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A CONGRUENCE THEOREM FOR CLOSED
HYPERSURFACES IN RIEMANN SPACES

HEINZ BRUHLMANN

Introduction

We consider two closed oriented surfaces F and F in Euclidean 3-sρace E*
and a differentiate map Φ: F —> F preserving the orientation. The word dif-
ferentiable always means differentiable of class C°°. Furthermore, we assume
that the set of points on F where the lines (p, p),p = Φ(p), are tangent to F
does not have inner points. Then the following theorems are known:

A) If all the lines (/?, p) are parallel and H(p) = H(p) (H and H are the
mean curvatures of F and F respectively), then the surface F is obtained from
F by a single translation, i.e., the distances pp are the same for all points p
on F (H. Hopf and K. Voss [8]).

B) If all the lines (p, p) go through a fixed point 0 (which does or does
not lie on F or F) and if rH(p) = fH(p) (r and r are the distances of p and
p from 0), then F is obtained from F by a homothety, in other words the ratio
r/r is constant (A. Aeppli [1]).

In order to generalize these two theorems we consider the following case:
LetjRw + 1 be an (n + l)-dimensional Riemann space, and Φ(p,s) be a one-
parameter group of transformations of Rn+1 into itself. Furthermore, let Fn

and Fn be two w-dimensional hypersurfaces of Rn+ι such that the points of Fn

are given by the formula:

p = Φ(p,f(p)) , ptFn ,

where f(p) is a differentiable function of Fn. To generalize the condition for
the mean curvatures, we have to introduce an additional family of hyper-
surfaces, one for every point of Fn, given by the formula:

Then the point p = Φ(p, f(p)) lies on the hypersurfaces Fn and Fn

v and we

define:

H(p) = mean curvature of Fn at p ,

Ή(p) = mean curvature of F* at p .
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We denote by S the set of points of Fn where the vector tangent to the orbit
of Φ(p, s) through p lies in the tangent space of Fn. For this general case, the
following two theorems are known.

I) If H(p) = H(p) for all peFn, Φ(p, s) is a group of homothetic trans-
formations, and the set S of the exceptional points is nowhere dense in Fn,
then Fn and Fn dirt congruent mod Φ in other words, f(p) = const. (Y.
Katsurada [9]).

II) If H(p) = H(p) for all p e Fn, and the set S is empty, then Fn and Fn

are congruent mod Φ (H. Hopf and Y. Katsurada [7]).
Theorem II is not a generalization of Theorem A, since in this case we

always have exceptional points. However it suggests that Theorem I is true
without the additional assumption of homotheticity.

Theorem I has been proved by Y. Katsurada by using the method of dif-
ferential forms. For the proof of Theorem II the authors use the strong max-
imum principle of E. Hopf [5]. In [10], K. Voss gave a proof of Theorem A,
using a generalized maximum principle. However, his proof worked only in
the case where F and F are real analytic surfaces. Later, P. Hartman [3] gave
a proof without using the assumption of analyticity, by generalizing the strong
maximum principle for elliptic differential equations. In this paper we give a
proof of the following theorem, which is a generalization of Theorem II since
we may have exceptional points, but which is not a generalization of Theorem
I since the assumption on the exceptional points is stronger than that in
Theorem I.

Theorem. Let Fn,Fn, F% be closed oriented hypersurfaces in Rn+1 as ex-
plained above, and assume all maps to be orientation-preserving. Furthermore
let ψ{p) = (w, n), where w is the vector tangent to the curve Φ(p,s), — ε <
s < + ε, at p, and n is the normal vector of Fn at p. If grad ψ Φ 0 whenever
ψ = 0 on Fn, and H(p) = ίϊ(p) for all p e Fn, then the hypersurfaces Fn and
Fn are congruent mod Φ.

1. Variation of the mean curvature

Let Fn be a hypersurface in an (n + l)-dimensional Riemann space Rn+1

given locally by the equations

xi = xl(ua) , ί = 1, . . , n + 1 a = 1, >" , n .

Then the tangent space to the surface is spanned by the n linearly independent
vectors ta = (dx1 /dua)d/dxί. For the covariant derivative of the vector-field
ta in the direction of tβ in Rn+1 we get

+ r* — d χ k ) d

3k dua duβ ) dxι

and for the second fundamental form
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where n = rudjdx1 is the normal to the hypersurface, and gtj is the metric
tensor of the space Rn+1. The formula for the mean curvature of the hyper-
surface is

H = g HJn = Kin ,

where gaβ is the inverse of gaβ = gίj(dxί/dua)dxj/duβ.
Now let Φ(p,s) be a one-parameter group of transformations of Rn+\ and

Fn and Fn be two hypersurfaces such that

as in the introduction. We introduce an additional family of hypersurfaces,
depending on a point p eFn and a parameter /, 0 < ί < 1, given by the equation

F*(p, ί) = {Φ(q, tf(q) + (1 - *)/(p)) | q € F»} .

