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Introduction

The formula for the first variation, with fixed boundary, of the volume inte-
gral for a hypersurface Mn in Euclidean (n + l)-space En+1 is well-known. It

is, [4, p. 178], δ I 1 dV = — n iσ^N- ξ)dV, where σx is the first mean curva-
M M

ture, iVis the unit normal, and ξ is the deformation vector. Recently this clas-
sical formula has been generalized by several mathematicians including Pinl
and Trapp [10] and the author [12]. In [12] we show that if σr9 r = 0 ,1, ,

n, denotes the r-th mean curvature function, then δ I σrdV= — (n — r)

M

• I 0r+i(N, ξ)dV. This is shown in [10] when r = 1 or n. We prove similar
M

formulas in [12] for submanifolds of arbitrary codiiίiension when r is even.
The results of [10] and [12] for hypersurfaces are proved by Rund [13] in a
more general setting. The object of the present paper is to study the variation

of I f(S19 , Sn)dV, where M is a hypersurface in a space form Nn+ι(c) of

in-

curvature c, Sr = C?σr is the r-th elementary symmetric function of the prin-

cipal curvatures ( Q being the binomial coefficient), and / is any smooth func-

tion. If c = 0, we also consider I f(S19 ,Sn,P, Q)dV, where P is the sup-
M

port function, and 2Q is the square of the length of the position vector. Many
of our results could be derived from the theory in [13] but it appears that be-
cause we study a less general case here our methods are more elementary than
those of [13].

We begin by deriving the formula for the first variation of our integral as
well as the formula for the second variation in those cases (see above) studied
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by Rund and the author (§ 1). In a study of the Euclidean case we derive the

differential equations which characterize extremals of I SrdV, we prove that

M

convex hypersurf aces with vanishing gauss-kronecker curvature are semi-stable

extremals of I Sn_λdV, and we consider an integral I Sn

r

lrdV discussed by
M M

Chen [2] (§ 2). Next we consider similar questions for hypersurf aces in the unit
sphere (§ 3). We continue with a discussion on the nature of integral formulas,
and illustrate our ideas with a new derivation of the well-known Minkowski-
Hsiung integral formulas (§ 4). We conclude with a potpourri of observations
and questions (§ 5).

In the present paper everything in sight is of class C°°, and all manifolds are
compact, possibly with boundary, and orientable. The letters h, i, /, k, I, when
used as indices (with or without subscripts), are used in the sense of classical
tensor analysis. In particular, the summation convention is in effect for these
indices (all sums going from 1 to ή) and we raise and lower them with the usual
abandon.

1. The fundamental formulas

We begin with some algebra. Let V be a (real) rc-dimensional vector space,
and B: V —> V be a diagonalizable linear transformation (i.e., V has a basis of
eigenvectors of B). We fix a basis vί9 , vn of V, and denote the matrix of B
relative to this basis by (b{). For r = 0 ,1 , , n let Sr denote the r-th ele-
mentary symmetric function of the eigenvalues k19 , kn of B. Thus So = 1,

Si = * i + ••+*»,•••,S» = *i ••• *».
Remark. We are really only interested in the situation where V is a tangent

space of a hypersurf ace, and B is the shape operator, i.e., B is the symmetric
linear transformation associated by the metric with the second fundamental
form. In this case the Sr are the modified mean curvatures (see Introduction).

We can express So, , Sn directly in terms of B.
Definition. The r-th Newton transformation (or tensor), r = 0, 1, , n,

is the linear transformation Tr = SrI - Sr_β + + ( - l ) r # r .

Remarks. 1. If we denote the matrix, relative to vί9 , vn, of BQ by
(b{q)ij), then the matrix of Tr is

2. The Newton transformations can be defined inductively by To = /,

Tr+1 = Sr+1I — BTr.

3. Since Tr is a polynomial in B, it is clear that TrB = BTr, and that Tr

has the same eigenvectors as B.
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4. By direct computation or use of the Hamilton-Cayley theorem of linear
algebra, one sees that Tn = 0.

