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COMPLETE RIEMANNIAN MANIFOLDS

WITH (/,g, a, SUBSTRUCTURE

SHIGERU ISHIHARA & U-HANG KI

Yano and Okumura [10] defined the so-called (/, g, u, v, ^-structure, studied
its fundamental properties and gave a characterization of even-dimensional
spheres in terms of this structure. In the intrinsic geometry of (/, g, u, v, X)-
structures, some global properties of manifolds with such a structure have been
obtained (cf. [2], [5], [6], [8], [9] and [10]). On the other hand, submanifolds
of codimension 2 in an almost Hermitian manifold or in an even-dimensional
Euclidean space with canonical Kaehlerian structure, and hypersurfaces of an
almost contact metric manifold or of an odd-dimensional sphere with canonical
contact structure carry, under certain conditions, an (/, g, u, v, Λ)-structure. In
the differential geometry of submanifolds of a sphere admitting the induced
(/? g, u, v, ^-structure, several results have been proved (cf. [1], [3], [6], [9]
and [10]). The main purposes of the present paper are to prove Theorem
3.1, which are closely related to a theorem due to Nakagawa and Yokote
[3], and to show that some known theorems concerning (f,g,u,v,λ)-
structure can be proved as consequences of the theorems established in the
present paper.

In § 1 we discuss properties of almost product structure in a Riemannian
manifold, and prove a lemma on the almost product structure and a theorem
on the characterization of product spaces of two spheres, using a theorem due
to Obata [4]. In § 2 we prove some lemmas on (/, g, u, v, ^)-stuctures for later
use. In § 3 complete Riemannian manifolds admitting an (/, g, u, v, ^-structure
and satisfying certain conditions are discussed, and some theorems are proved.
Theorem 3.5 stated in § 3 has been already proved by Nakagawa and Yokote
[3] under weaker conditions.

1. Riemannian manifolds with almost product structure

Let there be given an ra-dimensional Riemannian manifold (M, g) with metric
tensor g, components of g being denoted by gjt. (Manifolds, functions, vector
fields and other geometric objects throughout this paper are assumed to be
difϊerentiable and of class C°°. The indices h, ί, /, k, Z, r, s, ί run over the range
{1, , m} and the summation convention will be used with respect to these
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indices.) Let there be given in (M, g) a tensor field P\ of type (1,1) satisfying

(1.1) ί W = Pth ,

(1.2) Pj'Pi'gf^Pjt,

where Pόi = P/gu. Such a tensor field P ^ is called an almost product structure
in (M, g). From (1.2), we have P j Ύ = P o . If we put Qt

h = 5* - P Λ then we
see that Qt

h is also an almost product structure and PfQi* = QfPi8 = 0. Such
almost product structures Pt

h and Qt

h are said to be mutually complementary.
In the sequel, we put Qn = Qjsgίs. If M is connected, then the rank r of Pt

h

is constant, and Qt

h is of constant rank m — r.
Lemma 1.1. Let Pt

h be an almost product structure in (M, g). If VkPjh —
FjPk\ then FkPjh = 0,

Proof. Differentiating (1.1) covariantly we obtain (FkPs

h)Pis + Pih(FkPis)
= FkPih, to which transvecting gjh gives

(1.3) iV,PSj)Pis + Psj^uPi8) = V*Pij .

By taking the skew-symmetric parts of both sides of (1.3) with respect to i and
k, we have

(1.4) (ΓΛW-(WPt' = 0,

since P o = PH and FkPH — FjPkί. Interchanging / and k in (1.4), we get

(1.5) (ΓAW-(^W = 0

Adding (1.3) to (1.5) yields

(1.6)

since FkPH = FjPki and Pόi = Pi5. Transvecting (1.6) with Pt

ι and taking ac-
count of (1.1), we have 2(FkPjs)Pι

s = {VkPόdPι\ from which follows {F^^PC
= 0. Using this equation and (1.6), we find FkPH = 0, which proves Lemma
1.1.

We need the following theorem stated in [4] :
Theorem A. Let (M, g) be a complete connected Riemannian manifold of

dimension m. If there is a nonconstant function p in M satisfying

(1.7) FjFφ = -pgjt/a*

a being a positive constant, and if dim M = m > 2, then (M, g) is isometric to
a sphere Sm(a) of radius a defined by (x1)2 + + (xm + 1) 2 = a2 with respect
to rectangular coordinates (JC1, , xm+ι) in an (m + l)-dimensional Euclidean
space Em+ι and poi~ι coincides with the function kx1, k being a positive con-
stant, in Sm(a) where i: M —• Sm(a) is the isometry.
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We now give an example of Riemannian manifolds for later use. Let Sr(ά) x
Ss(b) be the pythagorean product of an r-dimensional sphere Sr(ά) with radius
a and an ^-dimensional sphere Ss(b) with radius b. If, for two points (p, q) and
(//, q') of Sr(a) x Ss(b), p' and qf are the antipodes of p and q respectively,
then we say that (p, q) is equivalent to (p;, q'), or that (p, q) ~ (j/9 q;). The
factor space Sr(a) x Ss(b)/~ with Riemannian metric induced from that of
Sr(a) X Ss(b) by the projection π: Sr(ά) x Ss(b) -+ Sr(a) X Ss(b)/ ~ is denoted
by [Sr(ά) x Ss(b)]*. We now prove

