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THE MORSE INDEX THEOREM IN HILBERT SPACE

K. UHLENBECK

When does the critical point of a calculus of variations problem minimize
the integral? The classical result is due to Jacobi, who proved that for a
regular problem in one independent variable, the integral is minimized at a solu-
tion of the Euler-Lagrange equation up to the first conjugate point but not
after. Morse extended the theorem to give a formula for the index of a critical
curve in terms of the conjugate points along the curve. This result has since
been generalized by Edwards [3], Simons [7] and Smale [8] to systems of
higher order, minimal surfaces, and partial differential systems respectively.
In this article we present an infinite dimensional proof of a general theorem
on the index of a bilinear form in Hubert space which can be applied to all
these cases.

The first section contains the abstract formulation and proof of the main
theorem (Theorem 1.11). The second section deals with single integral prob-
lems and the third with multiple integral problems. In the applications we as-
sume less differentiability than the previous results.

1. The abstract theorem

Let HQ C Ht C H1 = H be an increasing family of closed Hubert spaces in
H for 0 < / < 1, and A : H —» R be a C2 function on H with 0 as a critical
point. Clearly 0 is also a critical point of A \Ht = At. The Hessian of A at 0
is the bilinear form

B = d2A(0): H&H-+R .

Also the Hessian of At at 0 is Bt = B \ Ht (x) Ht.
We will be concerned with the properties of B and Bt only, so that we shall

assume that A(y) = jB(v, v). We recall that the index of 0 as a critical point
of A is the dimension of any maximal subspace on which B(v, v) < 0 for
v Φ 0. We define the two functions:

i(t) = index of At = dimension of the maximal subspace of Ht on which Bt

is negative,
j(ί) — dimension of the maximal subspace on which Bt is nonpositive =
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codimension of the closure of a maximal subspace on which Bt is positive.
It is clear that i(t) < j(t) from the definitions.
The bilinear form Bt induces a linear map Bt e L(Ht, Hf) in the usual way.

Bt(u,v) = Bt(u)-v. Let Nt εHt denote the null space of this linear map.
Then

dim (Nt) = n(t) = j(t) - i(t) .

Lemma 1.1. i(t) and j(i) are increasing junctions of t.
Proof. Let Kt be a maximal subspace on which Bt is negative definite.

Since Kt c Ht C Ht + k, Bt+k is negative on Kt, and Kt can be enlarged to a
maximal negative subspace for Ht+k. i(t) = d i m ^ < i(t + k). A similar
argument holds for j(ί).

Lemma 1.2. // /(I) < oo, then there exists a finite number of points
0 — t0 < tΛ < < tn = 1 such that i(t) and j(t) are constant on the open
intervals (ti9 tί+1).

Proof. Both /(/) and j(t) are increasing integer-valued functions of /, and
each can have at most /(I) points of discontinuity since /(I) < oo. At worst
the points of discontinuity are separate, in which case n = 2/(1).

For the rest of the section we assume that /(I) < oo and that the discon-
tinuities of i(t) and /(/) occur at tu 0 < i < n.

Definition 1.3. / is a conjugate point if /(/) > i(t). The degree of conjugacy
of t is n(t) — j(t) — i(t) = dimension of the null space of B_t. It follows that
n(t) is constant on the intervals (ti9 ti+ι).

We wish to give conditions on the family Ht and the functionals Bt such
that n(t) = 0 on (ti9 tί+1), i(t) is lower semi-continuous and /(/) is upper semi-
continuous. It then follows that

/(I) - ι(0) = Σ n(ί) .
ί€[0,l)

Definition 1.4. B satisfies the unique continuation property with respect to
the family Ht if Nt Π Nk = 0 for t φ k. (Recall that Nt is the null space of
Rt.)

Proposition 1.5. // B has the unique continuation property with respect to
the family Ht, then n{t) = 0 for t € (tu tί+1).