The following equation is called Newton's formula [14, p. 81], which justi-
fies the name we have given the transformations Tr:

( 1 ) (r + l ) 5 r + 1 = Trace (BTr) .

One shows that (1) is equivalent to the classical Newton's formula by comput-
ing the right hand side of (1) relative to a basis of eigenvectors of B.

The next lemma is crucial to our discussion.
Lemme A. Let B — B(i) be a smooth one-parameter family of diagonal-

izable linear transformations of V. Then for r = 0 ,1, ,n we have

( 2 ) dSr+ι/dt = Trace (dB/dt Tr) .

We have already essentially proved this fact [11, Lemma A], but that proof
was rather cumbersome. We get a neater proof here by using a second repre-
sentation of Tr.

We recall the definition of the generalized Kronecker symbols. If i19 , iq

and Ί, ,jq are integers between 1 and n, then £il...iq

h'"3q is + 1 or —1 ac-
cording as the f s are distinct and the /'s are an even or odd premutation of
the Γs, and is 0 in all other cases.

Proposition A. The matrix of Tr is given by

( 3 ) JJr

One verifies (3) by computing both sides of the equation in the case where
Vi, , vn is a basis of eigenvectors for B.

We can now prove Lemma A by differentiating both sides of (1) with respect
to /. (2) follows by using (3) in the right hand side of (1) and by observing the
symmetry properties of the Kronecker symbols.

Now let us consider a one-parameter family X = Xt: Mn —• Nn+1(c) of im-
mersions of the ft-manifold M into the space form Nn+1(c) of curvature c. The
family X induces in each tangent space of M a one-parameter family B = Bit)
of diagonalizable linear transformations, namely, the shape operators for each
immersion, as well as a family dV = dVt of volume elements. Denote the
deformation vector field dX/dt and the unit normal field in Nn+1(c) by ξ and
N, respectively, and set λ — (Jξ, iV> where <( , ) denotes the metric on Nn+1(c).
In this paper we consider only deformations which leave dM strongly fixed in
the sense that both λ and its gradient vanish on dM, and the tangential com-
ponent of ξ is parallel to X(dM) along dM. Of course, if M is compact and
dM is empty, then there is no restriction on the deformation. We can now state
our main theorem.

Theorem A. Suppose that f is any smooth function of n variables. Then
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= (λl-SJiS,, . • •, Sn) + Σ (5Λ - (r + l)Sr+0DrKSu • , Sn)
( 4 ) i [

+ Σ DτKSlt - ,Sn)c(n - r + \)SrλdV .
r=l J

Moreover, if P = (X, N} is the support junction, c = 0, and Q = %\X\2,
then for any smooth function f of n + 2 variables we have

f
M

J^-SJiS,, • •, Q) + Σ (SA - (r + ί)SrJDrf(Su , β)

(5) + ΣΦrKSv • ;Q)).tjTr-1
i

t i

+ (Dn+J(S1,-.-,Q))JQJ +

Here the commas, as in Drf, tj, indicate covariant differentiation relative to the
metric induced by X, and the summation convention is in effect (see the end
of Introduction).

Proof. We will verify only (5) the proof of (4) is entirely similar. Our
calculations will be in terms of local coordinates x1, , xn on M. Then we let
gu, bJ and μj represent, respectively, the metric tensor, the shape operator
and the tangential component of ξ. By the chain rule we have

S15 , Sn, P, Q)dV = Σ DrKS, , Q)ϋ*r

6 )

=i dt
M

at

at

It is a standard fact that (d/di)(dV) = (-SJ + μj,j)dV, proved by observing
that dV = (det (gtj))mdxι dxn and computing (d/d*)(det (&,)). Thus to prove
(6) we mμst compute dSr/dt, dP/dt, dQ/dt.
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Lemma A implies that dSr/dt = Tr^dbf/dt. However b/ = gikbJk9 where
bj1c = — <βX/dxj, dN/dxk} Thus to compute dbf/dt we must compute dgίk/dt,
<d2X/dtdxJ,dN/dxk> and (dX/dxj,d2N/dtdxk}. Since the calculations are both
elementary and boring, let us just indicate how they go. In all the calculations
we use the fact that.32/3*3jc* = d2/dxkdί, together with ξ = dX/dt. Indeed, it
was just to get the ease of manipulation which the commutivity of differentia-
tion allows which caused us to use local coordinates instead of, say, moving
frames. We compute dgίk/dί by differentiating both sides of the equation
gikgkj = δ/ with respect to t (recall that gkj = (βX/dxk,dX/dxj}). We get
dgίk/dί = gίhgjk(2Xbhj — (μhJ + μjth)). The rest of the computation requires
the use of

( 7 ) dN/dί = -gίj(λΛ + μkbkί)dX/dxj .

