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WHEN IS A GEODESIC FLOW OF ANOSOV TYPE? I

PATRICK EBERLEIN

Introduction

The geodesic flow on the unit tangent bundle of a compact surface of con-
stant negative Gaussian curvature is one of the earliest known examples of an
ergodic flow. The Anosov flows with an integral invariant on compact Rieman-
nian manifolds form a more general class of ergodic flows which includes the
geodesic flow on the unit tangent bundle of a compact Riemannian manifold
of arbitrary dimension n > 2 and negative sectional curvature. Within the
class of Anosov flows, the geodesic flows still retain a special importance;
Anosov geodesic flows are X-systems, and as such, they satisfy stronger dy-
namical properties than ergodicity: mixing, for example. It is, therefore, of
interest to find geometrical conditions on a compact Riemannian manifold M,
which are equivalent to the condition that the geodesic flow on the unit tangent
bundle of M be of Anosov type.

Under the hypothesis that M have no conjugate points, we restate the condi-
tion that the geodesic flow be of Anosov type in terms of various simple
conditions on the Jacobi vector fields on unit speed geodesies of M. The
restriction that M have no conjugate points is necessary, for Klingenberg [10]
has proved that if M is a compact manifold with Anosov geodesic flow, then
M has no conjugate points. Among other results, we prove that the geodesic
flow of a compact Riemannian manifold without conjugate points is of Anosov
type if and only if there exists no nonzero, perpendicular Jacobi vector field
Y on a unit speed geodesic γ of M such that || Y(t)\\ is bounded above for all
t e R. We also derive a formulation of the Anosov condition in terms of the
growth rate of the function ί—>||Y(f)||, where Y is a perpendicular Jacobi
vector field on a unit speed geodesic γ, such that Y(0) = 0 and || Y'(0)|| = 1.
Our results are sharper if M has no focal points, or if M has nonpositive
sectional curvature.

§ 1 contains basic facts. Let M denote any complete Riemannian manifold,
and let TM and SM denote the tangent bundle and unit tangent bundle of
M respectively. We describe the natural isomorphism between the tangent
space (TM)υ and the vector space of all Jacobi vector fields on γV9 where v is
an arbitrary vector in TM, and γv is the maximal geodesic of M with initial
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velocity v. This isomorphism provides an equivalent, if not simpler, formula-
tion of the Anosov conditions for the geodesic flow in SM in terms of conditions
on the Jacobi vector fields of M.

In § 2 we consider manifolds without conjugate points. If M now denotes
a complete Riemannian manifold of dimension n > 2 without conjugate points,
then for any unit vector v e SM, there exists a naturally defined pair of (n — 1)-
dimensional subspaces Xs(v) and Xu(v) of (SM)υ. These subspaces have been
studied by, among others, Anosov, in the case that the sectional curvature
satisfies the condition K < c < 0, and by L. Green, in the general case of a
manifold without conjugate points, but in a context not involving the geodesic
flow. Our method of studying these subspaces is a synthesis of these two
approaches. We prove in § 3 that if M is compact, then the geodesic flow in
SM is of Anosov type if and only if Xs(v) Π Xu{v) = {0} for every vector
v e SM. In this case, the vector spaces Xs(v) and Xu(v) are those subspaces
of (SM)υ which according to the Anosov conditions are contracted and
expanded exponentially by the differential maps of the geodesic flow
transformations.

In § 3 we give the definition of Anosov flow, and we state and prove our
equivalent formulations of the Anosov conditions for geodesic flows. Our
results are valid for certain noncompact, as well as all compact, Riemannian
manifolds without conjugate points. The crucial, although very elementary,
results of this section are Lemmas 3.11 and 3.12. We conclude the paper with
the construction of examples of compact Riemannian manifolds with an
Anosov geodesic flow, nonpositive sectional curvature and large open sets on
which the sectional curvature is identically zero. We are indebted to H. Karcher
for the idea and the hardest part of the construction of these examples. We
are also grateful to W. Klingenberg for many pertinent discussions, especially
those regarding the relationship between the Anosov conditions for a geodesic
flow and the growth rate of the norm of a nonzero, perpendicular Jacobi vector
field which vanishes at time t = 0.

