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COMPACT COMPLEX SUBMANIFOLDS IMMERSED IN
COMPLEX PROJECTIVE SPACES

SHOKICHI TANNO

0. Introduction

J. Simons [17], H. B. Lawsonί [9], and: S. S. Chern-M. do Carmo-S.
Kobayashi [6], etc. studied minimal submanifolds of spheres. One of the
beautiful results is as follows: Let M be an ^-dimensional compact submanifold
minimally immersed in a unit sphere Sn+P of dimension n + p, and let S
denote the square of the length of the second fundamental form. Then

ίi(2 - j
holds, where *1 denotes the volume element of M. Since the scalar curvature
R of M is given by R = n(n — 1) — S, (0.1) can be rewritten as an integral
inequality concerning the scalar curvature. The classification of M with
S = n(2 — 1/p) was given in [6], [9].

With respect to the complex version of (0.1), K. Ogiue [12] obtained an
inequality, which was applied to scalar curvature and holomorphic pinchings
in [14]. In the present paper, we generalize these results.

Let CPm+q be a complex protective space of complex dimension m + q with
the Fubini-Study metric of constant holomorphic sectional curvature 1.

Theorem A. Let M be a compact complex submanifold of complex dimen-
sion m immersed in CPm+q, and assume that the scalar curvature R of M with
respect to the induced Kdhlerian metric satisfies

(0.2) R > m(m + 1) - J(m + 2) .

(1) // the inequality in (0.2) holds at some point of M, then M is imbedded
as a projective subspace CPm in CPm+q'

(2) // the equality in (0.2) holds on M, then m = 1 and M is imbedded
as a complex quadric CQ1 in some CP2 in CP1+q.

Applying Theorem A to holomorphic or Riemannian pinchings, we have
Theorem B. Let M be a compact complex submanifold of complex dimen-
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sion m immersed in CPm+q, and assume that the holomorphic sectional
curvature K(X,JX) of M with respect to the induced Kάhlerian structure
satisfies

(0.3) K(X,JX)>ί- m + 2 forq>2,
βm2

(0.3y K(X, JX) > 1 - m + 2 for q = 1
βm

for any tangent vector X.
(1) // the inequality in (0.3) and (0.3)' holds for some X at some point of

M, then M is imbedded as a protective subspace CPm in CPm+q.
(2) // the equality in (0.3) and (0.3)' holds on M, then m = 1 and M is

imbedded as a complex quadrίc CQ1 C CP2 C CP1+q.
Theorem C. Let M be a compact complex hypersurface immersed in

CPm+1, m > 2. If the sectional curvature K(X, Y) of M with respect to the
induced Kdhlerian metric satisfies

(0.4) K(X, Y) > l ( l -
4 \4 \ 3m

then M is imbedded as a projective hypersurface CPm in CPm+1.
If a compact complex submanifold M is imbedded in CPm+q, then by Chow's

theorem M is algebraic. K. Nomizu and B. Smyth [11], K. Nomizu [10], and
K. Ogiue [16] studied imbedded (or nonsingular) submanifolds and, as a
special case, compact nonsingular complex curves in CPm+q. In § 6, we
generalize some of their theorems to the case of immersed complex curves in
CP1+q.

In § 7 we give some remarks. Throughout this paper all manifolds are
assumed to be connected.

1. Preliminaries

To obtain the Laplacian of the second fundamental form for immersion of
Kahlerian manifolds, we first consider a submanifold M of real dimension n
minimally immersed in an (n + p)-dimensional locally symmetric Riemannian
manifold N', and use the same notations as those in [6] by S. S. Chern-M.
do Carmo-S. Kobayashi. Let e19 -' ,en+p be a local field of orthonormal
frames in N' such that, restricted to M, the vectors e19 , en are tangent to
M and en+19 , en+p are normal to M. It is known that

Σ
a,β,ί,j\k
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+ Σ (2K'*«A-wA-ty + 2K\Jkh°lkh°tj)
(1.1) .,i.j,ttl

- Σ (Λ «Λ^» - h°jkh\k){h«uWjl - h"nWa)

a,β,i,j,k,l

a,β,i,j\k,l

where 1 < i,j,k,l < n, n + 1 < a, β < n + p, ha

i/^ denote the second
fundamental forms, J/z^/s denote their Laplacians, and Ka

βki's denote the
components of the curvature tensor of N' with respect to the above frames
(cf. [6, (2.23)]).