This equation is proved by differentiating both sides of N-dX/dxk = 0 with
respect to ί. After a bit of index manipulations we eventually arrive at

ί( 8) dbf/dt = £/ - F/ + H/ + // + ̂ r ,

where £ / = Xgίhbjkbh

k = Xb™/, F/ = gίhgklbjiμhtk, Hf = gίhbh

kμkJ, / / =
gihgkjλk

h and Kf = gίlghjμ
kbk

h

>ι. In order to compute dSr+1/dί we must
multiply both sides of (8) by Tri

j and sum over / and /. Now —F/Tri

j +
H/Tri

j = 0 because TrB = BTr. Also Lemma A and the Codazzi equations
imply that K/T^ = Sr+ltjμ

j. From our original definition of the Newton
tensors and (1) we see that E / 7 V = Λ(Si Sr+i — 0* + 2)Sr+2). Finally, it is
clear that / / T V = Tr^Xtij. Thus we have proved that

( 9 ) dSr+1/dt = λiS.Sr,, - (r + 2)Sr+2) + TS'XM + Sr+1Jμt .

Remark. The analogous formula in Nn+1(c), c arbitrary, is

dSr+1/dί = «5 x S r + 1 - (r + 2)Sr+2)(9c)
+ TrvχttJ + Sr+UJμ* + cλ(n - r)Sr .

Equation (7), together with the obvious fact that Qtj = (ΛΓ, dX/dxj), yields the
formula for dP/dt = (§, TV) + (X, dN/dί), i.e., dP/dt= λ - XtJQJ - μjbjkQtk.

Finally one easily computes that dQjdt — (ξ,X) = μsQj + XP. By combin-
ing all these formulas we get

-j- jf(S19 , Q)dV = J{rE^r/(Si, , β)«(SΛ - (r + l)5r+1)
3f M

(10) + T , . ^ , ^ + SrJμi) + D^jiS,, •••, Q)(λ - λfJQ> -

+ DnJ{Sλ, • •
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Since Ptj = — bjkQfk, it is clear that

Σ Drf(S19 , Q)SrJμ? - Dn+J(Sl9 ? Q)bj*Q,kμ>
r = l

+ Dn + J(S19 , Q)QtJμ> + f(S19 , Q)μ\j = (j(Sl9 . .

Now Stokes' theorem tells us that C(f(S19 , Q)μj)tjdV = Γ/(51? , β )
if 33f

•(μjTj)dA, where 7̂  are the covariant components of the unit normal to dM
in M, and A4 is the volume element on dM. Since, by hypothesis, μjγj = 0
on dM, we see that the terms involving μj in (10) do not contribute anything
to the answer.

Similarly, if we use integration by parts to get rid of the derivatives of λ, we
see that fDrf(S19 , Q)Tr_^λtiJdV = J(DrKS19 , Q)Tr_*')ΛjλdV and

M M

J-DnM, •••, Q)λ,jQ/dV = f(.DnM, •••, Q)Q/),μdV. T h e bounda-
M M

ry terms one would expect after integration by parts vanish because of our
hypothesis that λ and λtj = 0 on dM.

We get precisely (5) after we observe that (Drf(S19 , Q)Tr_λ

ίj)Λj =
(Drf(S19 - -yQV.ijTr^* and that <2Λ = n + S,P. This last statement is ob-
vious, while the first is true because as we proved in [11, Lemma B] the Newton
tensors enjoy the following property.