Proof. Suppose the conclusion of the theorem is false. Choose an element
e e Λf£. Let E~ be a maximal negative subspace for Bt, and E+ be the perpen-
dicular subspace under B in Hk, tt< t< k< ti+ι. Then the minimum of Bk on
the subspace E+ is zero. B(e, e) = 0 and B takes on its minimum at e. It fol-
lows that B(e, v) = 0 for all v € E" Θ E+ = Hk. e e Nk violates the unique
continuation hypothesis unless e = 0.

Definition 1.6. A bilinear form B on H is Fredholm if the associated linear
transformation B : H —> H* is a Fredholm map. Recall that a linear transfor-
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mation is Fredholm if it has finite dimensional kernel and finite dimensional
cokernel. Note that the index of B (as a Fredholm map) is 0, and should not
be confused with the index of the bilinear form B.

If a bilinear form is Fredholm, a canonical form similar to the form for
finite dimensional spaces exists. There exist an inner product < , ) on H and
orthogonal projections P_ and Po with P_P0 = PQP_ = 0, P_{H) a maximal
negative subspace of B,PQ(H) the null space of B, and [6]

(1.7) B(e, f) = ζe, /> - 2(P_e, /> - <Poe, /> .

Lemma 1.8. // B is Fredholm of finite index, then Bt is Fredholm.
Proof. We use the existence of the canonical form (1.7). If we identify H

and H* by means of the inner product, we have the map JS: H —> H* ~ H
given by

B = I - (2P_ + Po) .

Let Pt be the orthogonal projection on the closed space Ht. Since Ht « Hf
by the same inner product,

Bt = Pt(I - 2P_ + P0)\Ht = I - Pt(2P_ + Po) | Ht .

P_ and Po are projections on finite dimensional spaces, so K = Pt(2P_ — Po)
has finite dimensional range. Therefore Bt — I — K is Fredholm.

Lemma 1.9. // Uί<fe Ht = Hk and B has finite index, then i(i) is upper
semi-continuous.

Proof. Let {et}, I = 1, 2, , i(k), be a basis for a maximal negative sub-
space of Hk. Choose fut eHt with l i m ^ fltt — et. Since B is a continuous
map, {flft} are linearly independent and lie in a negative subspace of Bt if / is
close enough to k. So i(t) > i(k) if k — t > 0 is sufficiently small. This argu-
ment does not apply if the index is not finite.

Lemma 1.10. // B is Fredholm of finite index and Hk = (~^t>k Ht, then j(t)
is upper semi-continuous.

Proof. Let E be a maximal nonpositive subspace for Hk. We suppose that
]{t) is not upper semi-continuous at k, so there exists et € Ht, t > k such that
{E, et} span a subspace larger than E on which Bt is nonpositive. We may as-
sume B(f, et) = 0 for / e E.

Let ζ,y be an inner product with the properties defined in (1.7), and
normalize it so that (et, ety = 1. P_ and Po are projections on finite dimen-
sional subspaces. Thus we may select a subsequence et{ί), lim^^/ (/) = k, such
that et(i) converges weakly to e 6 Hk, P_eHi) converges to P_e and Poet(i)

converges to PQe. From (1.7) it follows that
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0 > B(et, et) = ζet9 et} - 2<P.et9 et} - (P,et9 et} ,

and therefore that

2<P_e, e) + (Poe, e} > 1 .

We find that e Φ 0 and <(e, e) < 1, so B(e, e) < 0. {E, e} now span a larger
subspace on which Bk is nonpositive, which is a contradiction. Therefore /'(/)
must be upper semi-continuous.

The following main theorem follows directly from (1.5), (1.9) and (1.10).
Theorem 1.11. Let B be a bilinear form on a Hubert space H, and

HQ(ZHt(ZHι = H,O<t< 1, an increasing family of closed Hilbert spaces. //
( i ) B satisfies the unique continuation property,
(ii) B is Fredholm of finite index,

(iii) U < * Ht = Hk = Γ]t>k Ht,
then there is only a finite number of conjugate points where n(t) Φ 0 and
index B — index Bo = Σ0<ί<i n(t).