Now let CPm+q be a complex projective space with the Fubini-Study metric
of constant holomorphic sectional curvature 1, and M be a compact complex
submanifold of complex dimension m immersed in CPm+Q. As is well known,
M is minimal in CPm+q. We denote the complex structure tensor by / and
the Kahlerian metric of CPm+q by g. M has the induced Kahlerian structure
tensor (/, g) denoted by the same letters. On CPm+q, we have

(1.2) KΛBCD — ii^AC^BD — δADδBC + JAC^BD ~ JAD^BC + ^AB^CD) >

where JAB = Σ gAcJCB> a n d 1 <A,B,C,D<n + p = 2(ra + q) for n =
2m, p = 2q.

We can assume that our local field of orthonormal frames is of /-basis such
that, restricted to M, (eA) = (er,em+r = Jer,ea,eq+a = Jea), where we use
the following convension on the ranges of indices:

1 <A,B,C,D<n + p = 2(m + q)

1 < r,s,t < m \ 1 < i,j,k,l < n = 2m

n+l<a,b<n + q; n + 1 < a, β, γ < n + p = 2(m + q)

and r* = m + r, α* = q + a. Such a local field of orthonormal frames is
said to be adapted.

Substituting (1.2) into (1.1), we have (cf. K. Ogiue [12])

Σ h'tjΔh v = - Σ ( Σ h\Jι>kj - Σ A'i*λ%,)2

(1 3) "'*"* «*β>i,J k k

- Σ h'vh'uhWv + \{m + 2) Σ (h'tJY .
a,β,i,j,Jc,l a,i,j

By noticing that Σx Jijha

jlc = ha\k and ΣJυhajk= —Σhauh^ a d i r e c t

calculation gives (cf. K. Ogiue [16])

(1.4) - Σ (Σ*βΛ-ΣAW!=-8 Σ »e//A-

By w4 and wA

β we denote the dual of e^ and the connection forms on CPm+q.
Since / is parallel (J\c = 0), we have
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Σ J\cw
c = dJA

B + - Σ ™CBJAC =

By putting A = i and B = β, the above equation becomes Σ w^J
ai = — w*β, we get

= Σ V;

= 0. Because wa

i = Σ haip*

(1.5) Σ * β i

Now we put Saβ = Σ haijh^j. Then by (1.5) we have

2-1 J r^aβJ δ = Z J V r ^ ^ *' = = A1 " ^

Z J ZJ A J V " i*̂  fc' j ̂  '

which means that Saβ is diagonalized to the form

(Sn+ι 0

0

0

0 ^«J

at a (fixed) point x of M, by operating an orthogonal transformation (or real
representation of a unitary transformation) to eα-part of adapted frames
(ej —> (/ea = Σ Uβaeβ)> where Uβ

a are constant and (^^) = (eί9 'ej is defined
on the domain where (eA) is defined. The eigenvalues Sa are all real and
nonnegative.

Let S denote the square of the length of the second fundamental form. Then

Σ

at x, where 7^/s denote the components with respect to the new frame field
C O . By (1.3) and (1.4), we get

(1.6) - Σ h-tjd'h-ij = S Σ 'hai/hajt'hbkihbii + 2 Σ S\ - \(m + 2)5

at x. Now we show that

v 1 * ' / ° ZJ " ij » jfc n kl n li Si ^^a^b

holds at x. Since 'hb

kl is symmetric in /: and /, as is well known, by operating
an orthogonal transformation (or real representation of a unitary transforma-
tion) to e rpart of adapted frames: (e^ —• (*e* = ΣUjiej)i where UJ

t are con-
stant, {'hh

kJ) is diagonalized to the following form
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-λ, 0

o -

at the point, where *h"kt's denote the components with respect to (*eΛ) =
(*et,'eX Then

<λv

8 = 8 Σ (*A»iy)
ϊ(*A»«)ί

< 4 Σ (*A W)»(V +

= 45α(2^m

2) < 4SaSb

at JC, where we have used

(1.9) 2V<2

Consequently, (1.6) and (1.7) imply

- Σ *A«1,J*A*i, < 4 Σ SαS6

(1.10)