Proposition B. The Nevston tensors are divergence-free, i.e., Tr

iJj = 0.
The existence of covariant derivatives in (4) and (5) interferes with the com-

putation of the second variation. Fortunately these derivatives vanish in the
most important cases.

Theorem B. Suppose that X and M are as in Theorem A. Then

(a) -4- (srdV = Cλ{-(r + l)5r+1 + c(n - r + DS^dV.
dt J JM

If, in addition, the immersionXt\t=0 yields an extremal value, i.e., — ( r +
+ c(n — r + l)S r_! = 0 when t = 0, then

d2

dt
rdV\t=0 = J{λ2[(r + l)(r + 2)Sr+2

M

(b) - c(r(n - r + 1) + (r + l)(π - r))Sr

+ c\n - r + 1)(Λ - r + 2)5r_2]

+ ((r + l)Γr« -c(n-r+ \)Tr_^)λ

Proof. For (a) use (4) with / = Sr. For (b) we first have
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ή1 C ή C
— SrdV\t=0 = — (-(r + l)S r + 1 + c(n - r + l)Sr
dt2 J dt J

- r

Γ
J

(-(r + l)S r + ι + c(n - r + l)Sr_,)-|

Since by hypothesis the coefficient of (d/dt)(λdV) vanishes when / = 0, the last
integral vanishes. Then (b) follows by applying (9) to the remaining integral.

2. Hypersurfaces in Euclidean space

Consider the variational problem δ I SrdV — 0. Theorem B (a) with c — 0,

M

gives that the Euler-Lagrange equation is 5 r + 1 = 0.
Definition. A hypersurface in Euclidean space is, said to be r-minimal if

Sr+1 vanishes identically.
Remark. The classical minimal hypersurfaces are the 0-minimal ones.
It is important to express r-minimality in terms of differential equations. Let

X = (X19 . . . , Xn+1) be the position vector for a hypersurf ace M in En+1, and
let XΛ3 denote the (n + l)-tuple (Xltij, ,Xn+uίj), where φtij denotes the
second covariant derivative for a real-valued function φ on M. It is easy to
show that Xfij = bυN. Thus Newton's formulas imply that Tr^XΛj = T^b^N
= (r + l)Sr+1N, and we have proved

Theorem C. A hyper surf ace in Euclidean space is r-minimal if and only if
each component of its position vector satisfies the partial differential equation
Tr

iJφtiJ = 0, which can be put into divergence form (Tr

iJφti)tj = 0 since the
Newton tensors are divergence-free.

Remarks. 1. There exists no closed r-minimal hypersurf ace in En+1 for
r < n since it is well-known that such a hypersurf ace has convex points at which
Sr+ι Φ 0.

2. Although it is not completely relevant to this paper, it is of interest to
derive a system of partial differential equations which characterize the con-
stancy of a given Sr. Let N = (N19 , Nn+ι) be the unit normal to a hyper-
surface M. It is easy to show that if A is any vector in En+1 and φ = (N, Ay:
M^R, then φΛj = -W2\$ - bfjζdX/dx1*, A}. Thus by Newton's formulas,
Codazzi's equations and Lemma A we obtain Tr

ίjφfίj= —(S1Sr+1 — (r+2)Sr+2)φ
— Sr+ltk(3X/dxk, Ay, and have proved

Proposition C. The (r + l)-st mean curvature of a hypersurface in space
is constant if and only if each component of the unit normal satisfies the partial
differential equation Tr

ίjφΛj = —(S1Sr+1 — (r + 2)Sr+2)φ which can be put
into divergence form as in Theorem C.
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A number of authors, e.g., [3], [6] have considered hypersurfaces in En+1

for which Sn = 0. In our terminology they have been studying (n — 1 ̂ mini-
mal hypersurfaces. If n = 2 these are just the developable surfaces in E2. Be-
cause Sn+1 = 0 by definition, the second variation for an (n — l)-minimal
hypersurface is particularly simple. It is (cf. Theorem B(b) with c = 0)

<52 I Sn-\dV = I nTn_ι

ίjλΛλ)jdV. Now it is easy to show that the eigenvalues

M M

of Tn_x

ίj are k2k3 kn, kxkz • • • * „ , - • • , kλk2 kn_λ, If the hypersurface

happens to be locally convex, then kq > 0, q = 1, , n. Thus the following

result is obvious.