2. Applications to single integrals

In this section we consider the bilinear form

(2.1) B(f,g) = Σ Σ [ Ί ^
i = l .7=1 Jo

Σ [ΊWtjWK) dx
l .7=1 J

If the Aij: [0,1] —> L(Rm, Rm), Atj{x) are matrices with boudded measurable
entries, and Aiά(x) = Aόί{xY, then B is defined and symmetric for
/, g e Hk)0([0, l],Rm), the Sobolev space of vector-valued functions on the
interval [0, 1] with k square-integrable derivatives and k — 1 derivatives which
are zero at 0 and 1. We will make use of the inner product and norms

Thus

,*> = ί fW gWdx , ll/llϊ = Σ [\fj\x)\2dx .
Jθ .7=0 Jo

(2.2) B(f,g) = <f,Lg>, where L = ^ (
dx/ \dx

In applying the result of § 1 to the index of the form (2.1) we let Ht =
Hk>0([0, t],Rm) C Hk>Q([0, l],Rm) = Hγ. Here we are considering a function
in Ht, which is naturally defined on the interval [0, /], to be a function on
[0, 1] by extending it to be identically 0 for x > t. It is easy to see then that
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The form Bt on Hko([0, ί], Rn) is associated with the operator

Lt: Hkt0([0, t], Rm) - H_k([09 ί], R™) ,

where Lt has the same formal definition but different domain from L given in
(2.2). The null space of Bt and that of the differential operator Lt are the
same, so that the following definition of conjugate point agrees with (1.3).

Definition 2.3. If Ltf = 0 has a nonzero solution in Hk>0([0,1], Rm), then
/ is called a conjugate point of multiplicity n(t) equal to the dimension of the
solution space.

Theorem 2.4. Let B be given as in (2.1). // (i) Ati{x) = Ajiix)* are
matrices with bounded measurable coefficients, (ii) Akk(x) > εl uniformly on
0 < x < 1, then there is a finite number of conjugate points of B on the
interval [0, 1], and

index B = 2 n(t) .
0<ί<l

Proof. The steps in the proof which we have not discussed are first that
B is Fredholm of finite index and Bε has zero index for small ε, and secondly
that B satisfies unique continuation. Once we show that B satisfies these two
properties we can apply Theorem 1.11 to get the result.

Because Akk(x) > εl for 0 < x < I, we have the inequality that for some
N < oo and all / e # M ([0,1], Rm)

B(f,f)>h\\f\\l-N\\f\\l-i

Since the imbedding of Hk in Hk_λ is completely continuous, it follows that B
is Fredholm of finite index. A scale change shows that if / has support in
0 < x < t, then N = N(t) can be chosen as iV0 - Cr2fc/( fc"1}, so B(f, /) > 0
if/6i?M[0,e].

The system L can be transformed into a first order system with bounded
measurable coefficients. Let Z{, i = 1, , 2k, be vector valued functions

Zλ = Y , and Zi+1 = Z\ for 1 <i <k - 1 .

Then

k

(—1) Zί+X = AkkZk + 2J Akj_ιZj ,
i=i

Zk + i + l ~ ^A + i + ( — 1 )

Ajc_itkAkkiZk+ί — 2_j Ak_j_ιZj)>



560 K. UHLENBECK

The last 2k equations can be made into a system. Since the uniqueness proof
for given initial values applies to this system, it must apply to L itself. If
Ltf = 0, then / e # M ( [ 0 , ί],Rm) by definition of Lt. If LJ = 0 also, then
f(x) = 0 for * < x < k. Since / has zero initial data at /, / must be identically
zero. So the null spaces of Lt and Lk, and therefore the null spaces of Bt and
Bk, have zero intersection.

