality holds on N, then $u=3$.

An example of Sasakian submanifold N of dimension 3 with equality in (7.3) is as follows : $N=\pi^{-1} C Q^{1}$ for $C Q^{1} \subset C P^{2} \subset C P^{1+q}$.
(iv) If a compact complex submanifold M is imbedded in $C P^{m+q}$, then M is algebraic. Hence stronger results are expected. In fact, for hypersurface $M, R>m^{2}$ implies that M is a projective hypersurface in $C P^{m+1}$ (K. Ogiue [15], [16]).
(v) If the scalar curvature is constant, the best results for imbedded hypersurfaces are known (cf. S. S. Chern [5], S. Kobayashi [7]).

References

[1] K. Abe, A characterization of totally geodesic submanifolds in S^{N} and $C P^{N}$ by an inequality, Tôhoku Math. J. 23 (1971) 119-224.
[2] M. Berger, Pincement riemannien et pincement holomorphe, Ann. Acuola Norm. Sup. Pisa 14 (1960) 151-159.
[3] R. L. Bishop \& S. I. Goldberg, Some implications of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc. 112 (1964) 508-535.
[4] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953) 1-23.
[5] S. S. Chern, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic sectional curvature, J. Differential Geometry 1 (1967) 21-31.
[6] S. S. Chern, M. do Carmo \& S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. conf. in honor of M. Stone at Univ. of Chicago, 1968), Springer, Berlin, 1970, 59-75.
[7] S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Differential Geometry 1 (1967) 369-370.
[8] S. Kobayashi \& K. Nomizu, Foundations of differential geometry. I, II, WileyInterscience, New York, 1963, 1969.
[9] H. B. Lawson, Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. 89 (1969) 187-197.
[10] K. Nomizu, On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, J. Math. Soc. Japan 21 (1969) 266-269.
[11] K. Nomizu \& B. Smyth, Differential geometry of complex hypersurfaces. II, J. Math. Soc. Japan 20 (1968) 498-521.
[12] K. Ogiue, Complex submanifolds of complex projective space with second fundamental form of constant length, Kōdai Math. Sem. Rep. 21 (1969) 252-254.
[13] -, Complex hypersurfaces of a complex projective space, J. Differential Geometry 3 (1969) 253-256.
[14] -, On compact complex submanifolds of the complex projective space, Tôhoku Math. J. 22 (1970) 95-97.
[15] --, Scalar curvature of submanifolds of a complex projective space, J. Differential Geometry 5 (1971) 229-232.
[16] - Differential geometry of algebraic manifolds, Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 355-372.
[17] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105.
[18] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967) 246-266.
[19] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, J. Math. Soc. Japan 19 (1967) 308-316.
[20] --, Isometric immersions of Sasakian manifolds in spheres, Kōdai Math. Sem. Rep. 21 (1969) 448-458.
[21] \quad, Totally geodesic foliations with compact leaves, Hokkaido Math. J. 1 (1972) 7-11.

[^0]: Communicated by R. Bott, March 30, 1972, and, in revised form, March 3, 1973. The author is partially supported by the Matsunaga Science Foundation.