(1.11)

2)S

= 4(Σ 5O)2 + [2(Σ - 4 2)5

< 6(2 SaY - \(m + 2)5 = fS2 - \(m + 2)5

at x. Since 5 is independent of the choice of adapted frames, and Σ h'^ύh'^
is also invariant under orthogonal transformations of the adapted frames, we
have

- Σ h'uΔh\s < fS2 - i(m + 2)5

on the domain where (eA) is defined. On the other hand,

(1.12) Σ
j

where &*ufc's are defined by the first equation of (2.1)(cf. [6]). Integration of

(1.12) and relations above yield the following integral inequalities:

(1.13) 0 < f Σ (h«ίjkY *1 < f 1 [ 3 S 2 - (m + 2)5] *1 .
J M a,i,j,k J M 2
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Theorem 1. Let M be a compact complex submanίfold of complex
dimension m immersed in CPm+q. Then the square 5 of the length of the
second fundamental form satisfies

(1.14) ί [ 3 5 - (m + 2)]5*1 > 0 .
J M

Consequently, we have
Theorem 2. Let M be a compact complex submanίfold of complex

dimension m immersed in CPm+q, and assume that S < %(m + 2) holds on M.
(1) // inequality holds at some point of M, then 5 = 0.
(2) Otherwise, 5 = J-(m + 2).
Proof. If 5 < | (m + 2) on M, (1.14) implies 5 = 0 on M since 5 is

nonnegative.
If 5 < £(m + 2) on a nonempty open set W and 5 = £(m + 2) on the

nonempty closed set M — W, then we have 5 = 0 on W. This is a contradic-
tion since 5 is continuous.

2. Complex submanifolds with 5 = ^(m + 2)

Let M be a compact complex submanifold of complex dimension m im-
mersed in CPm+q with 5 = £(m + 2). Then we have equality in (1.9), (1.11)
and (1.13). By (1.13) and (1.11), we have

(2.1) Σ Λ V * = dh\s - Σha

kjw\ - Σha

ikw
kj + ΣΛ^w% = 0 ,

k k k β

(2.2) Σ SaSb = 0 .Σ aSb
α<&

We consider these at an arbitrarily fixed point x as in § 1. By (2.2) at most
one Sa is nonvanishing. Since 5 = 2 2 5α = ^(m + 2), changing the order if
necessary we have Sn+1 = £(ra + 2), Sa = 0 for a > n + 2. Denote by [5]
the field of operators to normal vectors such that [S]X = J] Sa

βX
βea, where

Saβ = Σ SarSΐβ and Xβ's denote the components of a vector field X normal to
M. Then we see that [5]/ = J[S]. Let Y,Za (a > n + 2),JY,JZa be fields
(on a domain D in M) of normal vectors such that they are orthonormal at x
and satisfy

([S]Y)X = i(m + 2)YX , ([S]Za)x = 0 .

Define En+ι and Eα (β > n + 2) by £ n + 1 = [S]Y and Eα = ([5] - #m + 2))Zβ

for α > /ι + 2. Then Eα, /Eα (α = n + 1, , π + q) are diίϊerentiable. .En+1

satisfies [S]En+1 = ^{m + 2)En+1 on Dy since ([5] - £(m + 2))[5]Y = 0
which follows from the fact that (t — £(m + 2))t is the minimal polynomial
of [5]. Similarly, we have [S]Ea = 0 for α > n + 2. Therefore, if we take a
sufficiently small domain Do in D, we have en+ι and /en + 1 (normalizing En+1
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and JEn+ι) and ea,Jea for a > n + 2 (orthonormalizing within Ea,JEa for
a > n + 2) such that

o'

0

0

' 0

0

* " " + o 2 )

: o'
0

•
' 0

holds on DQ with respect to the new frame field (ej which is assumed to be an

extended frame field on a domain in CPm+q containing Do.