1. Preliminaries

In this section we sketch some basic material. Throughout let M denote a
complete C°° Riemannian manifold of dimension n>2. Let TM and SM
denote respectively the full tangent bundle and unit tangent bundle of M, and
π be the natural projection map onto M in either case. For any vector v € TM,
let γυ be the unique maximal geodesic of M such that γ'v(0) = v. Let <(,)
denote the inner product on M.

A complete flow on a C°° manifold N is a homeomorphism of (additive) R
into the group of homeomorphisms of N let t —» Tt denote this homeomor-
phism. Then the flow is Ck differentiate, 0 < k < oo, if the map (t, ή) —> Ttn:
R X N -> N is Ck differentiable.
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Definition 1.1. For any t εRwe define a map Tt: TM —> TM as follows:
Given a vector v e TM, let Ttv = γ'v(t), the velocity of γΌ at time t. The
collection of maps Tt is called the geodesic flow in TM.

The geodesic flow is a complete C°° flow in TM, and also in 5M, since Tt

leaves SM invariant for every t eR. If F denotes the vector field in TM
defined by the geodesic flow, then the restriction of V to SM is a tangent vector
field on SM.

Definition 1.2. A vector field Y on a maximal geodesic γ of M is a Jacobi
vector field if

Y" + # X F X = 0

where the accent denotes covariant differentiation along γ, X is the velocity
vector field of γ, and R is the curvature tensor of M.

A Jacobi field Y is uniquely determined by the values Y(0) and Y'(0). For
any maximal geodesic γ, let J(γ) be the 2n-dimensional vector space of Jacobi
vector fields on γ, and let J0(γ) cz J(γ) be the {In — 2)-dimensional subspace
of perpendicular Jacobi vector fields Y«Y(0,r '(0> = 0 for all tεR). Let
/ = U r ^τ)> Γ a maximal geodesic of M, and let Jo = U r J0(γ).

Definition 1.3. M is said to have no conjugate points if, for any maximal
unit speed geodesic γ in M and any nonzero Jacobi vector field Y on γ, γif) = 0
for at most one number t e R.

Let i V C M b e a proper C°° Riemannian submanifold of M, and p be a
maximal unit speed geodesic of M such that γ'(ϋ) is perpendicular to Nr(Q). A
Jacobi vector field Y along γ is an N-Jacobi vector field if Y is perpendicular
to γ, Y(0) 6 Nΐi0) and 5Y(0) — Y'(0) is perpendicular to Nn0), where 5 is the
second fundamental form of Λf at γ(0) determined by /(0) . Equivalently, Y is
an N-Jacobi vector field if it can be written Y(«) = dr(d/dv)(u, 0), where
r: (— oo, oo) x (—ε, ε) —>M is a C M variation of the form r(w, w) = exp («Z(i;))
— (πoTu)Z(v), where ZO) is a C00 curve in the unit normal bundle of N such
that Z(0) = ^^O). If N is a point, then a Jacobi vector field Y is an Λf-Jacobi
vector field if and only if Y(0) = 0 and Y is perpendicular to γ. If N is a
maximal geodesic σ and Y(0) =£ 0, then a Jacobi vector field Y is an ΛWacobi
vector field if and only if Y(0) is tangent to σ, Y is perpendicular to γ, and
<(Y(0), Y'(0))> = 0. For an arbitrary proper submanifold N^M and a perpen-
dicular unit speed geodesic γ, the point γ(a), a Φ 0, is a /oca/ pom* of iV
along f if there exists a nontrivial Λf-Jacobi vector field Y along p such that
Y(a) = 0. See [2] for a more complete discussion.

Definition 1.4. M is said to have no focal points if no maximal geodesic
N = σ has focal points along any unit speed geodesic perpendicular to σ.

