A CONGRUENCE THEOREM FOR CLOSED HYPERSURFACES IN RIEMANN SPACES

HEINZ BRÜHLMANN

Introduction

We consider two closed oriented surfaces F and \overline{F} in Euclidean 3-space E^3 and a differentiable map $\Phi: F \to \overline{F}$ preserving the orientation. The word differentiable always means differentiable of class C^{∞} . Furthermore, we assume that the set of points on F where the lines $(p, \overline{p}), \overline{p} = \Phi(p)$, are tangent to Fdoes not have inner points. Then the following theorems are known:

A) If all the lines (p, \bar{p}) are parallel and $H(p) = \bar{H}(\bar{p})$ (*H* and \bar{H} are the mean curvatures of *F* and \bar{F} respectively), then the surface \bar{F} is obtained from *F* by a single translation, i.e., the distances $p\bar{p}$ are the same for all points *p* on *F* (H. Hopf and K. Voss [8]).

B) If all the lines (p, \bar{p}) go through a fixed point 0 (which does or does not lie on F or \bar{F}) and if $rH(p) = \bar{r}\bar{H}(\bar{p})$ (r and \bar{r} are the distances of p and \bar{p} from 0), then F is obtained from F by a homothety, in other words the ratio \bar{r}/r is constant (A. Aeppli [1]).

In order to generalize these two theorems we consider the following case: Let R^{n+1} be an (n + 1)-dimensional Riemann space, and $\Phi(p, s)$ be a oneparameter group of transformations of R^{n+1} into itself. Furthermore, let F^n and \overline{F}^n be two *n*-dimensional hypersurfaces of R^{n+1} such that the points of \overline{F}^n are given by the formula:

$$\bar{p} = \Phi(p, f(p)) , \qquad p \in F^n ,$$

where f(p) is a differentiable function of F^n . To generalize the condition for the mean curvatures, we have to introduce an additional family of hypersurfaces, one for every point of F^n , given by the formula:

$$\tilde{F}_p^n = \Phi(F^n, f(p))$$

Then the point $\bar{p} = \Phi(p, f(p))$ lies on the hypersurfaces \bar{F}^n and \tilde{F}_p^n and we define:

$$H(\bar{p}) = \text{mean curvature of } \bar{F}^n \text{ at } \bar{p} ,$$

$$\tilde{H}(\bar{p}) = \text{mean curvature of } \tilde{F}^n_n \text{ at } \bar{p} .$$

Received June 5, 1972, and, in revised form, July 12, 1973.

We denote by S the set of points of \overline{F}^n where the vector tangent to the orbit of $\Phi(p, s)$ through \overline{p} lies in the tangent space of \overline{F}^n . For this general case, the following two theorems are known.

I) If $\overline{H}(\overline{p}) = \tilde{H}(\overline{p})$ for all $\overline{p} \in \overline{F}^n$, $\Phi(p, s)$ is a group of homothetic transformations, and the set S of the exceptional points is nowhere dense in \overline{F}^n , then F^n and \overline{F}^n are congruent mod Φ ; in other words, f(p) = const. (Y. Katsurada [9]).

II) If $\overline{H}(\overline{p}) = \tilde{H}(\overline{p})$ for all $\overline{p} \in \overline{F}^n$, and the set S is empty, then F^n and \overline{F}^n are congruent mod Φ (H. Hopf and Y. Katsurada [7]).

Theorem II is not a generalization of Theorem A, since in this case we always have exceptional points. However it suggests that Theorem I is true without the additional assumption of homotheticity.

Theorem I has been proved by Y. Katsurada by using the method of differential forms. For the proof of Theorem II the authors use the strong maximum principle of E. Hopf [5]. In [10], K. Voss gave a proof of Theorem A, using a generalized maximum principle. However, his proof worked only in the case where F and \overline{F} are real analytic surfaces. Later, P. Hartman [3] gave a proof without using the assumption of analyticity, by generalizing the strong maximum principle for elliptic differential equations. In this paper we give a proof of the following theorem, which is a generalization of Theorem II since we may have exceptional points, but which is not a generalization of Theorem I since the assumption on the exceptional points is stronger than that in Theorem I.