Theorem 1.2. Le/ (M, g) be α complete connected Riemannian manifold of
dimension ra, and let there be given in (M, g) two complementary almost pro-
duct structures Pt

h and Qf such that FkPih = 0. Assume that Pt

h is of rank
r, 2 < r < m — 2. // there is a nonconstant function λ in (M, g) satisfying

(1.8) P/PtΨtFsλ = -λPjt/a*,

(1.9) β / β * % F β J = -Jβ*/ί> 2 >

b are positive constants, then (M, g) is isometric to Sr(a) x Sm~r(b)
or [Sr(a) X Sm~r(b)]*.

Proof. Since F f cP> = 0, we have Γ f c β t

Λ = 0. Thus the distribution D: σ ->
PTσ(M) is integrable, where σ is an arbitrary point of M, P denotes the linear
endomorphism determined by the tensor field P ^ , and Tσ(M) the tangent space
to M at σ. The distribution D determined by Qt

h is also integrable, and the
integral manifolds of D and D are all totally geodesic in (M, g). Thus any
maximal integral manifolds V and V of D and D respectively are connected
and complete with respect to their induced Riemannian metrics γ and γ respec-
tively.

Consider a maximal integral manifold V of D, and denote the restriction of
λ to V by p. The ^ satisfies

(1.10) FβFaP= -pγjc?

because of (1.8), where γβa are the components of γ in V, and the indices a
and /3 run over the range {1, , r}. Since λ is not constant in M, there is in
M a point σ at which λ Φ 0, so that we may assume that F passes through
such a point σ. Since ^ ̂  0 at a e F, due to (1.10) p is not constant in V.
Therefore, by Theorem A and (1.10), V is isometric to Sr(a). H i : V -> Sr(α)
is the isometry, where 5r(α) is a sphere defined by (JC1)2 + + (xr+1)2 = α2

in E r + 1 , then ^ o / " 1 coincides with fcc1, /: being a positive constant. Thus the
set of all zero points of p is Xo = r\Sr~1(a)), Sr"1(α) being a great sphere of
Sr(a), and Xo is a bordered set in F .

We now take a point σ of F — Z o , and denote by F , the maximal integral
manifold of D passing through a. Then the restriction p of λ to Vσ satisfies

(1-11) VμV-p=-pγJb\
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because of (1.9), where γμv are the components of γ in Vσ, and the indices μ
and v run over the range {r + 1, , m}. Since λφOatσeV — Xo, p Φ 0
at σ and hence p is not constant in Vσ in consequence of (1.11). Therefore, by
Theorem A and (1.11), Va is isometric to Sm~r(b). If /: Vσ -> Sm- r(6) is the
isometry, where Sm-r(fc) is a spheredefined by ( j r + 1 ) 2 + + (ym)2 = b2

in Em~r+ι, then poj-1 coincides with kyr+1, k being a positive constant.
Let MQ = {JVσ and M'o = U Kσ. Then Mo is an open submanifold of

M, and M'Q is dense in Mo. Taking account of the arguments developed above
we see that the Riemannnian manifold (MJj, g) with restriction of g is locally
isometric to a pythagorean product Sr(ά) X 5m" r(6) and hence is locally sym-
metric. That is, denoting the curvature tensor of (Mo? g) by K, we have FK = 0
in (M'0,g) and therefore also in (M0,g), since FJK is continuous and (M'09g) is
dense in (Mo, g). Thus the restricted linear holomomy group of (Mo, g) coin-
cides with that of (Af J, g), which is the direct product /?(r) x R(m — r) of the
rotation groups R(r) and R(m — r) of the respective dimensions. Consequently,
by a theorem of de Rham, the universal covering space (MQ, g) of (Mo, g) with
Riemannian metric g induced naturally from g in Mo is isometric to the py-
thagorean product Mx x M2, where Mx and M2 are irreducible Riemannian
manifolds of dimension r and m — r respectively, since (M'O9 g) is locally iso-
metric to Sr(a) X Sm~r(b), (M09g) is isometric to Sr(a) x Sm~r(b). Since M o

is compact, Mo is also so. On the other hand, Mo is open in M, and M is con-
nected. Thus M coincide with Mo. Summing up, we can say that the universal
covering space (M, g) of (M, g) is isometric to Sr(a) x 5m-r(fc). Thus, if M is
simply connected, then (M9g) is isometric to Sr(a) x 5'm"r(Z?).