The "no focal point" property is equivalent to the following: Let γ be a
unit speed geodesic in M, and Y be a not necessarily perpendicular Jacobi
vector field on γ such that Y(0) = 0 and Y'(0) φ 0. Then for any t > 0,
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(|| Y||2y(0 > 0. Since an arbitrary Jacobi vector field on γ can be written as
the sum of a perpendicular Jacobi vector field and a tangential Jacobi vector
field, it suffices to prove this assertion for perpendicular Jacobi vector fields
¥.. This assertion, however, follows easily from the characterization of N-
Jacobi vector fields Y, where N is a maximal geodesic and 7(0) Φ 0.

By the previous paragraph, M has no conjugate points if it has no focal
points. If M has sectional curvature K < 0, then M has no focal points.
Let Y be a Jacobi vector field on a unit speed geodesic γ such that Y(0)
= 0 and Y'(0)φ0, and let f(t) = \\Y(t)\\2. Then f"(t) = 2[\\Y'(t)\\2-
K(Y,f)(t) || Y A γ'\\2(t)l Since f(0) = 0, f'(0) > 0 and f'{t) > 0 for all
/ € R, it follows that f(t) > 0 for t > 0.

We shall describe a natural isomorphism between (TM)υ and J(γv) for any
complete C°° Riemannian manifold M and any v € TM. For each v e TM,
ίfo: (TM)υ —> Mffϋ is linear and the kernel of dπ- is the ^-dimensional vertical
subspace of (TM)υ. We define a connection map K: T(TM) -> ΓM such that
for each v e TM, K: (TM)υ —> Mπ υ is linear. The kernel of K is the tt-dimen-
sional horizontal subspace of (TM)V and the intersection of the horizontal and
vertical subspaces is the zero vector.

Given a vector ξ e (TM)V, let Z : (—ε, ε) -> TM be a C°° curve with initial
velocity ξ, and let a = πoZ: ( - ε , ε) -> M. We define X(£) = Z^O) e MπV,
where Z/(0) is the covariant derivative of Z along a evaluated at t = 0. £(£)
does not depend on the curve Z chosen. This definition of K is equivalent to
that given in [7], where a more complete description of the map K may be
found.

One may define a natural inner product on TM with respect to which the
horizontal and vertical subspaces of (TM)V are orthogonal. Given vectors
ξ,ve(TM)Ό let < & 5 V = <βπξ,dπη)πV + <Kξ,Kη}πV. Relative to this inner
product we have the following natural result.

Proposition 1.5. Let p: N —> M be a surjective local ίsometry of complete
Riemannian manifolds. Then

1) P = dp: TN —> TM is a surjective local isometry carrying SN onto SM,
2) \\dTtξ|| = || dTtdP(ξ) |.| for any t e R and any ξ € Γ(7W), wAere T£ ώ/ioto

/Λe geodesic flow in both TN and TM,
3) dP V(v) = V(Pv) for any veTN, where V denotes the vector field

defined by Tt in both TN and TM.
Proof. Define the projection maps πλ: TN —> N, π2: TM —> M, and the

connection maps Kx: T(TN) -* TN and K2: T(TM) -> TM. The following
relations are easily verified: a) poπx — π2oP. b) Podπλ = dπ2odP. c) PoKλ =
K2odP. d) PoTt = TtoP for any t e R. From relations b) and c) we see that
P is a local isometry. P is surjective since p is surjective, and P(SN) == SM
since p is a local isometry. Assertion 2) follows from d) and 1), since
\\dTtdP(ξ)\\ = \\dPodTt(ξ)\\ = \\dTtξ\\. Assertion 3) follows immediately from
d).
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Definition 1.6. For any v € TM and any ξ € (TM)Ό9 let Yξ be the unique
Jacobi vector field on γυ such that Yξ(0) = dπξ and YJ(O) = Kξ.

Let r: (—00, oo)χ(—e, ε) —> M be the variation defined in the discussion
of focal points above, with the difference that now Z is any curve in TM with
initial velocity ξ. Then for any uεR, Yζ(u) = dr(d/dv)(u,0). If ξe(SM)V9

then we may choose the curve Z to lie in SM the w-parameter curves of the
variation are then unit speed geodesies of M, and by Gauss's Lemma,
u —> (Yξ(u), f(μ)y is a constant function. The following result is now easy to
prove in 5) we also need the fact that KV(y) = 0 and dπV(v) .= v for any
v β TM.