Theorem. Let F^n , \overline{F}^n , \overline{F}^n_p be closed oriented hypersurfaces in \mathbb{R}^{n+1} as explained above, and assume all maps to be orientation-preserving. Furthermore let $\varphi(\overline{p}) = (w, \overline{n})$, where w is the vector tangent to the curve $\Phi(\overline{p}, s), -\varepsilon < s < +\varepsilon$, at \overline{p} , and \overline{n} is the normal vector of \overline{F}^n at p. If grad $\varphi \neq 0$ whenever $\varphi = 0$ on \overline{F}^n , and $\overline{H}(\overline{p}) = \tilde{H}(\overline{p})$ for all $\overline{p} \in \overline{F}^n$, then the hypersurfaces F^n and \overline{F}^n are congruent mod Φ .

1. Variation of the mean curvature

Let F^n be a hypersurface in an (n + 1)-dimensional Riemann space R^{n+1} given locally by the equations

$$x^{i} = x^{i}(u^{\alpha})$$
, $i = 1, \dots, n+1; \quad \alpha = 1, \dots, n$.

Then the tangent space to the surface is spanned by the *n* linearly independent vectors $t_{\alpha} = (\partial x^i / \partial u^{\alpha}) \partial / \partial x^i$. For the covariant derivative of the vector-field t_{α} in the direction of t_{β} in R^{n+1} we get

$$D_{\beta}t_{\alpha} = \nabla_{t_{\beta}}t_{\alpha} = \left(\frac{\partial^{2}x^{i}}{\partial u^{\alpha}\partial u^{\beta}} + \Gamma^{i}_{jk}\frac{\partial x^{j}}{\partial u^{\alpha}}\frac{\partial x^{k}}{\partial u^{\beta}}\right)\frac{\partial}{\partial x^{i}},$$

and for the second fundamental form

480

A CONGRUENCE THEOREM

$$l_{\alpha\beta} = (D_{\alpha}t_{\beta}, n) = g_{il} \Big(\frac{\partial^2 x^i}{\partial u^{\alpha} \partial u^{\beta}} + \Gamma^i_{jk} \frac{\partial x^j}{\partial u^{\alpha}} \frac{\partial x^k}{\partial u^{\beta}} \Big) n^l$$

where $n = n^i \partial / \partial x^i$ is the normal to the hypersurface, and g_{ij} is the metric tensor of the space R^{n+1} . The formula for the mean curvature of the hypersurface is

$$H = g^{lphaeta} l_{lphaeta} / n = l^{lpha}_{lpha} / n \; ,$$

where $g^{\alpha\beta}$ is the inverse of $g_{\alpha\beta} = g_{ij}(\partial x^i/\partial u^{\alpha})\partial x^j/\partial u^{\beta}$.

Now let $\Phi(p, s)$ be a one-parameter group of transformations of \mathbb{R}^{n+1} , and F^n and \overline{F}^n be two hypersurfaces such that

$$\overline{F}^n = \{ \Phi(p, f(p)), p \in F^n \}$$

as in the introduction. We introduce an additional family of hypersurfaces, depending on a point $p \in F^n$ and a parameter $t, 0 \le t \le 1$, given by the equation

$$F^{n}(p, t) = \{ \Phi(q, tf(q) + (1 - t)f(p)) | q \in F^{n} \}$$

Since $\Phi(p, tf(p) + (1 - t)f(p)) = \Phi(p, f(p)) = \overline{p}$, the point \overline{p} lies on all the hypersurfaces $F^n(p, t)$, p fixed and $0 \le t \le 1$. Furthermore we have, for t = 1,

 $F^n(p,1) = \{ \varPhi(q,f(q)) \,|\, q \in F^n \} = \overline{F}^n ,$

and, for t = 0,

$$F(p,0) = \{ \Phi(q,f(p)) \mid q \in F^n \} = \widetilde{F}_p^n$$

From these relations we get

$$\overline{H}(\overline{p}) - \widetilde{H}(\overline{p}) = \int_{0}^{1} \frac{dH(p,t)}{dt} dt ,$$

where H(p, t) is the mean curvature of $F^n(p, t)$ at the point \overline{p} .