Next, putting λm = λ, by equality in (1.9) we have (for b — n + 1)

(2.3)

(2.4) (*h»+«+\j) = ( Σ /i**Λn+1

w) =

at *. We show that there is a local field on Dί in Do of adapted frames such

that (2.3) and (2.4) hold on Dλ. Denote by [h] the field of linear operator such

that [h]X = (Σhn+lijχSei) w h e r e hn+uj = Σ^* f t n + 1fci a n d z < / ' s denote com-
ponents of a vector field X on M. Then [h] satisfies [h]J = — /[A] and [Λ][/z]/
= J[h][h\. From (2.3) it follows that [h][h] has exactly two eigenvalues 0 and
l\ where λ2 = (m + 2)/12 by 5* = 2 Σ Sa = 4^2. Hence, similar to [5] we

have a local field (on

such that

in Do) of orthonormal frames em, Jeλ, , Je
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[h][h]em = λ2em , [h][h]Jem = λ2Jem ,

[h][h]et = 0 f o r / = 1, . . . , m - 1 .

Since (e19 -9em_19 Je19 ,/em_i) defines a (2m — 2)-dimensional distribu-
tion on D19 its distribution is the same as the distribution {X [/z]Z = 0}. If
we restrict [h] to the field of 2-planes spanned by (em, Jem), [h] has two eigen-
values λ and —λ. Therefore we have a local field of frames em9 Jem (denoted
by the same letters) such that [h]em = λem and [h]Jem = —λJem. We extend
(e€) on a domain in CPm+q containing Dλ. Summerizing, we have a local field
of adapted frames (eA) such that Saβ is diagonal with nonvanishing Sn+19 and
hn+1

ij9 hn+q+1

ίj are diagonal as in (2.3), (2.4), holding onDj. From now on in
this section, we use this (eA).

In (2.1) we put (a = π + 1 \ i = m; j Φ m9 j Φ ri) and (or = w + 1 / =
m + m; j Φ m, j Φ n). Then

(2.5) ww

y = wTO+m, = 0 ίoτ j φ m, j Φ m + m = n .

Since

dww

y = - Σ wm

fc Λ wkj + β m ,

= - Σ n Λ w*, + i Σ \K»m + Σ (h"mkh"n - h«mlh°jk)-\w« A wι ,
k k,l a

by (1.2) and (2.5), we have

0 = dwm

r = l(wm A wr + wm+m A wm+r)

for r Φ m on D1. Since wm and wm+m are nonvanishing, m Φ 1 gives a con-
tradiction, so that m — 1, and S = 1 and Λ2 = ^ follow. Thus the curvature
form of M is given by

Q\ = wι A w2 + w\ A w\ + w3+\ A w3+q

2 = (1 - 2λ2)wι A w2 = ^w1 A w2 .

which implies that the Kahlerian manifold M is of constant curvature ^, and
is therefore simply connected. Hence M is complex analytically isometric to a
1-dimensional complex quadric CQ1 in CP2. Applying E. Calabi's rigidity
theorem [4, Theorems 9, 10], we thus have

Theorem 3. Let M be a compact complex submanifold of complex dimen-
sion m immersed in CPm+q. If S = £(m + 2) holds on M, then m = 1 and
M is imbedded as a complex quadric CQ1 in some CP2 in CP1+q.

3. Scalar curvature

The scalar curvature R of a complex submanifold of complex dimension m
immersed in CPm+q is given by (cf. K. Ogiue [14], etc.)
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(3.1) R = m(m + 1) - S .

By Theorems 1, 2, and 3, we have
Theorem 4. For a compact complex submanifold M of complex dimension

m immersed in CPm+q, the scalar curvature R of M with respect to the induced
Kάhlerian structure satisfies

(3.2) ί (3m2 + 2m - 2 - 3R)(m2 + m - R) *1 > 0 .
J M

Assume that on M, R satisfies

(3.3) R > m(m + 1) - \(m + 2) .

(1) // the inequality in (3.2) holds at some point of M, then R = m(m + 1)
holds on M and M is imbedded as a protective subspace CPm in CPm+q.

(2) // the equality in (3.2) holds on M, then m = 1 and R = 1, and M is
imbedded as a complex quadric CQ1 C CP2 C CP1+q.

It may be remarked that in (3.2), etc. the codimension q is not involved.