Proposition 1.7. Lei 1; e TM. Then
1) ξ —>Yς is a linear ίsomophism of (TM)V onto J(γv),
2) Yξ(t) = dπ o dTt(ξ) and Y'ζ(t) = K o dΓt(£) /or ^v^rj / e # ,
3) f € (ΓM), lies in (SM)υ for v € SM if and only if (KodTt(ξ)9 7 » =

<Y'ξ(i)9riίt)y = 0 for all t € JR, Ϊ/ and only if t -> <y€(0,rCW> w « constant
function,

4) <£, F(v)> = 0forveSM and ξ <= (SM)β // and only if <Yξ(i), γ'v(ff) = 0
/or α// t β JR, w/iβre F w ί/zβ /?ow vector field,

5) <dΓ^, F(Γ^)> = 0 for all t e R, if v 6 5M and f € (5M), w/w/y /λe
condition <f, F(^)> = 0.

Remark 1.8. It follows from 2) above that for any t e R, any v e TM and
any ξ z (JM\, \\dTtξ\f = \\Yζ(t)\\* + | |^C0| | 2 -

Definition 1.9. Let γn be a sequence of geodesies in M, and Yn be a
sequence of Jacobi vector fields such that Yn is defined on γn for every integer
n. If vn = ^^(O), choose fn € (ΓAf)^ so that Yn = Yen. We say that the Jacobi
vecter fields Yn converge to a Jacobi vector field Y on a geodesic γ if £w -^ f
in T(TM), where v = γ'(0), ξ e (ΓM)υ and Y = Yξ.

Note that ξn -+ ξ in Γ(TM) if and only if Kξn -> Kf and dττfw -> tfef.
Therefore Yn converges to Y if and only if r'n(0) -> /(0) , YΛ(0) -> Y(0) and
Y^(0) —> Y^O). If Yn —> Y, and wn C i? is a sequence converging to a finite
number u, then by 2) of Proposition 1.7, Yw(ww) -> Y(w) and Y'n(wn) -».Y'(M).

Definition 1.10. M is said to be compactly homogeneous if there exists a
compact set B c : M such that M is the union of all translates of B by the
isometries of M.

If M is homogeneous or a Galois Riemannian covering of a compact
Riemannian manifold, then M is compactly homogeneous. Since isometries
preserve sectional curvature, all values of the sectional curvature of M are
taken on at points of B, and therefore the sectional curvature of M is uniformly
bounded above and below. The following result will be used often.

Proposition 1.11. Let M be compactly homogeneous. For each integer
n > 0, let Yn be a Jacobi vector field on a geodesic γn with initial velocity vn.
If each of the sequences \\vn\\, \\ Yn(0)||, || Y^(0)|| is uniformly bounded above,
then we can find a sequence φn of isometries of M and a Jacobi vector field
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Z on a geodesic σ, such that by passing to a subsequence, Zn = dφnYn -* Z
in the sense of Definition 1.9.

Proof. Let pn = πvn and choose a sequence 0TO of isometries of M so that
the sequence qn = φnpn is contained in a compact subset of M. Zn = dφnYn

is a Jacobi vector field on σn = φnoγn, and Z'^O) = d^Y^(O). If ww = σf

nφ)
= dφnvn, then the sequences || ww ||, | |Z n(0) | | and| |Z^(0)| | are uniformly bounded
above. Passing to a subsequence, let qn —» q in M and let U be a local
coordinate system around the point q. For each «, the three vectors wn, Zn(0)
and Z'n(ϋ) lie in M 9 n , and relative to the induced coordinate system π~\Ό) in
TM, it is easy to see that the coordinates of each of the sequences wn, Zn(0)
and Z^(0) are uniformly bounded in absolute value. Passing to a further sub-
sequence, let wn —> w, Zn(0) —> u and Z^(0) —> v, where u, v, w are vectors
in Mq. Let σ = γW9 and let Z be the Jacobi vector field on σ such that Z(0) = u
and.Z'(O) = v. Then Zn —> Z by the discussion following Definition 1.9.