Next, we assume that (M, g) is not simply connected, and denote the cover-
ing projection by π: (M, g) —> (M, g). Taking account of the arguments develop-
ed above we see that λ = λoπ coincides with the function hxιyr+1 in (M, g),
h being a positive constant, if (M, g) is identified with Sr(a) x 5m~r(fe). We
obtain λ = Λαfe only at two points (/?0> <?o) a n d (PΌ, qΌ) where p0 € Sr(a) has co-
ordinates (a, 0, , 0) in Er+1, q e Sm~r(b) has coordinates (fe, 0, . , 0) in
Em~r+1, and p'o and q'Q are the antipodes of p and ^ respectively. Thus (M, g)
is a double covering of (M, g), so that π(p, q) = π(p', qf) implies that pf and
qf are necessarily the antipodes of p and q respectively. Consequently, for any
two points (p, q) and (//, qf) of M = 5r(fl) X 5m"r(fe), τr(p, ςf) = π(p', q') if and
only if (p, q) - (p', qf). Hence (M,g) is isometric with [Sr(ά) x 5m" r(W]* =
Sr(ά) x Sm~r(b)/ ~, and Theorem 1.2 is proved.

2. (/, g, u, v, ^-structures

Let M be a manifold of dimension m ( > 2) with an (/, g, u, v, ^-structure,
that is, a Riemannian manifold (M, g) which admits a tensor field ft

h of type
(1,1), two 1-forms ut and t;̂  (or two vector fields uh = w^ ί/ι and v71 = Vigίh)
and a function ^ satisfying
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(2 1) fthfjt = " ί f + "'"* + V ^ A ' V*'& = î*
// M ί = XVj , / / ^ = — Λw, , wίw

ί = v ^ = 1 — Λ2 , w ^ = 0 ,

where (gjί) = (g^)"1. /^ defined by /^ = //#« is skew-symmetric and of rank
m — 2 or m, and the manifold M is necessarily of even-dimension, i.e., of
dimension m = 2n, where n > 2 (cf. [11]).

Define a tensor field Sjt

h of type (1.2) by

(2.2) Sjf = NJt

h + (Fjut - FiUj)uh + (FjVt - F,Vj)vh ,

where Njt

h = / / F J / - / / Γ J / - (FjU - FJ/)ft

h are the components of the
Nijenhuis tensor of f/1. In the sequel, we put No = {p β M|^(p) = 0}, N1 =
{p β M|^(p)2 = 1 } , JV0 = M — No and JVX = M — JV0. In this section, we es-
tablish some lemmas concerning (/, g, u, v, Λ)-structures for later use.

Lemma 2.1. Assume that in a Riemannian manifold (M,g) with an
(/, g,u,v, X)-sίructure, λ is not zero almost everywhere, and

(2.3)

(2.4) FM - FtVj = 2φjH

hold, where φ is a certain junction in M. Moreover, assume that there be given
in M a symmetric tensor field Hjt of type (0,2) satisfying

(2.5) FjUi + FiUj = -:

and that vt satisfies

(2.6) V,vt = - HHU + λgH .

Then in M

(2.7) FjUt = fH - λHH ,

(2.8) Fjλ = Hjtvt - Vj ,

(2.9) Hίtf/ - Hjttt = 2φfjt

Proof. (2.3) and (2.5) imply (2.7). Transvecting (2.7) with u1 and using
(2.1) we have λFjλ = — λvd + XHHul from which follows Fsλ = — vό• +
HjiU1 in JVQ. Thus we have (2.8) in M because of the continuity of its both
sides and the nonvanishing of λ almost everywhere in M. If we take the skew-
symmetric parts of both sides of (2.6), then we obtain (2.9) by means of (2.4).
Hence Lemma 2.1 is proved.

Remark. If (M,g) is a hypersurface of a sphere S2n+1(l) of radius 1, the
(/, g,u,v, ^-structure of (M, g) is the induced one, and HH is the second funda-
mental tensor of the hypersurface M immersed in S2n+1(l), then (2.6), (2.7) and
(2.8) hold (cf. [1], [6], [7] and [10]). Thus (2.3), (2.5) and (2.6) hold and (2.4)
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is equivalent to (2.9) for a hypersurface M of S2n+1(l). In [3] Nakagawa and
Yokota have studied hypersurfaces of S2n+1(l) satisfying the condition (2.4).

