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UMBILICAL SUBMANIFOLDS WITH RESPECT TO
A NONPARALLEL NORMAL DIRECTION

BANG-YEN CHEN & KENTARO YANO

Let Mn be an ^-dimensional submanifolds1 of an (n + 2)-dimensional eu-
clidean space En+2, and C be a unit normal vector field of Mn in En+2. If the
second fundamental tensor in the normal direction C is proportional to the
first fundamental tensor of the submanifold Mn, then Mn is said to be umbilical
with respect to the normal direction C. The normal direction C is said to be
parallel if the covariant differentiation of C along Mn has no normal compo-
nent, and C is said to be nonparallel if the covariant differentiation of C along
Mn has nonzero normal component everywhere.

In a previous paper [1], the authors proved that a submanifold is umbilical
with respect to a parallel normal direction C if and only if it is contained
either in a hypersphere or in a hyperplane of the euclidean space. In the pre-
sent paper, we shall study the submanifolds of codimension 2 of a euclidean
space which are umbilical with respect to a nonparallel normal direction.

1. Preliminaries

We consider a submanifold Mn of codimension 2 of an (n + 2)-dimensional
euclidean space En+2, and represent it by

( 1 ) X = X(ξ\ •••,?"),

where X is the position vector from the origin of En+2 to a point of the sub-
manifold Mn, and {ξh] is a local coordinate system in Mn, where and through-
out this paper the indices h, i, /, k, run over the range {1, , n}.

Put

( 2 ) Xt = dtX, di = d/dξi,

and denote by C and D two mutually orthogonal unit normals to Mn. Then,
denoting by V$ the operator of covariant differentiation with respect to the
Riemannian metric gjt = XyXi of Mn, we have the equations of Gauss
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1 Manifolds, mappings, functions, . . . are assumed to be sufficiently differentiable, and

we shall restrict discussions only to manifolds of dimension n>2.
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where < ..> are Christoffel symbols formed with gJi9 and hH and kμ the second

fundamental tensors with respect to the normals C and D respectively. The
mean curvature vector is thus given by

( 4 ) H = n-1g>ΨJXi,

where gjί are contravariant components of the metric tensor.
If there exist two functions a, β and a unit vector field ut on the submanifold

Mn such that

( 5 ) hJt = agμ + βUjUi ,

then Mn is said to be quasi-umbilical with respect to the normal direction C.
In particular, if β = 0 identically, then Mn is umbilical with respect to the
normal direction C. If Mn is umbilical with respect to the mean curvature
vector H, then Mn is said to be pseudo-umbilical.

The equations of Weingarten are given by

( 6 ) FjC= -hfXt + ljD ,

( 7 ) FjD= -k/Xt-ljC ,

where /*/ = hjtg
H, kf = kjtg

H and l3 the third fundamental tensor. The
normal vector fields C and D are said to be parallel or nonparallel according
as the third fundamental tensor vanishes or never vanishes.

We also have the equations of Gauss, Codazzi and Ricci respectively:

( 8 ) Kw

h = hk

hhH - h/hki + kk

hkH - kjhkkί

( 9 ) Fkhji - V3hkί - lkkJt + ljkkί = 0 ,

(10) FkkH - Fjkki + lkhH - ljhki = 0

(11) Fjh - FJj + hjM - hitk/ = 0 ,

where KkJi

h is the Riemann-Christofel curvature tensor.
Denoting the Ricci tensor and the scalar curvature respectively by KH = Ktji

ι

and K — g3iKji, we define a tensor L i 4 of type (0,2) by

L ) i Ύ^2 + 2(n-lXn-2)

The conformal curvature tensor Ckji

h is then given by
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(13) CkJi

h =

where δk are Kronecker deltas, and Lk

h = Lktg
th.

A Riemannian manifold Mn is called a conformally flat space if we have

(14) Ckjί

h = 0 ,

(15) VkLn - FjLkί = 0 .

It is well-known that (14) holds automatically for n — 3, and (15) is a
consequence of (14) for n > 3.

2. Submanifolds umbilical with respect to a normal direction

In the sequel, we always assume that C and D are two mutually orthogonal
unit normals to Mn in En+2.

Theorem 1. If a submanijold Mn of codimension 2 of a euclidean space
is umbilical with respect to a nonparallel normal direction C, then Mn is quasi-
umbilical with respect to another normal direction D.

