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UMBILICAL SUBMANIFOLDS WITH RESPECT TO
A NONPARALLEL NORMAL DIRECTION

BANG-YEN CHEN & KENTARO YANO

Let M™ be an n-dimensional submanifolds' of an (n + 2)-dimensional eu-
clidean space E™*2, and C be a unit normal vector field of M™ in E**2, If the
second fundamental tensor in the normal direction C is proportional to the
first fundamental tensor of the submanifold M™", then M™ is said to be umbilical
with respect to the normal direction C. The normal direction C is said to be
parallel if the covariant differentiation of C along M™ has no normal compo-
nent, and C is said to be nonparallel if the covariant differentiation of C along
M™ has nonzero normal component everywhere.

In a previous paper [1], the authors proved that a submanifold is umbilical
with respect to a parallel normal direction C if and only if it is contained
either in a hypersphere or in a hyperplane of the euclidean space. In the pre-
sent paper, we shall study the submanifolds of codimension 2 of a euclidean
space which are umbilical with respect to a nonparallel normal direction.

1. Preliminaries

We consider a submanifold M™ of codimension 2 of an (n + 2)-dimensional
euclidean space E"*%, and represent it by

(1) X =XE,---,8,

where X is the position vector from the origin of E**? to a point of the sub-
manifold M", and {£"} is a local coordinate system in M", where and through-

out this paper the indices 4, i, j, k, - - - run over the range {1, - - -, n}.
Put
(2) X, =0d,X, 0; = 0/0&",

and denote by C and D two mutually orthogonal unit normals to M™. Then,
denoting by F; the operator of covariant differentiation with respect to the
Riemannian metric g;; = X;-X; of M, we have the equations of Gauss
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* Manifolds, mappings, functions, ... are assumed to be sufficiently differentiable, and
we shall restrict discussions only to manifolds of dimension n>>2.
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h

(3) VX = 9,X, — {ji

}Xh — hC + kD,

where {z} are Christoffel symbols formed with g;;, and 4;; and k;; the second

fundamental tensors with respect to the normals C and D respectively. The
mean curvature vector is thus given by

(4) H = n""g'y,X,,

where g% are contravariant components of the metric tensor.
If there exist two functions «, 8 and a unit vector field u; on the submanifold
M™ such that

(5) h; = agy; + Pusu; ,

then M" is said to be quasi-umbilical with respect to the normal direction C.
In particular, if g8 = O identically, then M™ is umbilical with respect to the
normal direction C. If M™ is umbilical with respect to the mean curvature
vector H, then M™" is said to be pseudo-umbilical.

The equations of Weingarten are given by

(7) VjDz—k]in—le,

where h;t = hj;g", k;* = k;g' and I; the third fundamental tensor. The
normal vector fields C and D are said to be parallel or nonparallel according
as the third fundamental tensor vanishes or never vanishes.

We also have the equations of Gauss, Codazzi and Ricci respectively :

(8) Ky = hehy — hithy + kky — kihky s
(9) Vihj, — Vb — ks + Lk = 0,
(10) Vikjs — Vikes + Lhy, — Libg, = 0 5
11 Vi, —Vil; + hyk* — hykit =0,

where K, ;;* is the Riemann-Christofel curvature tensor.
Denoting the Ricci tensor and the scalar curvature respectively by K;; = K, ;;*
and K = g?'K;, we define a tensor L;; of type (0, 2) by

. Kji _|_ ngi .
n—2 2n — D(n — 2)

(12) Ly =

The conformal curvature tensor C;;* is then given by
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(13) Crji" = Kyy" + 0¢L;; — 0%Ly; + L85 — L8 »

where 0% are Kronecker deltas, and L,* = L;,g".
A Riemannian manifold M" is called a conformally flat space if we have

(14) ijih =0 )
It is well-known that (14) holds automatically for » = 3, and (15) is a

consequence of (14) for n > 3.

2. Submanifolds umbilical with respect to a normal direction

In the sequel, we always assume that C and D are two mutually orthogonal
unit normals to M™ in E"*2,

Theorem 1. If a submanifold M™ of codimension 2 of a euclidean space
is umbilical with respect to a nonparallel normal direction C, then M™ is quasi-
umbilical with respect to another normal direction D.