Under the assumptions in Lemma 2.1 the set N1 is a bordered set. In fact,
if we suppose that there is an open subset U contained in N19 then by means
of (2.7) we have fH ± HH — 0 in [/, because u^ — 1 — λ2 = 0 in U and
hence ut = 0 in U, which together with (2.7) implies that fjt = 0 in £/, since
/^ is skew-symmetric and HH is symmetric. This contradicts the fact that fH

is of rank m — 2 or m in M. Consequently iV2 is necessarily a bordered set
(cf. [3]).

Lemma 2.2. Assume that in (M, g) with an (/, g, ̂ , v, λ)structure, λ is not
zero almost everywhere, (2.3), (2.4) and

(2.10) 5 i < Λ = ^, ( Γ ^ Λ + PhVi - 2λgih) - vtfjVn + FhVj - 2λgjh)

hold, and there is a symmetric tensor field Hjt of type (0,2) satisfying (2.5),
where Sjih = Sj/g^. Then in M we have (2.6), (2.7), (2.8) and (2.9).

Proof. (2.7) and (2.8) can be proved by using (2.3) and (2.5). We are now
going to prove (2.6). For any (/, g, u, v, ̂ -structure we have the identity (cf.
[9, (1.11)])

m - (f/fHh - Uftjh)]

(2.11) = (ViVh + Vhvd - ViVψtVn, + Vhvt) - λft\Vtuh + Vhut)

~ λ\VίVh - VhV%) + QU - UtVWtUn - VhUt) ,

where fm = Fjfίh + FJhj + Fhfjt. Substituting (2.3), (2.4) and (2.5) into
(2.11) and using j j ί h = 0 which is a direct consequence of (2.3), we obtain

vjSjίh = (Ftvh + Fhv^ - ViV'iPtVn + Fhvt) + ΊKftH^

-2λ2φfih + 2(λU - u^h, .

On the other hand, transvecting (2.10) with vj gives

Γhvt - 2λgίh) - vt(Ftvh + Fhvt)vι

Thus using (2.1), from the above two equations we have PιVh + FhVι =
- 2Hhtfi

t + 2λgίh + 2φfih, which together with (2.4) implies (2.6) in No and
consequently in M. Finally we have (2.9) by substituting (2.6) into (2.4). Thus
Lemma 2.2 is proved.

Lemma 2.3. Under the assumptions in Lemma 2.1 we have

(2.12) Ht< = 2nφ

in M, and

(2.13) Hjtu
ι = auj + βVj ,
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(2.14) Hnv
ι = βUj + γVj ,

(2.15) a + γ = 2φ

in N19 where Ht

h = Hitg
ht, and a, β and γ are junctions in Nx defined by

(1 - χ2)a = H^u'u1, (1 - λ2)β = HstU'v1 and (1 - λ2)γ = Hitv*vι respec-
tively.

Proof. Transvecting (2.9) with // gives

Htsffh8 + Hjk - HjtU'Uj,. - Hjtv
ιvk = 2φ(gjk - UjUk - VjVk) .

By taking the skew-symmetric parts of the above equation we obtain

{Hjtu
ι)uk - (H^u^Uj + {Hjtv

ι)vk - (HnV^Vj = 0 .

Thus trans vecting the above equation with uk and vk and using (2.1), we have
(2.3) and (2.14) respectively, because ut and vt do not vanish in Nv

Next, transvecting (2.9) with fjί = gjtjt

ι and using (2.1), we obtain

(2.16) H} - 2φ(n - (1 - Λ2)) + Htsu
ιus + H^v'v8 .

On the other hand, transvecting (2.9) with ujvl and using (2.1) yield
λ{Htsu

ιus + Ht.v'v8) = 2λ{\ - λ2)φ. Thus we have

(2.17) H^u'u8 + Huv
ιv* = 2(1 - λ2)φ

in Âo and consequently in M. Restricting (2.17) to Nλ gives (2.15). Finally by
substituting (2.17) into (2.16) we have (2.12) in M. Thus Lemma 2.3 is
proved.

Lemma 2.4. // in Lemma 2.1 the tensor Hjt satisfies the condition

(2.18) FkHH-FjHki = 0,

then we have in Nγ

(2.19) φ{\ - β) = a ,

(2.20) vΨta = uψtβ .