Proof. We assume that Mn is umbilical with respect to a normal direction
C, and C is nonparallel. Then we have

(16) h J t = agji , i j φ O ,

a being a function. Then from (9) and (16) it follows that

(17) akgji - ajgki - lkkji + ljkki = 0 ,

where ak = dka. Transvecting /* to (17) and lk to the resulting equation, we
obtain

(18) aj + kjJ'^ΓKatl' + k&Wj,

where

Transvecting gkί to (17) gives

(19) aj + kJtP = - ( / ! - 2)aj + kt'lj ,

from which by transvecting V we obtain

(20) ( π - l)atl
t + k(l,t) = ktΨ.

By eliminating as + kjtl
ι from (18) and (19), and using (20) we easily find

(21) aj = l~\atl% .
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Substitution of (21) into (19) and use of (20) yield immediately

(22) k3tV = l-2k(l, l)lj .

Transvecting lk to (17), and substituting (21) and (22) into the resulting

equation, we have

(23) kH = λgjt + μljh ,

where

(24) λ = atP/P , μ = (*(/, I) - * / ) / / * - W - nλ)/P

by (20). This proves the theorem.
Proposition 2. Under the hypothesis of Theorem 1, we have

(25) at = λh

This proposition follows immediately from (21) and the definition (24) of λ.

3. Conformally flat spaces of codimension 2

The purpose of this section is to prove
Theorem 3. // a submanijold of codimension 2 of a euclidean (n + 2)-

space is umbilical with respect to a nonparallel normal direction C, then it is
conformally flat.

Proof. Since the submanifold is umbilical with respect to the normal direc-
tion C and C is nonparallel, we have

hji = agji , Ij φ 0 .

We consider the cases n > 3 and n = 3 separately.
Case I : n > 3. By substituting (16) and (23) into (8), we find

* * „ * = (a2

from which follow

(27) K ί t = [(π - l)(α2 + Γ) + tyPlg,,- + (n -

(28) K = n(n- l)(α2 + ^2) + 2(n - l)^/i/2 .

Thus from (12), (27) and (28) we have

(29) L, t = - i ( « 2 + Γ ) ^ 4 - λμljl{ .

Substituting (26) and (29) into (13), we easily find that the conformal
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curvature tensor Ckjί

h vanishes identically. This shows that the submanifold
Mn is a conformally flat space for n > 3.

Case II: n = 3. Substituting (16) and (23) into (10), and using (11) we
obtain

— μlkPjh + hagji — ljagkί = 0 ,

where λk = dkλ and μk = dkμ.
Transvecting lk to (30) gives

t%i jh + μt%h

- μlΨA + l2agji - aljh = 0 ,

which shows that μVjh is of the form

(32) μFjh = pgH + qjt + qjj ,

where

(33) p = λtiηP + a ,

since μFβi is symmetric by (11).
Substituting (32) into (30) we find

[λk + (a - p)lk]gji - [λj + (a - p)lj\gkί

+ (μjj - μh + qjj - qjlk)h = 0 ,

from which follow

(34) λk + (a- p)lk = 0 ,

(35) (μk + qk)lj - (μj + q3)lk = 0 .

From (33) and (34) we find

(36) λk = / " W %

(35) implies

(37) μj + qό = rlj ,

r being a function. Substituting (33) and (37) into (32) gives

(38) μFjh = W/P + a)gH - (μjh + μjj) + 2rljlt .

Thus from (25), (29), (36), (38), by a straightforward computation we find
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VkLH - FjLkί = 0 ,

which shows that Mn is a conformally flat space. Consequently we have com-
pletely proved the theorem.

4 Locus of (n — l)-spheres

The purpose of this section is to prove
Theorem 4. // a submanίfold of codimension 2 of a euclidean space is

umbilical with respect to a nonparallel normal direction C, then it is the locus
of (n — l)-spheres, where an (n — ϊ)-sphere means a hyper sphere or a hyper-
plane of a euclidean n-space.

Proof. Let the submanifold Mn be umbilical with respect to the normal
direction C, and C be nonparallel. Then the formulas in § 2 and § 3 are all
valid. Since Vjlt — VJίj = 0, the distribution lidxί = 0 is integrable. We re-
present one of the integral manifolds Mn~ι of this distribution by ξh = ξh(ηa),
and put

gcb = BJBJgji , VcBb

h = HcbN
h ,

VcBb

h denoting the van der Waerden-Bortolotti covariant differentiation of Bb

h

along Mn~ι\

VcBb

h = dβb

h + BJB

where <aΛ are Christoffel symbols formed with gcb, and Hcb is the second

fundamental tensor of Mn~K Here and in the sequel, the indices a,b,c,
run over the range {1, ,w — 1}. From Proposition 2 and (36) it follows
that along Mn~ι

(39) a = const.