3. Applications to multiple integrals

Let Ω be a compact manifold (possibly with boundary) and L an s X s
elliptic system of order fconfl. We assume that in local coordinates L has the
form

L = Σ Σ D«Aa,β(x)D^ ,
\a\<k \β\<k

where the Aa>β: Ω-*L(Rm, Rm), Aa>β(x) are matrices with bounded coefficients,
Aa>β(x) is continuous if \a\ = \β\ = k, and

Σ Σ η'Άiffi > 0 if ηφ 0
| o | = Λ |/3| = f c

for all Λ: e β. We would like L to be self-adjoint, so we assume that there exists
a measure μ on Ω such that <X/, g> = </, Lg) for all smooth / and g with
support in the interior of M. Here < , ) indicates the L2 inner product

<f,g>= ί
J Ω

The Hubert space we will use for the bilinear form is the Sobolev space
H = Hk>Q(Ω, Rm) of vector-valued functions with partial derivatives up to order
k in L2(β) and k — 1 derivatives which are zero on the boundary of Ω. The
symbol || \\k will be a norm for this space. B(f, g) = (Lj, g> is defined for all
/, g € H. The following lemma is similiar to Lemma 7 of Smale's paper [8].

Lemma 3.1. B is a symmetric bilinear form on H = HktQ(Ω, Rm). If L has
the properties described above, then there exist constants ε and N such that

B(f, f) > ε \\f\\l - N ll/ULi , for all f e H .

Further, there exists a constant δ such that if the support of f lies in a set of
measure less than δ, then N may be taken to be zero.

In this lemma the inequality is Garding's inequality [1], and the fact that
N may be taken to be zero follows from the Sobolev inequality [9]
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where p = 2n/(n — 2) for n = dim Ω or any p < oo for dim Ω = 2, and
|| ||Λ_1>P is a norm for the Sobolev space of functions with k — 1 derivatives
which are p integrable. Holder's inequality shows that

ll/IU-i < C2 meas2"2* (support /) | | / | |^ l f 2 / β ,

and the three inequalities can be put together to get

when measure (support / < (ε/(2NC1C2)) (w-1)/2.
In order to apply § 1 to the bilinear form B, we define Ht = Hkt0(Ωt,R

m)
which are those functions in H with support in Ωt C Ω the family 4^ may be
constructed as follows:

Let h be a smooth real-valued function on β with the properties:

0 < A(JC) < 1 , fttfβ) c {0,1} .

The critical points of /* are nondegenerate and occur in the interior of Ω, and
the local maxima and minima occur only at 1 and 0 respectively. We choose
Ωt = Λ-^O, /], and Ht = Hk>0(Ωt,R

m).
Lemma 3.2. // h has no strict local maxima, then

This identity is true for 2k < dim Ω even if h has local maxima.
Proof. By definition Ht is the closure in H of smooth functions with sup-

port in the interior of Ωt, so when {Jt<ic Ωt = interior Ωk C Ωk = Π«>fc Ωt,
the identity is immediate. However, if h has local maxima at points {x19 , xn)
in the interior of Ω for which h{x^ = k, then

(J Ωt = interior Ωk — {x19 , xn} .

If 2k > dim β, then H c C°(β) for / < 1, ^ contains only functions which
are zero at {*1? , xn}, and so the functions in the limit must be zero at
{x19 , xn}. Thus it is clear that the restriction 2k < dim Ω is necessary.

Assume for convenience that the only local maxima occurs at xl9 and choose
a coordinate patch with xι = 0. Let φ be a smooth function which is identi-
cally 1 outside the coordinate patch and which is zero in a neighborhood of 0.
Define

fN(x) == f(x)φ(Nx) e Ht for some ί < 1 .
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If / is a smooth function with support in the interior of Ω, then

where C depends on the function / as well as φ. If 2k < n, then

limits*, fN(x) = f{x) € {Jt<ιHt. If 2k = n, then weak l imit^^ fN (x) = fix).

Since the subspace ( J £ < 1 Ht is closed under weak limits, / e \Jt<1 Ht.,
Definition 3.3. A differential operator L has the unique continuation prop-

erty on a domain Ω if there are no solutions of Lu = 0, on Ω, u ψ 0, such
that u has support on a domain with closure properly contained in Ω.

There are examples of elliptic operators and systems of operators which
violate this condition. J 3 + B, where B is of order less than six, can have a
solution with support in a compact region of Rn. Much work has been done
on this subject, and we refer the reader to [4] for a general discussion. How-
ever there are at least two tractibe cases.

Proposition 3.4. // L is an elliptic system with analytic coefficients, then L
has the unique continuation property. If L is any elliptic second order opera-
tor with C2 coefficients, then L has the unique continuation property.