Proof. Differentiating (2.13) covariantly gives

{VkHsduι + Hn{yku
ι) = (Fkcc)uj + {Vkβ)Vj + aP\u} + βPkVj

in Nλ. Taking skew-symmetric parts of both sides of the above equation and
using (2.18) we obtain

- HniFjU*) = (Fka)uj - (Fja)uk + (Fkβ)Vj - (Pjβ)vk

+ a{Vku} - Fjuk) + β(FkVj - FjVk) .
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Next, if we substitute (2.3), (2.4), (2.6) and (2.7) into the above equation and
use (2.9), then we have

(2.21) 2{φ(l - β) - a}fkj = (Fka)uj - (Fja)uk + (Fkβ)Vj - (Fjβ)vk ,

from which it follows that Fόa and Fjβ are linear combinations of Uj and vj9

i.e., that

(2.22) VfiL = A.uj + A2Vj , Fjβ = BιUj + B2vό ,

where A1,A2,B1 and B2 are certain functions in Nλ. Thus (2.21) reduces to
2{φ(l — β) — a}fkj = — (A2 — B^)(ukVj — UjVk)9 which implies that 0(1 —

β) = a and A2 = Bx, since /^ is of rank 2n — 2 > 2 m. Nλ by assumption.
Thus we have (2.19) and (2.20), and Lemma 2.4 is proved.

Remark. If (M, g) is a hypersurface of a sphere 527Z+1(1), the (/, g, w, v, λ)-
structure of (M, g) is the induced one, and HH is the second fundamental tensor
of the hypersurface, then the condition (2.18) is nothing but the structure
equation of Codazzi for the immersion of M into S2n+ι(l).

Lemma 2.5. Under the conditions in Lemma 2.4, the equation

(2 23) HktHi 2φHkί + {β + f a + β)}gkί

(1 λT'βiβ + D(l + φ2)(ukUί

holds in N19 and the function φ is constant in M.
Proof. Differentiating (2.14) covariantly and using (2.6) and (2.7), we

have

(F.HjW + Hjt(-Hksf
s + λδi)

= (Fkβ)uj + (Fkγ)Vj + β(fkj - λHkj) + γ(-Hktf/ + λgkj) .

By taking the skew-symmetric parts of the above equation and using (2.9) and
(2.18), we obtain

(2 24) 2HjtH«sf 2(β

= (F*β)u, - (Fjβ)uk + (Fkγ)vj - (FjT)vk .

Transvecting (2.24) with vk gives that Fjγ is a linear combination of Uj and
Vj, i.e., that

(2.25) FjT = C.uj + C2Vj ,

where Cx and C2 are certain functions in Nx. Using (2.22) and (2.25), we can
reduce (2.24) to

(2.26) - 2HJtHksf° - 2(β + φγ)fkj = (B2 - Cd(vkuά - vjUjc) .
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Transvecting (2.26) with vkuj gives that 2λ(aγ - β2 - β - γφ) = (B2 - Q )
. (1 — Λ2) in JV̂ , which together with (2.15) and (2.19) implies

(2.27) - 2*0(1 + ]8)(1 + φ2) = (B2 - Cx)(l - λ2)

in Nλ. Substituting (2.27) into (2.26) and using (2.9), we have in j ^

(Hksft

s - 2φHkt)f/ - (β + φγ)fkj

φ2)(vjuk - ujvk) .

Transvecting the above equation with // and using (2.13), (2.14), (2.15) and
(2.19), we obtain (2.23) in N,.

Next, we are going to prove that φ is constant in M. Let p be an eigenvalue
of H/1 associated with an eigenvector of H/1, which is orthogonal to uh and vh.
Then using (2.23) we see that p satisfies the quadrastic equation

(2.28) p2 - 2φp + {β + φ\l + β)} = 0

in N19 which implies that β is nonpositive because p is real due to HH — Hijt

Differentiating covariantly the second equation of (2.22) yields FkFjβ =
(FjcBJUj + B^FjcUj) + (FkB2)Vj + B2Fkvό. By taking the skew-symmetric
parts of this equation and using (2.3) and (2.4), we obtain (FkB^)Uj — {FόB^uk

+ (FkB2)Vj - (FjB2)vk = 2(BX + φB2)fjk. Since /,, is of rank 2n > 4 in N19

we have

(2.29) Bλ + φB2 = 0

in JV0 Π Nλ and consequently in Nlt If we now differentiate (2.19) covariantly,
then we have Fόa = (1 — βWjφ — φFjβ, which together with (2.22) implies

(2.30) A,uj + A2Vj = (1 - β)Fjφ - φ{BχUj + B2Vj) .

On the other hand, we have already proved A2 = Bλ (cf. (2.20)) in the proof
of Lemma 2.4. Thus using (2.29), (2.30) and A2 = Bx we find (1 - β)Fjφ =
(Aλ + φB^Uj. Since jS is nonpositive, we have 1 — β Φ 0, and therefore the
above equation becomes Fjφ = τuj9 τ being a certain function in Nv Differ-
entiating this equation covariantly, taking the skew-symmetric parts, and using
(2.3), we obtain (Fkτ)uj — (Vότ)uk + 2τfkj = 0. Since fkj is of rank 2n > 4
in N19 τ = 0. Consequently, φ is necessarily constant in Nx and hence in M.
Thus Lemma 2.5 is proved.