Proof. We assume that M* is umbilical with respect to a normal direction
C, and C is nonparallel. Then we have

(16) hj; = ag;; , I;#0,
« being a function. Then from (9) and (16) it follows that
an a8ji — @8k — Wkji + Liky; =0,

where «;, = 0,«. Transvecting [* to (17) and [* to the resulting equation, we
obtain

(18) a; + kjlt = I alt + k(I, D), ,
where
kI, D) = k'l P=1l.
Transvecting g to (17) gives
(19) a; + kjlt = —(n — a; + kL,
from which by transvecting I/ we obtain
(20) (n — Dalt + k(D) = k.
By eliminating «; + k;,/* from (18) and (19), and using (20) we easily find
(21) a; = ¥ a,0l; .
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Substitution of (21) into (19) and use of (20) yield immediately
(22) kBt = 1%, DI; .

Transvecting [* to (17), and substituting (21) and (22) into the resulting
equation, we have

(23) ki = 285 + pll;
where
24) A=alt/l, p=GkUD) — al)/lt = (k' — nd)/l

by (20). This proves the theorem.
Proposition 2. Under the hypothesis of Theorem 1, we have

(25) a; = A; .

This proposition follows immediately from (21) and the definition (24) of 2.

3. Conformally flat spaces of codimension 2

The purpose of this section is to prove
Theorem 3. If a submanifold of codimension 2 of a euclidean (n + 2)-
space is umbilical with respect to a nonparallel normal direction C, then it is

conformally flat.
Proof. Since the submanifold is umbilical with respect to the normal direc-

tion C and C is nonparallel, we have
hj; = agj; » l; #0.

We consider the cases n > 3 and n = 3 separately.
Case 1: n > 3. By substituting (16) and (23) into (8), we find

26) Ky = (@ + 29(0:8;: — 078k
+2pl0tl; — DL 4 (kgy — Ligedl"]
from which follow

@7) Ky=[(n — D@ + D) + WPlgy, + (n — Dagl,l, ,
(28) K =nn— 1D+ 2) + 2(n — Dapl* .
Thus from (12), (27) and (28) we have

(29) Ly = —3(a* + Mgj — Audyl;

Substituting (26) and (29) into (13), we easily find that the conformal
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curvature tensor C,;;" vanishes identically. This shows that the submanifold
M™ is a conformally flat space for n > 3.

Case 11: n = 3. Substituting (16) and (23) into (10), and using (11) we
obtain
A& — Ai8ks + /lkljlz' - #jllcli + plVil;

(30
— Vil + Lagy, — Ljagy, =0,

where 1, = 9,4 and y;, = Oyp.
Transvecting I* to (30) gives

which shows that pl;l; is of the form

(32) Wil = pgi + qil; + aqil;
where
(33) p=Al'+ a,

since pl,;l; is symmetric by (11).
Substituting (32) into (30) we find

2 + (@ — Plilg; — [2; + (@ — p)l;1gws
+ (uely — ple + aul; — qil)l; =0,

from which follow

(34) A+ (@—pl=0,

(35) (e + @l — (5 + gl = 0.

From (33) and (34) we find

(36) A = 174, .

(35) implies

(37) g+ a; =y,

r being a function. Substituting (33) and (37) into (32) gives
(38) Wil = QP+ a)gy — (il + ply) + 2r1; .

Thus from (25), (29), (36), (38), by a straightforward computation we find
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Viji—Vijz(),

which shows that M™ is a conformally flat space. Consequently we have com-
pletely proved the theorem.

4. Locus of (n — 1)-spheres

The purpose of this section is to prove

Theorem 4. If a submanifold of codimension 2 of a euclidean space is
umbilical with respect to a nonparallel normal direction C, then it is the locus
of (n — 1)-spheres, where an (n — 1)-sphere means a hypersphere or a hyper-
plane of a euclidean n-space.

Proof. Let the submanifold M™ be umbilical with respect to the normal
direction C, and C be nonparallel. Then the formulas in § 2 and § 3 are all
valid. Since V,I; — V,l; = 0, the distribution I,dx* = 0 is integrable. We re-
present one of the integral manifolds M™~! of this distribution by &* = £"(3%),
and put

B = 9,6*, Nr=1"/]l, 9,=23/dp",
8 = Bchbigji 5 VcBbh = chNh s
V.B," denoting the van der Waerden-Bortolotti covariant differentiation of B,
along M™~1:
VBn=th+BfBi{h} _B h{“}
(] c=b c &b ]l a cb H

where {cab} are Christoffel symbols formed with g.,, and H,, is the second

fundamental tensor of M*~!. Here and in the sequel, the indices a, b, c, - - -
run over the range {1, ---,n — 1}. From Proposition 2 and (36) it follows

that along M™~!
39) a = const.