The variation of the mean curvature gives

$$dH(p,t)/dt = l_{\alpha\beta} dg^{\alpha\beta}/dt + g^{\alpha\beta} dl_{\alpha\beta}/dt ,$$

and by differentiating the relation $g^{\alpha\beta}g_{\gamma\beta} = \delta^{\alpha}_{\gamma}$ we get

$$dg^{a\beta}/dt = -g^{a\delta}g^{\beta\gamma} dg_{\gamma\delta}/dt = -g^{a\delta}g^{\beta\gamma} \{ (dt_{\gamma}/dt, t_{\delta}) + (t_{\gamma}, dt_{\delta}/dt) \} .$$

Furthermore, by taking the covariant derivative of the relations (n, n) = 1and $(n, t_{\alpha}) = 0$, we obtain $(n, D_{\alpha}n) = 0$ and $(D_{\alpha}n, t_{\beta}) + (n, D_{\alpha}t_{\beta}) = 0$ or $D_{\alpha}n$ $= \lambda_{\alpha}^{\beta}t_{\beta}$ with $\lambda_{\alpha}^{\beta} = -(n, D_{\alpha}t_{\gamma})g^{\gamma\beta}$. Hence

$$D_{\alpha}n = -(n, D_{\alpha}t_{\gamma})g^{\beta\gamma}t_{\beta}$$
,

HEINZ BRÜHLMANN

$$\frac{dg^{\alpha\beta}}{dt}l_{\alpha\beta} = -g^{\alpha\delta}g^{\beta\gamma}\left\{\left(\frac{dt_{\gamma}}{dt}, t_{\delta}\right) + \left(t_{\gamma}, \frac{dt_{\delta}}{dt}\right)\right\} \qquad (D_{\alpha}t_{\beta}, n) = 2g^{\alpha\beta}(D_{\alpha}n, t_{\beta}) \ .$$

In order to compute the second term in the above expression for dH(p, t)/dt, differentiating the relations (n, n) = 1 and $(n, t_{\alpha}) = 0$ with respect to t we get (dn/dt, n) = 0 and $(dn/dt, t_{\alpha}) + (n, dt_{\alpha}/dt) = 0$, or $dn/dt = \lambda^{\alpha} t_{\alpha}$ with $\lambda^{\alpha} = -(dt_{\beta}/dt, n)g^{\alpha\beta}$. Hence

$$dn/dt = -(dt_{\beta}/dt, n)g^{lphaeta}t_{lpha} \ ,$$

 $g^{lphaeta} rac{dl_{lphaeta}}{dt} = g^{lphaeta} rac{d}{dt} (D_{lpha}t_{eta}, n) = g^{lphaeta} \Big(rac{d}{dt} D_{lpha}t_{eta}, n \Big) - g^{lphaeta} \Gamma^{\delta}_{\ lphaeta} \Big(rac{dt_{\delta}}{dt}, n \Big) \ ,$

where $\Gamma_{\alpha\beta}^{\delta} = (D_{\alpha}t_{\beta}, t_{\gamma})g^{\gamma\delta}$. Finally we get the following formula for the variation of the mean curvature:

$$\frac{dH}{dt} = g^{\alpha\beta} \left(\frac{d}{dt} D_{\alpha} t_{\beta}, n \right) + 2g^{\alpha\beta} \left(D_{\alpha} n, \frac{dt_{\beta}}{dt} \right) - g^{\alpha\beta} \Gamma^{\delta}_{\alpha\beta} \left(\frac{dt_{\delta}}{dt}, n \right).$$