(40) λ = const,

respectively. Now putting

(41) Xb = dbX = BJXt ,

we have, in consequence of (3),

= α^cδC + λgebD

where N =



UMBILICAL SUBMANIFOLDS 595

From (6) it follows that

FCC = BcΨjC = BΛ-aXj + IJD) ,

that is,

(43) FCC = -aXc .

Similarly, from (7) and (23) we have

FCD = BcΨjD = BcK-λXj + μljl'Xi + IJC) ,

that is,

(44) FCD = -λXc .

We also have

FCN = VXWXd = {-HfB^X, + BJNKFjXJ

= -H-Xa + BcWlagjtC + (λgJt + μljlJD] ,

that is,

(45) FCN = -H-Xa .

From (38) it follows that

BJBSiμFjh) - W'/P + a)BciBjgjί ,

which implies

μWdW) - kFβjλ = W/P + a)gcb ,

that is,

μlHcb = -(λtiηi2 + a)gcb .

Let U denote the open subset of Mn in which μ Φ 0, and V the interior of
Mn — U. Then from (16) and (23) we see that V is totally umbilical in the
euclidean (n + 2)-space En+1, so that every component of V is contained
either in a hypersphere of En+2 or in a hyperplane of En+2. Thus the closure
of V — M — U is a locus of (n — l)-sρheres. Since on the subset U we have
Hcb = vgcb, v being a function, (45) becomes

(46) FCN = -vXc ,

from which follows



596 BANG-YEN CHEN & KENTARO YANO

(47)

so that

(48) F A

V —

= ocgcbC •

-. const

f λgcb* vgcbN ,

a, λ, v being constants. Thus if μ Φ 0, then Mn~ι is an (n — l)-sphere. This
implies that U is also the locus of (n — l)-spheres. Hence the proof of the
theorem is complete.

5. hji = agji with a = constant

In this section we shall study submanifolds of codimension 2 of a euclidean
space, which are umbilical with respect to a nonparallel normal direction C
with hji = agji and a = constant. The main results are the following two
theorems.

Theorem 5. If a submanifold of codimension 2 of a euclidean space is
umbilical with respect to a nonparallel normal direction C with hjt — agji and
a = constant, then the submanifold is of constant curvature a2.

Proof. Suppose that Mn is umbilical with respect to a normal direction C,
hji = a, a = constant and C is nonparallel. Then

(49) *j = 0, I J Φ O ,

which reduces the first equation of (24) to

(50) λ = 0 .

Substitution of (50) into (23) gives

(51) hji = agji , kji = μljk .

Thus from (8) and (51) we obtain

Kkjί

h = a\δh

kgji - δhjgkι) ,

which proves the theorem.
Theorem 6. // a submanifold of codimension 2 of a euclidean space is

geodesic with respect to a nonparallel normal direction C, then the submanifold
is the locus of (n — l)-planes. In particular, if the submanifold is complete,
then it is a cylinder.

Proof. If the submanifold Mn is geodesic with respect to the normal direc-
tion C, and C is nonparallel, then

(52) h j i = 0 , I j Φ O ,

so that
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(53) a = 0 , λ = 0 ,

which reduces (30) to

(54) μkljlt - μjlklt + μljVuh - μlkV jh = 0 .

As we see in the proof of Theorem 4, the distribution lidxi = 0 is completely
integrable. If we represent one of the integral manifolds Mn~ι of this distribu-
tion by ξh = ξh(ηa), and put

Bb

h = dbξ
h , Nh = lh/l , VcBb

h = HcbN
h ,

then transvecting B/N^^ to (54) we find

μljWBSBWM = 0 ,

that is,

(55) μPHdb - 0 .

Let U denote the open subset of Mn in which μ Φ 0, and V the interior of
Mn — U. Then we see from (16), (23) and (50) that V is totally geodesic in
En+2, so that every component of V is contained in a euclidean π-space in
En+2. Thus V is the locus of euclidean (n — l)-spaces. Since Hdb — 0 on the
subset U, we have FcXb = 0, which implies that Mn~ι is contained in a eu-
clidean (n — l)-sρace. Consequently the submanifold Mn is the locus of
euclidean (n — l)-spaces.

If the submanifold is complete, then by the flatness of the submanifold we
see that Mn is a cylinder. This completes the proof of the theorem.
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