The first part of this theorem is a result of Holmgren's uniqueness theorem,
and a proof of the second can be found in Hormander [4]. In fact, Hδrmander's
proof applies to any elliptic system of second order with a symbol which is a
scalar. This fact will be useful in dealing with minimal surfaces.

Theorem 3.5. Let L be a self-adjoint system as described above. If L has
the unique continuation on property on Ω and 2k < dim Ω, then the index of
the form (j,Lg} on Hk>oiΩ,Rm) is equal to the number of linearly independ-
ent solutions Lu = 0 on Ωt for u e Hkι0iΩt9 Rm) on the interval 0 < / < 1.

Proof. The assumption of unique continuation assures that condition (i) of
Theorem 1.11 holds. Garding's inequality, which is stated in (3.1), is sufficient
to prove that B(f, g) = </, Lg) is Fredholm of finite index, since the inclusion
of HkrOiΩ,Rm) in Hk_hQiΩ,Rm) is completely continuous, lim^oineas iΩt) =
lim^o meas ( ^ [ O , /]) = 0, and Bt = B\Ht has finite index for small / accord-
ing to (3.1). The last condition in the hypotheses of (1.11) has been vanned
in (3.2), so the proof is complete. L may be taken to be an operator on a
vector bundle with no change in the proof.

We can make a direct application to minimal surfaces. We assume that
S: Ω —> E is a smooth immersed minimal surface in a Riemannian manifold

E. S is then a critical point of the area integral AiS) = dS*μ, where μ is
J Ω

the volume element of E. There is no difference between this case and the
previous case except that Diff (β) leaves the integral invariant. However we
can still define the index to be the dimension of a maximal subspace in
Cl(Ω,S*TE) on which the second variation of AiU) is negative definite. The
null space of the second variation will always have the reparametrizations in
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it, however it may contain certain elements which are not infinitesimal repara-
metrizations (for example, S may be contained in a family of minimal sur-
faces with common boundary).

Definition 3.6. The multiplicity of a minimal surface S is defined as the
maximal dimension of a subspace No cz Cl(Ω,S*TE) such that No does not
contain any reparametrizations and NQ lies in the null space of the second
variation of the area integral. A minimal surface is conjugate if its multiplicity
is nonzero.

This is of course the infinitesimal version of saying that S is contained in a
smooth n dimensional family of minimal surfaces with common boundary. To
procede further we must use the parametrization which is given to us by the
fact that S is an immersion.

Theorem 3.7. Let S: Ω-^E be a smoothly immersed minimal surface,
and Ωt as before. Then the index of S is finite and equal to the number of
points t e (0,1) counted with multiplicity such that St: Ωt —» E is a conjugate
surface.

Proof. This theorem is proved by showing that the situation is really the
situation in Theorem 3.5 in disguise. Let N be the normal bundle to S, so
S(Ω) C J V C £ . Every nearby surface to S can be given as the section of the
normal bundle N, which incidentally fixes its parametrization. In these coordi-
nates, S is the zero section. We compute in local coordinates:

A(U) = [ G(dU,U,x)dS*μ ,
J Ω

G(dU, Ό,x)dS*μ = g(U,x) Jacobian (δij9dUk jdxj)dxι - - dxn

= g(u,χ)\ι + Σ (duηdx,)* + ofldt/i
L i , * '

= Σ lg(x,0) + G&W + Gik(x)UWk

dχτ)
2 + o(|Ki + \du\y]dXι ...dxn

= [G(U,dU) + 0(|wI + \dU\y]dS*μ .

Here we have brought out the part of the integrand, which is quadratic and
is involved in the computation of the second variation. Now, if we apply the
results of Theorem 3.5 to the system L on the normal bundle N, which is
given in local coordinates by

we find that the results apply also to the parametric integral involved in the
computation of the minimal surface. In particular, due to the regularity theory
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for systems of equations, it is irrelevant which space of functions is used to

determine the index.

It would be very interesting, although not at all straightforward, to try to

apply this theorem to the case of minimal surfaces with singularities in the

imbedding.
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