Lemma 2.6. Assume that in Lemma 2.1 the tensor field HH satisfies the
condition (2.18), and the sectional curvature K(θ) of (M, g) with respect to the
section θ spanned by uh and vh is constant in Nx. Then a, β and γ are all con-
stant and, in particular, β = 0 or — 1. Moreover, we have

(2.31) 7 7 7 7 = - β(l + φ2)δΐ ,
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(2.32) FkTJt - PjTkί = 0 ,

where TH = HH - φgH and Tf = Tng
ht.

Proof. Differentiating (2.7) covariantly and using (2.8) give F\V>* =
Fjcfji — (Hktu

l — vk)Hji — λVkHH. By taking the skew-symmetric parts with
respect to / and k from this equation and using the Ricci identity and (2.18),
we have

kjίh

- Γjfkt - (Hktu
ι - vk)HJt + (HjiU1 - Vj)Hk

where Kkjίh are the components of the curvature tensor of (M, g). Transvecting
the above equation with vι and using (2.13) and (2.14), we find

- KkHhv
ιuh = (VJjdv1 - (Fjhύv* - (auk + βvk - vk)(βuj + γVj)

+ (auj + βVj — Vj)(βuk + γvk) ,

which reduces to, in consequence of (2.1), (2.6), (2.7) and (2.8),

KkjihVW = (aγ - β2 + l)(vjuk - vkVj) .

Thus the sectional curvature K(θ) is given by

K(θ) = - KutoVWvW/KuiUtXViV*)] = aγ - β2 + 1 .

Since K(θ) is constant, aγ — β2 + 1 is also so. Thus a, β and γ are constant
because of (2.15) and (2.19).

Since β and γ are constant, we have B2 = Cλ = 0, where B2 and Cλ are func-
tions appearing in (2.22) and (2.25). Thus using (2.27) we obtain β(β + 1) = 0
in N and hence β = 0 or — 1 in M. Substituting β(β + 1) = 0 into (2.23)
gives

HktH/ - 2φHkί + {β + φ\l + β)}gki = 0 ,

which is equivalent to (2.31). Next by means of (2.18) we have (2.32) since φ
is constant. Hence Lemma 2.6 is proved.

Lemma 2.7. Let (M, g) be a Riemmannian manifold with an (/, g, u, v, λ)-
structure satisfying the conditions in Lemma 2.6. // β — 0, then HH — φgn.
If β = — 1, then the tensor field Pf of type (1,1) defined by

(2.33) Pt

Λ = i(l + φ2yv\(- φ + VI + W + »

w απ almost product structure of rank n in (M, g) such that

(2.34) FkPH - FjPkί = 0 .

where PH = P/git.
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Proof. First we assume that β = 0. Then by substituting β = 0 into (2.31)
we have Tn = 0, which implies HH = φgn.

Next we assume that β = — 1. Then substituting /3 = — 1 into (2.31) we
find

(2.35) Γ t

Λ77 = (1 + W

On the other hand, using (2.33) and Tt

h = //> — ^ we have

(2.36) P* = m + d + fYxl2T?)

(2.36) and (2.35) imply PfP/ = PΛ which shows that F> is an almost pro-
duct structure. (2.32) and (2.36) imply (2.34). Contracting i and h in (2.33)
and using (2.12) we find Pt

ι = n, which means that Pt

h is of rank n. Thus
Lemma 2.7 is proved.

Lemma 2.8. Assume that in Lemma 2.1 the tensor field HH satisfies (2.18),
and the curvature tensor of (M, g) is of the form

(2.37) K-kjίh — SkhSji ~ SjhSkί + HkhHjί — HjhHki

// the scalar curvature K — Kkjίhg
khgjί is constant, then a, β and γ are all con-

stant and the same conclusions as those stated in Lemma 2.7 are valid.
Proof. From (2.37), we have by contraction

(2.38) K = 2n(2n - 1) + (#/) 2 - HtsH
ts ,

where Hts = gtjgsiHH. On the other hand, from (2.23) we obtain by trans-
vecting with gkί

(2.39) HtsH
ts - 2φR{ + 2n{β + φ\l + β)} = 2β(β + 1)(1 +-_φ*) .

Using now (2.12), (2.38) and (2.39), we see that β is constant, since K is con-
stant. Thus from (2.15) and (2.19) it follows that a and γ are also constant,
because β and φ are constant. Therefore we can derive the same conclusions
as stated in Lemma 2.7, and Lemma 2.8 is proved.