If φ is an isometry of M, then 7^ = t/0 is an isometry of TM, which leaves
SM invariant. The following result is equivalent to that just proved.

Proposition 1.12. Let M be compactly homogeneous. Let vn <Z TM and
ξn CZ T(TM) be sequences such that ξn e (TM)Vn for every n, and that the
sequences \\vn\\, \\ξn\\ are each uniformly bounded above. Then there exists a
sequence φn of isometries of M such that by passing to a subsequence,
ξ* = dTφnξn converges to a vector ξ* e T(TM).

2. Manifolds without conjugate points

In this section we assume that M has no conjugate points. We consider
mainly the unit tangent bundle SM rather than TM all geodesies of M are
assumed to have unit speed. For every vector v e SM we define a pair of
in — l)-dimensional subspaces Xs(v), Xu(v) of (SM)V. Relative to the geodesic
flow in SM, these subspaces are the candidates for the stable and unstable
vector spaces Xf(v), X*(v) which appear in the definition of an Anosov flow
in § 3. If M is compact with sectional curvature K < 0, then the geodesic
flow in SM is of Anosov type, where one lets X*(v) = Xs(v) and X*(v) =
Xuiv) [1? PP 182-189]. Conversely, as we shall see, if M is a compact mani-
fold without conjugate points whose geodesic flow in SM is of Anosov type,
then X*(v) = Xs(v) and X*(v) = Xu(v). In their dual formulations as spaces
of Jacobi vector fields on the geodesic γv, the subspaces Xs(v) and Xu(v) have
undoubtedly been known for a long time, at least in the case of surfaces of
negative curvature.

We first describe a useful method of L. Green [6]. Let γ be a geodesic in
M, and let Z^Cs), ,En(s) be a system of parallel orthonormal vector fields
along γ such that En(s) — f(s) for every s e R. (We call such a system an
adapted frame field). If Y(s) = Σ^ί yi(s)Ei(5) is a perpendicular vector field
on γ, then we identify Y with the curve s —> (y^s), , y^Cs1)) € R71'1. The
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covariant derivative Y'(s) = Σi~ϊy^E^s) is then identified with the curve
s -> (y[(s), , yn^(s)). Conversely, any curve s -> (y^s), , yn^(s)) € R71'1

defines a perpendicular vector field on γ. For each s e i? we define a symmetric
(n — l ) χ ( n — 1) matrix /?(*) = (RiJ(s))9 where 1 < i, / < n — 1, JR^CS) =
(REnis)Eiis)En(s), Ej(s)y and i£ denotes the curvature tensor in M. Consider
the (n — 1) x (n — 1) matrix Jacobi equation

( J ) Y"0) + R(s)Y(s) = 0 ,

where derivatives are taken componentwise. (For a discussion of second order
linear matrix differential equations see [8]). If Y(s) is a solution of (J), then
for any x € R71'1 the curve s -> Y(S)Λ; corresponds to a perpendicular Jacobi
vector field on γ. If A(s) is the solution of (J) such that A(0) = 0 and ,4'(0)
= /, then the perpendicular Jacobi vector fields on γ such that Y(0) = 0 and
||Y'(0)|| = 1 correspond to the curves s—> A(s)x, where xzRn~ι is a unit
vector. Since M has no conjugate points, A(s) is nonsingular for s ψ 0.

For any two solutions X, Y of (J), the Wronskian W(X, Y)(s) = (X*y(s)Y(s)
— X*(s)Y'(s) is a constant matrix, where * denotes the transpose operation.
If X is a solution of (J) which is nonsingular on an interval (a, b), then
U(s) — Xί(s)X~1(s) is a solution on (a, b) of the (n — l ) χ ( π — 1) matrix
equation

(R) U'(s) + U(s)2 + R(s) = 0 .