(40) A = const.
respectively. Now putting

41 X, = 0,X = B,’X,,
we have, in consequence of (3),

(42)
= ag,C + gD + H, N,

where N = NX,.
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From (6) it follows that

V.C =B/ V,C = BJ(—aX; + ;D) ,

that is,
43) rC = —aX,.

Similarly, from (7) and (23) we have

V.D = BJV,D = BJ(—2X; + pl,liX; + 1,C),

that is,
44) V.D = —2X, .

We also have

V.N =V.NX, = (—H.B)X; + BNV ;X,)
= —H, X, + B/NYag;C + (A8;; + pl;l)D],

that is,
(45) V.N= —H°X, .

From (38) it follows that

BB, (¢l ;1)) = A,I'/I* + o)BB,%g;; ,
which implies
ptV (B, — LV Bl = QI P + a)gep s
that is,
wHy = —QU [+ g -

Let U denote the open subset of M” in which g = 0, and V the interior of
M™ — U. Then from (16) and (23) we see that V' is totally umbilical in the
euclidean (n + 2)-space E"*!, so that every component of V' is contained
either in a hypersphere of E**Z or in a hyperplane of E**%. Thus the closure
of V=M — U is alocus of (n — 1)-spheres. Since on the subset U we have
H,, = vg.,, v being a function, (45) becomes

(46) F.N = —vX,,

from which follows
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47 y = const
so that
(48) Vch — agcbc + zgcbD + Vgch ’

a, A, v being constants. Thus if ¢ # 0, then M"~'is an (n — 1)-sphere. This
implies that U is also the locus of (n — 1)-spheres. Hence the proof of the
theorem is complete.

5. hj; = agj; with « = constant

In this section we shall study submanifolds of codimension 2 of a euclidean
space, which are umbilical with respect to a nonparallel-normal direction C
with 4;; = ag;; and @ = constant. The main results are the following two
theorems.

Theorem 5. If a submanifold of codimension 2 of a euclidean space is
umbilical with respect to a nonparallel normal direction C with h;; = ag;; and
o = constant, then the submanifold is of constant curvature o?.

Proof. Suppose that M” is umbilical with respect to a normal direction C,
h;; = a, @« = constant and C is nonparallel. Then

49) a; =0, l;,#0,
which reduces the first equation of (24) to
(50) A=0.
Substitution of (50) into (23) gives
(61)) hj; = agj; , ki = pljl;
Thus from (8) and (51) we obtain

K" = (0185 — 078k »

which proves the theorem.

Theorem 6. If a submanifold of codimension 2 of a euclidean space is
geodesic with respect to a nonparallel normal direction C, then the submanifold
is the locus of (n — 1)-planes. In particular, if the submanifold is complete,
then it is a cylinder.

Proof. If the submanifold M™ is geodesic with respect to the normal direc-
tion C, and C is nonparallel, then

(52) hji:(), lj#O,

“so that
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(53) a=0, 1=0,

which reduces (30) to

As we see in the proof of Theorem 4, the distribution /;dx* = 0 is completely
integrable. If we represent one of the integral manifolds M™~! of this distribu-
tion by &* = £"(3%), and put

B,)* = 8,&*, N*=1*/l, V.,B,®= H,N",
then transvecting B *N’B,* to (54) we find
pl;NIB B (1) = 0,
that is,
(55) plPHy, =0 .

Let U denote the open subset of M™ in which ¢ # 0, and V the interior of
M™ — U. Then we see from (16), (23) and (50) that V is totally geodesic in
E™*%, so that every component of V' is contained in a euclidean n-space in
E"*%, Thus V is the locus of euclidean (n — 1)-spaces. Since H;, = O on the
subset U, we have I . X, = 0, which implies that M*~! is contained in a eu-
clidean (n — 1)-space. Consequently the submanifold M* is the locus of
euclidean (n — 1)-spaces.

If the submanifold is complete, then by the flatness of the submanifold we
see that M™ is a cylinder. This completes the proof of the theorem.

Bibliography

[11 B.Y. Chen & K. Yano, Integral formulas for submanifolds and their applications,
J. Differential Geometry 5 (1971) 467-477.

MIiCHIGAN STATE UNIVERSITY