Now using the definition of the hypersurfaces $F^n(p, t)$:

$$F^{n}(p, t) = \{ \Phi(q, tf(q) + (1 - t)f(p)) | q \in F^{n} \},\$$

or in local coordinates

$$x_p^i(u^\alpha, t) = \Phi^i(u^\alpha, tf(u^\alpha) + (1-t)f(p)) ,$$

where f(p) is independent of the u^{α} , we get

$$x^i_{lpha} = \partial x^i_p / \partial u^{lpha} = \partial \Phi^i / \partial u^{lpha} + t (\partial \Phi^i / \partial s) \partial f / \partial u^{lpha}$$
,

so that for the tangent vectors t_{α} of the hypersurface $F^n(p, t)$ at the point \overline{p} we have

$$t_{\alpha} = (\partial \Phi^i / \partial u^{\alpha}|_{\bar{p}} + w^i t \, \partial f / \partial u^{\alpha}) \partial / \partial x^i ,$$

where $w^i = \partial \Phi(\bar{p}, s) / \partial s|_{s=0}$, and by differentiating with respect to t

$$dt_{\alpha}/dt = w \,\partial f/\partial u^{\alpha}$$
, $w = w^i \,\partial/\partial x^i$

Furthermore

$$D_{\alpha}t_{\beta} = (\partial x^i_{lpha}/\partial u^{eta} + \Gamma^i_{\ jk} x^j_{lpha} x^k_{eta})\partial/\partial x^i \; ,$$

so

$$\frac{d}{dt}D_{\alpha}t_{\beta} = \left(\frac{d}{dt}\frac{\partial x^{i}_{\alpha}}{\partial u^{\beta}} + \Gamma^{i}_{jk}\frac{\partial x^{j}_{\alpha}}{\partial t}x^{k}_{\beta} + \Gamma^{i}_{jk}x^{j}_{\alpha}\frac{\partial x^{k}_{\beta}}{\partial t}\right)\frac{\partial}{\partial x^{i}} .$$

482

For the derivative of x^i_{α} we get

$$\frac{\partial x^{i}_{\alpha}}{\partial u^{\beta}} = \frac{\partial^{2} \Phi^{i}}{\partial u^{\alpha} \partial u^{\beta}} + t \frac{\partial^{2} \Phi^{i}}{\partial u^{\alpha} \partial s} \frac{\partial f}{\partial u^{\beta}} + t \frac{\partial^{2} \Phi^{i}}{\partial u^{\beta} \partial s} \frac{\partial f}{\partial u^{\alpha}} \\ + t^{2} \frac{\partial^{2} \Phi^{i}}{\partial s^{2}} \frac{\partial f}{\partial u^{\alpha}} \frac{\partial f}{\partial u^{\beta}} + t \frac{\partial \Phi^{i}}{\partial s} \frac{\partial^{2} f}{\partial u^{\alpha} \partial u^{\beta}} .$$

Since $\partial^2 \Phi^i / \partial u^{\alpha} \partial u^{\beta}$, $\partial^2 \Phi^i / \partial u^{\alpha} \partial s$, $\partial^2 \Phi^i / \partial s^2$, $\partial \Phi^i / \partial s$ do not depend on t when considered only at the point \bar{p} on the hypersurfaces $F^n(p, t)$, we get for the derivative of the above expression with respect to t:

$$\frac{d}{dt} \frac{\partial x^i_{\alpha}}{\partial u^{\beta}} = \frac{\partial w^i}{\partial u^{\alpha}} \frac{\partial f}{\partial u^{\beta}} + \frac{\partial w^i}{\partial u^{\beta}} \frac{\partial f}{\partial u^{\alpha}} + 2t \frac{\partial w^i}{\partial s} \frac{\partial f}{\partial u^{\alpha}} \frac{\partial f}{\partial u^{\beta}} + w^i \frac{\partial^2 f}{\partial u^{\alpha} \partial u^{\beta}} ,$$