Proposition D. A convex hypersurface in En+1 with identically vanishing
Gauss-Kronecker curvature Sn is a semi-stable solution of the variatίonal

problem δ I Sn^dV = 0 in the sense that the second variation is semi-definite.
M

We now consider the problem, suggested by Chen [2], of minimizing

j Sr

n/rdV. If either r divides n or Sr is always positive, we can be sure that
M

the integrand is smooth. With either of these smoothness conditions we con-
clude, after applying (5),

Theorem D. The Euler-Lagrange equation for δ j Sr

n/rdV = 0 is

(nSr^-^)ΛjTr_v = -Sr<»-'>/r((/i - r)5,5r - n(r + 1)5*,).
Corollary. Any closed strictly convex hypersurface which is an extremal of

the problem δ I Sr

n/rdV = 0 must be a hypersphere.

I
Proof. Any extremal must be a solution of the above differential equation,

the left hand side of which is a divergence since Tr_λ is divergence-free, so by
Stokes' theorem we get

fWn-'V'jTr.MjdV = 0 .

For a strictly convex hypersurface, Sr > 0 and (n — ήSβr — n(r + l)Sr+1 > 0,
the last inequality becoming an equation only at umbilics [5]. The vanishing
of the above integrals, when combined with convexity, implies that (n — ήSβr
— n(r+ l)5' r + 1 = 0. Thus the hypersurface is totally umbilic, i.e., is a hyper-
sphere.

3. Hypersurfaces in the unit sphere

We begin with the variational problem δ I SrdV = 0 for a hypersurface in
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the unit sphere Sn+1 c En+2. By Theorem B we see that the Euler-Lagrange
equation is — (r + l)Sr+1 + c(n — r + l ) ^ = 0 with c = 1.

Definition. A hypersurface in a sphere of curvature c is said to be r-mini-
mal if — (r + l ) 5 r + 1 + c(n - r + l)Sr_i = 0.

As in § 2 one easily computes XΛj = (Xuij9 , Xn+2tij) the result is

(11) X.tj = btjN - gtjX .

Suppose that r Φ 1. If we multiply both sides of (11) by (r —
(π — r + l)Tr_2

ij and sum over / and /, we get

((r - 1)2V' - (n - r

= ((r - l)(r + l )S r + 1 - (n - r + l)(r - D ^

- ((r - l)(n - r)5 r - (n - r + l)(n - r

As an immediate consequence we have
Theorem E. A hypersurface in Sn+1 is r-minίmal, r Φ 1, if and only if

each component of the position vector satisfies the partial differential equation

((r _ φS

= - ( ( r - l)(/i - r)Sr -(n-r+ l)(π - r + 2)Sr_2)φ .

Remarks. 1. The above equation does not characterize 1-minimal hyper-
surfaces. The equation for 1-minimality is 2S2 = n, and an alternate one is
jyOTί, = nN - (n - 1)S,X which can be obtained by multiplying (11) by
Tijm ' '

2. As in Proposition B we can characterize those hypersurfaces in Sn+1

with Sr+1 = constant, but we merely state the result as follows:
Proposition D. Let M be a hypersurface in Sn+1 with position vector X —

(X19 , Xn+2) and unit normal N = (N19 , Nn+2). A necessary and suffi-
cient condition that Sr+1 be constant is that each vector A e En+2 satisfy the
equation

Trv<Pf,A\ij = -(SχS r + 1 - (r + 2)Sr+2)<Λr,,4> + (r + l)Sr+1(X,A} .

In particular, hypersurfaces with Sr+1 = 0 are characterized by the fact that
each component of the unit normal satisfies the equation

Tr

ίjΦ,ij = (r + 2)Sr+2φ .