Since Φ(p, tf(p) + (1 — 0/(p)) = Φ(P, /(p)) = P, the point p lies on all the
hypersurfaces Fn(p, t), p fixed and 0 < / < 1. Furthermore we have, for ί = 1,

and, for / = 0,

F(p, 0) = {Φ(q,/(p))\q

From these relations we get

B(jf)-
at

0

where H(p, t) is the mean curvature of Fn(p, t) at the point p.

The variation of the mean curvature gives

dH(p,t)/dt = laβdg°ηdt + gaβdlaβ/dί ,

and by differentiating the relation gaβgrβ = δ" we get

dg'β/dt = -gaδgβ'dgΐδldt = -gaδgβ%dtrldt,Q + (tr,dtδ/dt)} .

Furthermore, by taking the covariant derivative of the relations (π, ή) = 1
and (n, ta) = 0, we obtain (n, Daή) = 0 and (Dαn, ̂ ) + (n, Djβ) = 0 or Dαn
= ^αί^ with λβ

a = -(n,Djr)g*β. Hence
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dgaβ i __ _QaδQβr((fyL Λ + (t dtΛ]
dt aβ IV dt ' / \ r ' Λ //

In order to compute the second term in the above expression for dH(p, t)/dt,

differentiating the relations (n, ή) = 1 and (n, ta) = 0 with respect to ί we get

(dn/dt, ή) = 0 and (dπ/d/, O + (n, dtjdt) = 0, or dπ/d/ = λata with ^α =

-(dtβ/dt,n)gaβ. Hence

d n / Λ = -(dtβ/dt,n)gaβta,

where Γ ^ = (Z)α^, tr)grδ. Finally we get the following formula for the variation
of the mean curvature:

dH DJ,, n) + 2^(Z> Λ

Now using the definition of the hypersurfaces Fn(p, i):

F»(p, /) = {φ(^, //(^) + (1 _ t)f(p)) \qε

or in local coordinates

where f(p) is independent of the ua, we get

dua + t(dΦί/ds)df/dua,

so that for the tangent vectors ia of the hypersurface Fn(p, t) at the point p we
have

where wι = dΦ(p,s)/ds\s=0, and by differentiating with respect to /

Λ β/Λ = >v 5//5wα , w = wι d/dx1 .

Furthermore

Djβ = (dxΐ/duβ + Γίjkx
J

ax^)d/dxί ,

so
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For the derivative of x\ we get

dxi _ dw + t dw df + t dW df

duβ duaduβ duads duβ duβds dua

f dW df dj_ t dΦι d2f
ds2 dua duβ ds duaduβ

Since d2Φί/duaduβ,d2Φί/duads,d2Φi/ds2,dΦί/ds do not depend on t when con-
sidered only at the point p on the hyper surf aces Fn(p, t), we get for the
derivative of the above expression with respect to t:

dt duβ dua duβ duβ dua ds dua duβ duaduβ '

so

JLDJ, = w^L- + DβWJL + DaWJL + 2t-^JL JL .
at duaduβ dua duβ ds dua duβ

Therefore the formula for the variation of the mean curvature in our case is
the following:

m β d f df
dt duaduβ dua duβ \ ds

df- 9aSΓ^s(w,n)
duβ

2. A lemma on partial differential equations

For the proof of our main theorem we need a generalization of the strong
maximum principle for elliptic partial differential equations. We consider a
linear differential expression of the form

US) = Σ A.β(x)-°J— + '
dxadxβ «=i dxa

where Aaβ(x) and Ba(x) are differentiable functions, together with a differenti-
able function <p(x) in a normal domain G of the π-dimensional number space
Rn. We assume that φ(x) and L(f) have the following properties:

a) grad φ(x) Φ 0 whenever φ(x) = 0,

b) Σ 2,̂ =i Aaβ{x)λaλβ is positive definite for every x with φ(x) > 0, negative
definite for every x with φ(x) < 0, and identically 0 for every x with φ(x) = 0.

Then we prove the following
Lemma. Let f(x) be a solution of L(f) — 0, and xQ be a point in G such
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that f(x) < f(xQ) for all x in G. If either <p(x0) φ 0 or <p(x0) = 0 and
Σa=i Ba(x0)(dφ/dxa)(x0) > 0, then f(x) = f(x0) in a neighborhood of x0.