Remark. If (M, g) is a hypersurface of a sphere 52 n + 1(l), the (/, g, w, v> λ)-
structure of (M, g) is the induced one, and Hjt is the second fundamental
tensor of the hypersurface, then (2.37) is nothing but the structure equation
of Gauss for the hypersurface.

In the sequel we need the following lemma proved by Nakagawa and Yokote
[4].

Lemma 2.9. Assume that in Lemma 2.1 the tensor field Hjt satisfies (2.18),
and the curvature tensor of (M,g) is of the form (2.37). // (M,g) is compact,
then we have β(β + 1) = 0, that is, β = 0 or — 1 in M.
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3. Complete Riemannian manifolds with an (/, g, u, v, ^-structure

First, we prove
Theorem 3.1. Let (M, g) be a complete connected Riemannian manifold

of dimension 2n > 4 with an (f,g,u,v,λ)-structure such that λ is not zero
almost everywhere in M and that there be given a tensor field HH of type (0.2)
satisfying (2.5), (2.18). Further assume that the (/, g, u, v, X)-structure satisfies
(2.3), (2.4), (2.6) where φ is a certain function in M. If the sectional curvature
K(θ) of (M, g) with respect to the section θ spanned by uh and vh is constant
in N19 then the function φ is necessarily constant, and (M, g) is isometric to
one of the following manifolds:

S2n(r) , S%ri) x S»(rJ , [S»(rJ X £»(/•,)]* ,

where

r-*=\ + φ*, rf2 = 2(1 + φ2 + φVl + φ2) ,

r2-
2 = 2(1 + f -

Moreover, HH takes the form

(3-D

if (M,g) is isometric to S2(r), or

(3.2) HJt = f

if (M,g) is isometric to S71^) x Sn(r2) or [S71^) x 5w(r2)]*, where Pt

h is the
almost product structure of rank n determined by the local reducibility of
(M,g), PH = P/gίt and VkPH = 0.

Proof. Under the assumptions of this theorem, Lemmas 2.1, 2.3, , 2.7
are all valid. By Lemma 2.6 we have β = 0 or — 1, and therefore we consider
the following two cases.

Case I: β = 0. Using (2.13) and (2.19) with β = 0 we can reduce (2.8)
to Viλ = φut — vt. Covariant differentiation of this equation gives Fjjiλ =
— Λ(l + φ2)gji, in consequence of (2.6), (2.7) and HH — φgH due to Lemma
2.7. On the other hand, λ is not constant; otherwise, from (2.8) with Ftλ = 0
and (2.13) it follows that β = 1, which contradicts to the assumption. Since
(M, g) is complete and connected, by Theorem A we thus see that (M, g) is
isometric to Sn(r), where 1/r2 = 1 + φ2.

Case I I : β = — 1 . Using (2.13) and (2.19) with β = —1 we can reduce
(2.8) to Fiλ = 2(φUi — Vt). Covariant differentiation of this equation and use
of (2.6) and (2.7) yields

(3.3) FjFiλ = 2TjtU - 2λφTH - 2λ{\ 5ji J
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where TH is given in Lemma 2.6. From (2.35), (2.36) and (3.3) it follows that

P*P*VtV8l =

where P t

Λ is the almost product structure denned in (M, g) by (2.33) and g / =
δi — Pih. On the other hand, λ is not constant (see Case I). Thus V kP H = 0
because of (2.34) and Lemma 1.1.

Since Pt

h is of rank n and (M, g) is complete and conncted, taking account
of Theorem 1.2 and (3.4) we see that (M,g) is isometric to S71^) x Sn(r2) or
[Snfa) X Sn(r2)]*. Finally, we obtain (3.2) from (2.33). Thus Theorem 3.1 is
proved.

Theorem 3.2. Let (M, g) be a complete connected Riemannian manifold of
dimension 2n> A with an (/, g, w, v, X)-structure such that λ is not zero almost
everywhere in M, and there be given in M a tensor field Hjt of type (0,2)
satisfying (2.5) and (2.18). Assume that the (f,g,u,v,λ)-structure of (M,g)
satisfies (2.3), (2.4) and (2.6), and further that the curvature tensor of (M,g)
is given by

(2.37) Kkjίh = gkhgH - gjhgkί + H^Hji - HjhHki .

// the scalar curvature K of (M, g) is constant, then the same conclusions as
those stated in Theorem 3.1 are valid.

Proof. Under the assumptions in Theorem 3.2, Lemma 2.7 follows from
Lemma 2.8. Therefore we can prove Theorem 3.2 in the same way as we
prove Theorem 3.1.

Taking account of Lemma 2.9, we can prove the following Theorem 3.3 by
the same devices as developed in the proof of Theorem 3.1.