SO

$$\frac{d}{dt}D_{\alpha}t_{\beta} = w\frac{\partial^{2}f}{\partial u^{\alpha}\partial u^{\beta}} + D_{\beta}w\frac{\partial f}{\partial u^{\alpha}} + D_{\alpha}w\frac{\partial f}{\partial u_{\beta}} + 2t\frac{\partial w}{\partial s}\frac{\partial f}{\partial u^{\alpha}}\frac{\partial f}{\partial u^{\beta}}$$

Therefore the formula for the variation of the mean curvature in our case is the following:

$$\frac{dH}{dt} = (w, n)g^{\alpha\beta}\frac{\partial^2 f}{\partial u^{\alpha}\partial u^{\beta}} + 2g^{\alpha\beta}\frac{\partial (w, n)}{\partial u^{\alpha}}\frac{\partial f}{\partial u^{\beta}} + 2t\left(\frac{\partial w}{\partial s}, n\right)g^{\alpha\beta}\frac{\partial f}{\partial u^{\alpha}}\frac{\partial f}{\partial u^{\beta}} \\ - g^{\alpha\delta}\Gamma^{\beta}_{\ \alpha\delta}(w, n)\frac{\partial f}{\partial u^{\beta}}.$$

2. A lemma on partial differential equations

For the proof of our main theorem we need a generalization of the strong maximum principle for elliptic partial differential equations. We consider a linear differential expression of the form

$$L(f) = \sum_{\alpha,\beta=1}^{n} A_{\alpha\beta}(x) \frac{\partial^2 f}{\partial x^{\alpha} \partial x^{\beta}} + \sum_{\alpha=1}^{n} B_{\alpha}(x) \frac{\partial f}{\partial x^{\alpha}} ,$$

where $A_{\alpha\beta}(x)$ and $B_{\alpha}(x)$ are differentiable functions, together with a differentiable function $\varphi(x)$ in a normal domain G of the *n*-dimensional number space \mathbb{R}^n . We assume that $\varphi(x)$ and L(f) have the following properties:

a) grad $\varphi(x) \neq 0$ whenever $\varphi(x) = 0$,

b) $\sum_{\alpha,\beta=1}^{n} A_{\alpha\beta}(x) \lambda^{\alpha} \lambda^{\beta}$ is positive definite for every x with $\varphi(x) > 0$, negative definite for every x with $\varphi(x) < 0$, and identically 0 for every x with $\varphi(x) = 0$. Then we prove the following

Lemma. Let f(x) be a solution of L(f) = 0, and x_0 be a point in G such

HEINZ BRÜHLMANN

that $f(x) \leq f(x_0)$ for all x in G. If either $\varphi(x_0) \neq 0$ or $\varphi(x_0) = 0$ and $\sum_{\alpha=1}^{n} B_{\alpha}(x_0)(\partial \varphi/\partial x^{\alpha})(x_0) > 0$, then $f(x) \equiv f(x_0)$ in a neighborhood of x_0 .

This lemma is a special case of a theorem proved in the paper [4] by Hartman and Sacksteder. However, since we use only a simple case, we give a sketch of the proof.

Proof. The case $\varphi(x_0) \neq 0$ follows directly from the strong maximum principle of E. Hopf [5]. Therefore we may assume $\varphi(x_0) = 0$, and $\sum_{\alpha=1}^{n} B_{\alpha} (\partial \varphi / \partial x^{\alpha})(x_0) > 0$. The proof for this case is a modification of the proof of E. Hopf's second lemma [6]. Since by assumption grad $\varphi \neq 0$ whenever $\varphi = 0$, the set of points where $\varphi(x) = 0$ is a differentiable curve through x_0 . Therefore there exists an open ball K_1 in G such that its boundary has exactly the point x_0 in common with the curve $\varphi(x) = 0$ and that $\varphi(x) > 0$ in $\overline{K_1} - x_0$. We choose its center as the origin of the coordinate system, and set $r = |x|, r_0 = |x_0|$. We may assume $f(x_0) = 0$ and $f(x) \ge 0$ in K_1 . By the strong maximum principle this implies either f(x) > 0 in $\overline{K_1} - x_0$ and $f(x_0) = 0$ or $f(x) \equiv 0$ in $\overline{K_1}$. We show that f(x) > 0 in $\overline{K_1} - x_0$ leads to a contradiction. We consider the auxiliary function $h(x) = e^{-r^2} - e^{r_0^2}$, which has the properties : h(x) > 0 for $|x| < r_0$, h(x) = 0 for $|x| = r_0$, and