This lemma is a special case of a theorem proved in the paper [4] by Hartman
and Sacksteder. However, since we use only a simple case, we give a sketch
of the proof.

Proof. The case φ(x0) Φ 0 follows directly from the strong maximum
principle of E. Hopf [5]. Therefore we may assume φ(x0) = 0, and
Σ«=i Ba (dφ/dxa)(x0) > 0. The proof for this case is a modification of the proof
of E. Hopf's second lemma [6]. Since by assumption gradφ Φ 0 whenever
ψ ~ 0, the set of points where ψ{x) — 0 is a differentiate curve through x0.
Therefore there exists an open ball Kγ in G such that its boundary has exactly
the point x0 in common with the curve φ(x) = 0 and that <p(x) > 0 in Kλ — x0.
We choose its center as the origin of the coordinate system, and set r = \x\, r0

= \xo\. We may assume f(x0) = 0 and f(x) > 0 in Kγ. By the strong maximum
principle this implies either f(x) > 0 in Kλ — JC0 and f(x0) = 0 or f(x) = 0 in
K^ We show that f(x) > 0 in K1 — x0 leads to a contradiction. We consider
the auxiliary function h(x) = e~r2 — erl, which has the properties: h(x) > 0
for \x\ < r0, h(x) = 0 for |JC| = r0, and

Uh)(x0) = Σ Ba-^-(x0) = -2e~r* Σ ^Λα = c Σ Ba^(x0) , c > 0 ,

since the vector xQ = (JCJ, , JCJ) is a negative multiple of grad φ. Therefore
L(h)(xQ) > 0, and hence L(h) > 0 in the closure of a ball K2 with center JC0.
Now we consider the function g(x) = f(x) — εh(x) in the domain K = Kλ Π K2.
Then g > 0 on Sx Π ̂ 2 , where 5X = boundary of K19 and ^(Λ:0) = 0. Further-
more, by choosing ε > 0 sufficiently small, we also have g > 0 on S2 Π K19

since / > 0 there.
Since L(f) = 0, and L(/z) > 0 in K, we have L(g) < 0 in K, and therefore

<7 > 0 in K by the strong maximum principle. Hence (dg/dn)(xQ) < 0, where
dg/dn is the derivative in the direction of the outer normal of K. But then

since (dh/dn)(x0) < 0. This contradicts the fact that grad/O0) = 0.
Proof of the Theorem. By using the formula for the variation of the mean

curvature and the relation

H(p)-H(P)= f
dt

0

we get the following differential equation for the function /:
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where

Aaβ = f\w,n(t))g°?(t)dt,

0

From the relation

O, n(ί))dA(ί) =

(proved in [2]), where dA(t) is the volume element of the hypersurface Fn(p, t)
at p, it follows that if (w,«) =£ 0, then (w, n(ί)) =£ 0 for all /, 0 < / < 1, and
that if (w, n) = 0, then O , n(t)) = 0 for all /. Therefore by setting φ(p) =
(w, Π), ΣJ^^i >4βjBλβy is positive definite if φ > 0, negative definite if 9 < 0,
and identically 0 if φ = 0, since #αi3(/) is positive definite for every t.

Now let pQ be a maximum point of /, so that f(p) < f(p0) for all p in Fn.
Such a point exists, since Fn is supposed to be compact. Then either φ(p0) Φ 0,
or <p(Po) = 0 the latter implies that (w, n(t)) = 0 for all *, and

dua

υ

Since (w, n(i)) Φ 0, if (w, n) Φ 0, then the set of points p on Fn where
(w, n(ί)) = 0 is the same as the set where (w, n) = 0. Furthermore, if (H>, n)
> 0, then (w, n(i)) > 0, and

grad (w, n(0) = c(t) grad (>v,

with c(ί) > 0. Thus

duβ
- 2 Γ 1^^ 3

J

= 2 Γcωg
g ( w ' g )

dua duβ
> 0,

since gaβ is positive definite and c{t) > 0, c(l) = 1. Therefore by our lemma,
f(p) = f(p0) in a neighborhood of p0 in other words, the set Uλ = [p β Fn \ f(p)
= f(p0)} is open in Fn. This implies that Fn = Ux U ί/2, where ί72 = {̂  €
Fn\f(p) < / (A)}>

 s o t n a t -^π i s t n e disjoint union of two open sets. Since Fn

is connected, it follows that Uι = Fn, i.e., f(p) = const, on Fn. Hence the
theorem is proved.
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