4. Holomorphic pinchings

Denote by K(et, e3) = Ki3 the sectional curvature for a 2-plane {et, e3) (with
respect to the induced Kahlerian structure on M). Then

(4.1) R = 2ΣΣ (Krs + Krs*) + 2 Σ Krr*
r sφr r

If the holomorphic sectional curvature is ^-pinched i.e., if δ < K(X, JK) < 1,
then we have (cf. M. Berger [2])

(4.2) Krs + Krs* > δ - \ ίoirψs.

By noticing that the holomorphic sectional curvature of M is actually < 1 (cf.
(4.7) below) and considering (4.1) and (4.2), we thus get

(4.3) R > m(2δm - m + 1) .

Theorem 5. Let M be a compact complex submanifold of complex dimen-
sion m immersed in CPm+q, and assume that on M the holomorphic sectional
curvature with respect to the induced Kahlerian structure satisfies

(4.4) K(X,JX) > 1 m + 2

6m2

(1) // the inequality in (4.4) holds for some X at some point of M, then
M is imbedded as a projective subspace CPm in CPm+q,



638 SHUKICHI TANNO

(2) // the equality in (4.4) holds on M, then m = 1, K(X,JX) = | ,
M is imbedded as a complex quadric CQι c CP2 C CP1+(?.

Pro*?/. By (4.3) and (4.4) we have S < ^{m + 2). Thus we have either
M = CPm or M = Cβ 1 . The inequality in (4.4) for some X implies K(X, JX) > £
and M ^ Cβ1, and hence M = CPm . The equality in (4.4) on M implies
K(X, JX) Φ 1 and M Φ CPm, and hence M = Cβ 1 .

If g = 1, then (4.4) is improved.
Theorem 6. Let M be a compact complex hypersurjace immersed in

CPm+ι. If the holomorphic sectional curvature of M with respect to the
induced Kάhlerίan structure satisfies

(4.5) K(X,JX) > 1 - m + 2

9

6m
then we have the conclusions (1), (2) of Theorem 5.

Proof. From the expression of the sectional curvature K(X, Y):

(4.6) K(X, Y) = ±[1 + 3(g(ΛΓ, /Z))2] + Σ lha(X, X)ha(Y, Y) - ( W , ^))2] ,

it follows that

(4.7) K(X,JX)=1-2Σ {h\X,X)Y .

Since q = 1, we can diagonalize (hn+1

ίj) to the form (1.8), so that £ r r * =
1 — 2λr\ Putting Krr* > δ, we have 1 — δ > 2λr\ which, together with
S = 2Sn+1 = 4Σ V, yields

(4.8) 2 r a ( l - δ)>S .

Thus £(m + 2) > 2m(l — δ) implies ̂ (m + 2) > S for ^ = 1 + £(m + 2)/m.
Then the rest of the proof is the same as that of Theorem 5.

Corollary. Let M be a compact complex hyper surf ace immersed in CP3.
If the holomorphic sectional curvature of M satisfies

(4.9) K(X,JX) > 2 / 3 ,

then M is imbedded as a projective hypersurface CP2 in CP3.
Remark. For an imbedded hypersurface "K(X, JX) > ψ is the best result

(cf. K. Ogiue [16, Theorem 3.2]).

5. Positive curvature

By a similar technique as in the proof of Theorem 3.3 in [16], we have
Theorem 7. Let M be a compact complex hypersurface immersed in CPm+1

where m > 2. If the sectional curvature of M with respect to the induced
Kdhlerian structure satisfies
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(5.1)
3ra

then M is imbedded as a projecίive hypersurface CPm in CPm+1.
Proof. We first diagonalize (hn+1

υ) as in (1.8), and then use (4.6) to obtain

(5.2) K{er + es, Jer - Jes) = \ - KV + V)

for r Φ s. By putting K(X, Y) > <5 we thus have i - 2δ > λr

2 + λs\ According
as the dimension m is even or odd, let m = 2w or m = 2w + 1. By noticing
that λ* = min {V} < i - δ, we get

S = 4ΣK2 = 4[(V + λi) + + (λiv-ΐ + λ2w

2)] < m{\ - AS) ,
r

5 = 4UX

2 + W + ^3

2) + + U2W

2 + λ2w+1

2)] < m(l - 4(5) ,

respectively. Thus m(l — 4δ) < -J-(m + 2) implies S < J-(m + 2) for <5 =
^[1 — ̂ (m + 2)/m]. Since m > 2, Theorems 3 and 4 complete the proof.