$$L(h)(x_0) = \sum_{\alpha=1}^n B_\alpha \frac{\partial h}{\partial x^\alpha}(x_0) = -2e^{-r^2} \sum_{\alpha=1}^n B_\alpha x_0^\alpha = c \sum_{\alpha=1}^n B_\alpha \frac{\partial \varphi}{\partial x^\alpha}(x_0) , \quad c > 0 ,$$

since the vector $x_0 = (x_0^1, \dots, x_0^n)$ is a negative multiple of grad φ . Therefore $L(h)(x_0) > 0$, and hence L(h) > 0 in the closure of a ball K_2 with center x_0 . Now we consider the function $g(x) = f(x) - \varepsilon h(x)$ in the domain $K = K_1 \cap K_2$. Then $g \ge 0$ on $S_1 \cap \overline{K}_2$, where $S_1 =$ boundary of K_1 , and $g(x_0) = 0$. Furthermore, by choosing $\varepsilon > 0$ sufficiently small, we also have $g \ge 0$ on $S_2 \cap \overline{K}_1$, since f > 0 there.

Since L(f) = 0, and L(h) > 0 in K, we have L(g) < 0 in K, and therefore $g \ge 0$ in K by the strong maximum principle. Hence $(dg/dn)(x_0) \le 0$, where dg/dn is the derivative in the direction of the outer normal of K. But then

$$\frac{df}{dn}(x_0) = \frac{dg}{dn}(x_0) + \varepsilon \frac{dh}{dn}(x_0) < 0 ,$$

since $(dh/dn)(x_0) < 0$. This contradicts the fact that grad $f(x_0) = 0$.

Proof of the Theorem. By using the formula for the variation of the mean curvature and the relation

$$\overline{H}(\overline{p}) - \widetilde{H}(\overline{p}) = \int_{0}^{1} \frac{dH(p,t)}{dt} dt = 0 ,$$

we get the following differential equation for the function f:

484

$$\sum_{lpha,eta=1}^n A_{lphaeta} rac{\partial^2 f}{\partial u^lpha \partial u^eta} + \sum_{eta=1}^n B_eta rac{\partial f}{\partial u^eta} = 0 \; ,$$

where

$$A_{\alpha\beta} = \int_{0}^{1} (w, n(t)) g^{\alpha\beta}(t) dt ,$$

$$B_{\beta} = \int_{0}^{1} \left\{ 2g^{\alpha\beta} \frac{\partial(w, n)}{\partial u^{\alpha}} + 2t \left(\frac{\partial w}{\partial s}, n \right) g^{\alpha\beta} \frac{\partial f}{\partial u^{\alpha}} - g^{\alpha\beta} \Gamma^{\beta}_{\ \alpha\delta}(w, n) \right\} dt .$$

From the relation

$$(w, n(t))dA(t) = (w, \bar{n})d\bar{A}$$

(proved in [2]), where dA(t) is the volume element of the hypersurface $F^n(p, t)$ at p, it follows that if $(w, \bar{n}) \neq 0$, then $(w, n(t)) \neq 0$ for all $t, 0 \leq t \leq 1$, and that if $(w, \bar{n}) = 0$, then (w, n(t)) = 0 for all t. Therefore by setting $\varphi(\bar{p}) = (w, \bar{n}), \sum_{\alpha,\beta=1}^{n} A_{\alpha\beta} \lambda^{\alpha} \lambda^{\beta}$ is positive definite if $\varphi > 0$, negative definite if $\varphi < 0$, and identically 0 if $\varphi = 0$, since $g^{\alpha\beta}(t)$ is positive definite for every t.