Theorem 3.3. Let (M, g) be a compact connected Riemannian manifold
2n > 4 with an (/, g, u, v, X)-structure such that λ is not zero almost everywhere
in M, and let there be given in M a tensor field HH of type (0,2) satisfying
(2.5) and (2.18). Assume that the (f,g,u,v,λ)-structure of (M, g) satisfies
(2.3), (2.4) and (2.6), and that the curvature tensor of (M, g) is given by (2.37).
Then the same conclusions as those stated in Theorem 3.1 are valid.

Theorem 3.4. The conclusions in Theorem 3.1 (resp. Theorem 3.2,
Theorem 3.3) are valid, even if in Theorem 3.1 {resp. Theorem 3.2, Theorem
3.3) the condition (2.6) is replaced by

(2.10) Sm = Vj(ViVh + Fhv, - 2λgίh) - ViiΓjVi + FhVj - 2λgjh) .
m = Vj(ViVh + Fhv, - 2λgίh) - ViiΓjVi + FhVj - 2λgjh

Proof. By Lemma 2.2, the conditions (2.3), (2.4) and (2.10) imply (2.6).
Thus using Lemmas 2.7, 2.8 and 2.9 we can obtain Theorem 3.4.

By means of Theorems 3.1, 3.2 or 3.4 we can prove the theorem in [2],
Theorems 9.1, 9.2 in [7] and Theorem 3.2 in [10]. We now state
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Lemma 3.5. Let (M, g) be a complete connected hypersurface immersed

in a sphere Sm+1(l) with induced metric gji9 and assume that in (M, g) there is

an almost product structure Pf of rank p such that VjPt

h = 0. If the second

fundamental tensor HH of the hypersurface (M, g) takes the form HH = aP H +

bQji, and m — 1 > p > 1, where a and b are nonzero constants, PH — P/gu,

and QH = gH — PH, then the hypersurface (M,g) is congruent to the hyper-

surfaces S^) X Sm-v(r2) naturally embedded in S m + 1 (l), where l/r* = 1 + a2

and l/r2

2 = 1 + b\

By means of Theorems 3.1, 3.2, and Lemma 3.5 we can prove

Theorem 3.6. Let (M, g) be a complete connected hypersurface immersed

in a sphere S2n+ι(l) with induced (f, g, u, v, λ)-structure such that λ is not zero

almost everywhere in M. Assume that the induced (f,g,u,v, λ)-structure

satisfies the condition VjVt — Vflj = 2φfjί9 φ being a certain function in M.

If (M, g) satisfies one of the following conditions: (i) (M, g) is compact, (ii)

the scalar curvature K of (M, g) is constant, (iii) the sectional curvature K(θ)

of (M, g) with respect to the section θ spanned by uh and vh is constant, then

φ is necessarily constant and the hypersurface {M, g) is congruent to S2n(r) or

S^r,) x Sn(r2) naturally embedded in S2n+1(l), where 1/r2 = 1 + φ\ 1/rf =
2(1 + φ2 + φ\/l + Φ2) and l/r2

2 = 2(1 + φ2 - φVl + φ2), (cf. Nakagawa

and Yokote [3], [4]).

Bibliography

[ 1 ] D. E. Blair, G. D. Ludden & K. Yano, Hypersurfaces of an odd-dimensional
sphere, J. Differential Geometry 5 (1971) 479-486.

[ 2 ] , On the intrinsic geometry of Sn X Sn, Math. Ann. 194 (1971) 68-77.
[ 3 ] H. Nakagawa & I. Yokote, Compact hypersurfaces in an odd-dimensional sphere,

Kόdai Math. Sem. Rep. 25 (1973) 225-245.
[ 4 ] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a

sphere, J. Math. Soc. Japan 14 (1962) 333-340.
[ 5 ] H. Suzuki, Notes on (f,g, u,v,λ)-structure, Kόdai Math. Sem. Rep. 25 (1973) 153-

162.
[ 6 ] K. Yano, Differential geometry of SnχSn, J. Differential Geometry 8 (1973)

181-206.
[ 7 ] K. Yano & S. Ishihara, Notes on hypersurfaces of an odd-dimensional sphere,

Kόdai Math. Sem. Rtp. 24 (1972) 422-429.
[ 8 ] K. Yano & U-Hang Ki, On quasi-normal (f,g,u,v,λ)-structure, Kόdai Math. Sem.

Rep. 24 (1972) 106-120.
[ 9 ] , Manifolds with antinormal (f,g, u,vf λ)-structures, Kόdai Math. Sem. Rep. 25

(1973) 48-62.
[10] K. Yano & M. Okumura, On (f,g,u,vyλ)-structures, Kόdai Math. Sem. Rep. 22

(1970) 401-423.

TOKYO INSTITUTE OF TECHNOLOGY
KYUNGPOOK UNIVERSITY, KOREA