Remarks, (i) For m = 1, Theorem 6 is valid.
(ii) (5.1) means that M is ^-pinched, δ' > J [ l - J(m + 2)/m]. In fact,

we have K(X,JX) < 1 by (4.7), and K(X, Y) < 1 by Theorem 8.2 of R. L.
Bishop and S. I. Goldberg [3].

(iii) Theorem 7 is a generalization of the results of K. Nomizu [10,
Theorem 2], and K. Abe [1, Corollary 4.2.1].

6. Singular or nonsingular complex curves

Theorem 8. Let M be a compact complex curve immersed in CPι+q. If the
sectional curvature of M with respect to the induced Kάhlerian structure is
> \ and the inequality holds at some point, then M is a protective line.

Proof. This follows from Theorem 5 with m = 1.
Remark. For a compact nonsingular complex curve, Theorem 8 was

obtained by K. Nomizu and B. Smyth [11, Theorem 9] for q = 1, and by K.
Ogiue [16, Theorem 4.1].

Theorem 9. Let M be a compact complex curve immersed in CPι+q. If the
sectional curvature of M with respect to the induced Kdhlerian structure
satisfies \ < K(X, Y) < 1, then M is imbedded as a complex quadric CQι c
CP2 C CP1+«.

Proof. If K(X, Y) > i , we have M = CP1 or M = CQ\ K(X, Y) φ 1
implies M = CQ\

Remark. For a compact nonsingular complex curve, see [11], [16].

7. Remarks

(i) It is known that an odd-dimensional unit sphere S2r+1(l) (of constant
sectional curvature 1) is a circle bundle over a complex projective space CPr(4)
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(of constant holomorphic sectional curvature 4) (i.e., Hopf ίibration π\ S2r+ί

—> CPr). Corresponding to the Kahlerian structure on CP r(4) we have a
Sasakian structure on S2r+1(l).

For a compact complex submanifold M of complex dimension m immersed
in CPr(4) (r = m + q) we have an invariant Sasakian submanifold π~ιM in
S2r+1(l) of real dimension u = 2m + 1. Since invariant submanifolds are
minimal (cf. for example, [20]), J. Simons' result (0.1) is applied to π~ιM
and hence also to M. In the latter case, (3.3) becomes

(7.1) R > m(m + 1) - (m +

(ii) By using (3.10) in [6] K. Ogiue [14] generalized (7.1) to

(7.2) R > m(m + 1) - (m + 2)/(4 - 1/p) .

(iii) (3.3) is a generalization of (7.2). Consequently (3.3) can be extended
to a proposition for an invariant Sasakian submanifold of S2r+ί(l), which is
better than Theorem 4.2 in [20]. Since the scalar curvature R' of π~ιM in
5 2 r + 1(l) and the scalar curvature R* of M in CPr(4) are related by R' = # *
- ( d i m ^ M - 1) (cf. (5.12) in [19]), we have R' = AR - 2m, where R
denotes the scalar curvature of M as a submanifold of CPr = CPr{\). There-
fore we obtain the following result:

Let N be an invariant submanifold of S2 r + 1(l) as a Sasakian manifold, let
dim N ~ u = 2m + 1, and assume that the scalar curvature R' of N satisfies

(7.3) R' > u(u - 1) - f(« + 3) .

// the inequality holds at some point of N, then R' = u{u — 1) and N = Su(l)
in 5 2 r + 1(l) // the equality holds on N, then u = 3.

An example of Sasakian submanifold N of dimension 3 with equality in
(7.3) is as follows: N = π~ιCQι for CQ1 c CP2 c CPι+q.

(iv) If a compact complex submanifold M is imbedded in CPm+Q, then M
is algebraic. Hence stronger results are expected. In fact, for hypersurface
M, R > m2 implies that M is a projective hypersurface in CPm+1 (K. Ogiue
[15], [16]).

(v) If the scalar curvature is constant, the best results for imbedded hyper-
surfaces are known (cf. S. S. Chern [5], S. Kobayashi [7]).
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