Examples. 1. The totally geodesic equators and the small hyperspheres
of radius ((/ι — r)/r)m are r-minimal in Sn+1 with the following two excep-
tions, r = 1: the equators are not 1-minimal; r = n: the small hyperspheres
are not n-minimal.
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2. If M is the Hsiang immersion [7] of SO(3)/(z2 + z2) into S\ then S1 =
52 = 0, so M is 0-minimal and 2-minimal.

3. No 0-minimal hypersurface is also 1-minimal, for if Sx = 0 then S2 < 0,
while the condition for 1-minimality is 2S2 = n > 0.

4. The only closed 1-minimal surfaces in S3 are the small spheres of radius
l/VΊΓ. Indeed, the condition for 1-minimality is 2S2 = 2, or 52 = 1. But it
is easy to show that for a surface in S3, S2 = K — 1, where K is the gauss cur-
vature. Thus K = 2, so the small spheres of radius l/\/~2~ are 1-minimal. On
the other hand, closed surfaces in S3 with gauss curvature > 1 at all points are
rigid [1].

5. If the immersion X: M —» Sn+1 has nondegenerate gauss map, i.e., the
map N: M —> 5 n + 1 is an immersion, then r-minimality of (X, M) is equivalent
to (n — r)-minimality of (N,M). Indeed, nondegeneracy of the gauss map is
equivalent to the nonvanishing of Sn. In this situation it is easy to show that
the principal curvatures for (N, M) are the reciprocals of those for (X, M), and
the rest is easy.

We conclude this section by considering two variational problems for sur-

faces in S3. The first problem is to minimize I (Sx

2 — 4-S2)dV. It is a simple
M

calculation that Sλ

2 — 4S2 = (kx — k2)
2 > 0 with equality only at umbilics. Thus

this integral measures to what extent the surface fails to be a subsphere of S3.
One computes that the Euler-Lagrange equation is 2ΔSλ — — 5ΊGSΊ2 — 4S2)
where Δ is the Laplace-Beltrami operator. The following theorem is thus trivial
to prove.

Theorem F. A closed extremal for the problem δ j (Sx

2 — 4S2)dV = 0 in

53 whose first mean curvature has constant sign must be either a subsphere or a
closed minimal surface.

The second problem is that of minimizing I (St

2 — 2S2)dV. The integrand
M

is clearly k2 + k2

2, so the integral measures the extent to which M deviates

from being totally geodesic. The Euler-Lagrange equation is 2ΔSX =

Sλ(S2 - 4S2 + 2). Since ^ 2 - 4S2 > 0, we see

Theorem G. The only closed extremals of the variational problem

δ I (Si2 — 2S2)dV = 0 in S3 whose first mean curvatures never change sign are

M

the closed minimal surfaces.

4. Applications to integral formulas in En+1

We have computed the variation of certain integrals. It is reasonable to
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search for those integrands for which I f(S19 ,Sn,P,Q)dV remains un-
M

changed under any deformation. For example, / = Sn is such a function.
(When n is even, this invariance is part of the Gauss-Bonnet-Chern theorem.)
We view such deformation invariant integrals as yielding integral formulas.
Of course the formula need not be exactly the same for two immersions which
cannot be joined by a deformation through immersions.

It is clear that (5) gives us the condition for deformation invariant integrals,
at least all those involving only S19 , Sn, P, Q. (We choose these quantities
S19 , Q since many of the known integral formulas involve only them.) That

is, a necessary and sufficient condition for I f(S19 , Q)dV to be invariant
M

under deformation is that

- S i / t o , , G) + Σ (SA - (r + l)Sr+1)DrKS19 , β)
r = l

(12) + Σ φrfiSu •••, Q)),uTr_v + (PS, + n+ DD^KS,, , 0
r = l

+ (Dn+1KS19 , β ) ) . , β / + PDn+J(Sl9 , β) - 0

identically for all hypersurfaces. The study of (12) should give considerable
insight into the nature of integral formulas. Up to now the development of
interesting integral formulas has been a hit-or-miss affair.