Now let \bar{p}_0 be a maximum point of f, so that $f(\bar{p}) \leq f(\bar{p}_0)$ for all \bar{p} in \bar{F}^n . Such a point exists, since \bar{F}^n is supposed to be compact. Then either $\varphi(\bar{p}_0) \neq 0$, or $\varphi(\bar{p}_0) = 0$; the latter implies that (w, n(t)) = 0 for all t, and

$$B_{\beta} = 2 \int_{0}^{1} \left(g^{lphaeta} \cdot \frac{\partial(w,n)}{\partial u^{lpha}} \right) dt \; .$$

Since $(w, n(t)) \neq 0$, if $(w, \bar{n}) \neq 0$, then the set of points \bar{p} on \bar{F}^n where (w, n(t)) = 0 is the same as the set where $(w, \bar{n}) = 0$. Furthermore, if $(w, \bar{n}) > 0$, then (w, n(t)) > 0, and

grad
$$(w, n(t)) = c(t)$$
 grad (w, \bar{n}) ,

with $c(t) \ge 0$. Thus

$$\sum_{eta=1}^n rac{\partial arphi}{\partial u^eta} (ar p_0) = 2 \int_0^1 g^{\,lphaeta} rac{\partial(w,n(t))}{\partial u^lpha} rac{\partial(w,ar n)}{\partial u^eta} \, dt \ = 2 \int_0^1 c(t) g^{lphaeta} rac{\partial(w,ar n)}{\partial u^lpha} rac{\partial(w,ar n)}{\partial u^eta} \, dt > 0 \; ,$$

since $g^{\alpha\beta}$ is positive definite and $c(t) \ge 0$, c(1) = 1. Therefore by our lemma, $f(\bar{p}) = f(\bar{p}_0)$ in a neighborhood of \bar{p}_0 ; in other words, the set $U_1 = \{\bar{p} \in \bar{F}^n | f(\bar{p}) = f(\bar{p}_0)\}$ is open in \bar{F}^n . This implies that $\bar{F}^n = U_1 \cup U_2$, where $U_2 = \{\bar{p} \in \bar{F}^n | f(\bar{p}) < f(\bar{p}_0)\}$, so that \bar{F}^n is the disjoint union of two open sets. Since \bar{F}^n is connected, it follows that $U_1 = \bar{F}^n$, i.e., $f(\bar{p}) = \text{const.}$ on \bar{F}^n . Hence the theorem is proved.

HEINZ BRÜHLMANN

References

- [1] A. Aeppli, Einige Ähnlichkeits-und Symmetriesätze für differenzierbare Flächen im Raum, Comment. Math. Helv. 33 (1959) 174-195.
- [2] H. Bruehlmann, Einige Kongruenzsätze für geschlossene k-dimensionale Flächen in n-dimensionalen Riemannschen Räumen, Comment. Math. Helv. 44 (1969) 164–190.
- [3] P. Hartman, Remarks on a uniqueness theorem for closed surfaces, Math. Ann. 133 (1957) 426-430.
- [4] P. Hartman & R. Sacksteder, On maximum principles for non-hyperbolic partial differential operators, Rend. Circ. Mat. Palermo (2) 6 (1957) 218–233.
- [5] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, S.-B. Preuss. Akad. Wiss. Berlin 19 (1927) 147–152.
- [6] —, A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc. 3 (1952) 791–793.
- [7] H. Hopf & Y. Katsurada, Some congruence theorem for closed hypersurfaces in Riemann spaces. II, Comment. Math. Helv. 43 (1968) 217–223.
- [8] H. Hopf & K. Voss, Ein Satz aus der Flächentheorie im Grossen, Arch. Math. 3 (1952)187-192.
- [9] Y. Katsurada, Some congruence theorems for closed hypersurfaces in Riemann spaces. I, Comment. Math. Helv. 43 (1968) 176–194.
- [10] K. Voss, Einige differentialgeometrische Kongruenzsätze für geschlossene Flächen und Hyperflächen, Math. Ann. 131 (1956) 180–218.

UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER UNIVERSITY OF DORTMUND, GERMANY