We illustrate these ideas by giving a new demonstration of the well-known
Minkowski-Hsiung integral formulas [8]. In terms of the modified curvatures

they are |Ύp(r + l)S r + 1 + (n - r)Sr\dV = 0. Here M is closed, and r =

0, 1, , n — 1. To prove these formulas, let /(S r, Sr+19 P) = (r + l)PSr+ι +
(n — r)Sr. One easily checks that for this choice of /, (12) becomes

(13) PtiJTrv + (SA+i ~ (r + 2)Sr+2)P + (r + l)S r + 1 + S r + 1 | t β,* - 0 .

The fact that (13) is true for all hypersurfaces follows from the following
easily derived formula:

(14) PtiJ= -btj-bfjQ^-PbVij.

Indeed, (13) follows from (14) by multiplying (14) by Tr

ίj, summing over ί

and / and doing the kind of manipulations we have been doing all along. Thus

I ((r + l)PSr+ι + (n — r)Sr)dV is invariant under deformation. However

M

under the deformation Xt = t X it is clear that Γ ((r + l)PSr+ι + (n — r)Sr)dV
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goes into tn~r Γ ( 0 + ί)PSr+ι + (n — r)Sr)dV. Thus, when r < n the only

M

way the integral can be invariant is if it vanishes. When r — n, our argument
breaks down, and indeed the Gauss-Bonnet integral need not vanish.

5. Observations and questions

A. If M is a hyper surf ace in En+1, then the quantities So = 1,S2, , S2q,
- j 2q < n, are intrinsic, i.e., definable in terms of the metric alone. In fact
they are, up to constant factors, the intrinsic curvatures of Weyl [15]. In like
manner the Newton tensors T2q, 2p < n, can be defined in terms of the metric.
In fact, they are, up to constant factors, the generalized Einstein tensors de-
fined by Lovelock in [9]. It is proved in [9] that the generalized Einstein
tensors span the space of all symmetric divergence-free tensors of type (1,1)
which are concomittants of the metric tensor and its first two derivatives.

In [12] we consider the problem δ I S2qdV — 0 for submanifolds of arbitrary

M

codimension. We prove that the Euler-Lagrange equation is S2q+ι = 0, where
(2q + ΐ)S2q+i = T2qί

jbj\ (bf) being the matrix of the vector valued second
fundamental form.

The key to Theorem C was the equation ΛΓ}ίJ = biόN. The analogous
equation when the codimension is arbitrary is XtiJ = bty Using the proof of
Theorem C we quickly get the following generalization.

Theorem C*. A necessary and sufficient condition for a submanifold Mn of
En+q to be r-minimal, where r = 21 < n, is that each component of the position
vector satisfy the equation Tr

ijφ^j = 0.
Example. It is easy to show that the Hsiang example SO(3)/(z2 + z2) C

S4 C E5, is 2-minimal but not 0-minimal in E5.
Just as Theorem C generalized to Theorem C*, so can Theorem E be gen-

eralized to a Theorem £ * . The statement is left to the reader.
B. The reason we have not considered general problems of the form

δ ί f(S2, SA, )dV = 0 for submanifolds of arbitrary codimension is that our
M

methods just do not seem to extend to that case. The major stumbling block
appears to be the equation TrB — BTr, which may not be true.

C. Given a Riemannian manifold Mn and an even integer r, does there
exist an r-minimal isometric immersion into some Euclidean space ? Theorem
C* tells us to study the equation Tr

ίjφ^j = 0. If M is nice enough, for example,
if M is a symmetric space, one may be able to say something.

D. When r is even, the equation Tr

ίjφ,ij — 0, which makes intrinsic sense
on any Riemannian manifold, is clearly a generalization of the Laplace equa-
tion Δφ = 0. Like the Laplace equation, ours can be put in divergence form
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(T^φ^j = 0, and it is the Euler-Lagrange equation for a Dirichlet-type

problem, namely, the problem δ ί (Tr

ijφ}iφj)dV = 0.
M

E. Under what conditions is Tr positive definite? Will this be the case if

all sectional curvatures are positive? Since for hypersurfaces the Tr all have

the same eigenvectors, it is of interest to see if the various Tr commute with

each other in the general case.

F. Is there any deformation invariant integral I f(Sλ, , Sn)dV, involv-

M

ing only the modified mean curvatures, besides / = SnΊ
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