U(s) is symmetric on (α, b) if and only if W(X, X)(s) = 0 on (Λ, 6).
For each number t > 0 there exists a unique solution Z^ of (J), defined for

all real numbers s, such that Dt(0) = I and Dt(t) = 0. For s > 0, Dt(s) =

A'^ύjA'^u^du, where the integration is performed componentwise

and A(s) is the solution of (J) defined above. To see this, let Bt(s) be the
integral expression given above, for every s > 0. Bt(s) is a solution of (J)
defined for s > 0. If Dt is the solution of (J) such that Dt(t) = Bt(t) = 0 and
D't{t) = B't{t) = —A-\t)*9 then Dt(s) = B^J) for j > 0, and a Wronskian
argument involving W(A,Dt) shows that Dt(0) = /. For any numbers 0 < d < t

and all s > 0, we have Dt(s) - Dd(s) = i4(s) Γ U - ^ M M " 1 ^ ) * ^ , and the

matrices DJ(O) — D'd($)) = j A~ι(u)A~\ύ)*du are positive definite, symmetric

and "monotone increasing" in ί. Green [6] shows that lim^.,.^ D[(ϋ) — D'd(O)
exists, and therefore that lim^+oo Df

t(0) exists. If D(s) is the solution of (J)
such that D(0) = / and D'(0) = lim^+^D^O), then for any real number s,
Dt(s) —> D(s) as t —> + oo, since solutions of (J) depend continuously on the
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/» oo

initial conditions. Therefore, for s > 0, D(s) = A(s) A-\u)A-\u)*du
s

(improper Riemann integral). D(s) is clearly nonsingular for all s > 0 (in fact,
for all s, as is shown in [6]).

Next, for any number / ψ 0, we define a linear map ξ-*ξt: (TM)V -> (TM)υ

for every v 6 TM. Given a vector v e TM and a vector ξ e (ΓM) r, let ft € (TM)υ

be the unique vector such that dπ(ξt) = dπ(ξ) and dπodTt(ξt) = 0. If Y = Yς

is the corresponding Jacobi vector field on γv, let Yt be the unique Jacobi
vector field on γΌ such that Yt(O) = Y(0) and Y^/) = 0. Then ft corresponds
to Yt with respect to the isomorphism of Proposition 1.7. The kernel of the
map £ —> ft is the vertical subspace of (TM)β. For v € SM it is not true in
general that this map leaves (SM)V invariant; for ξ e (SΛf)υ9 ξt e (SM)V if and
only if (ζ, V(v)y = 0. This assertion follows easily from Proposition 1.7 (3)
and the fact that a Jacobi vector field which is perpendicular at two points is
perpendicular everywhere.

Definition 2.1. For every v e SM let Xs(v) = {ξ e (SM)υ such that <ft V(v)}
= 0 and ft ->£ as ί-> + oo}. Let Xu(v) = {ξ € (SM)υ such that <£, F(v)> = 0
and ft -> ξ as / -* — oo}.

Definition 2.2. Let γ be a unit speed geodesic in M with initial velocity
v, and //f), /ω(^) be respectively the images in J(γ) of the sets Xs(v), Xu(v)
under the isomorphism of Proposition 1.7.

Js(γ)(Ju(τ)) m a Y a l s o be characterized as the set of all perpendicular Jacobi
vector fields Y on γ such that Yt-^Y as t —> + oo(/ —> — oo), where y£ is
defined in the discussion above. Xs(v), Xu(v) are called the stable and unstable
subspaces determined by v, and Js(γ), Ju(γ) are called the stable and unstable
subspaces of perpendicular Jacobi vector fields along γ. Propositions 2.4 and
2.6 show that these sets are vector spaces of dimension n — 1.

Remark 2.3. 1) Let γ be a unit speed geodesic in M. If M has sectional
curvature K = 0, then /s(?-) = /ω(?-) = the vector space of all perpendicular
parallel vector fields on γ. At the other extreme, if K = — 1, then Js(γ) Π Ju(γ)
= {0}. It will follow by Theorem 3.2 that for a compact manifold M without
conjugate points the geodesic flow in SM is of Anosov type if and only if
Js(ϊ) Π Ju(γ) = {0} for every unit speed geodesic γ in M.

2) If p : N —• M is a surjective local isometry of complete Riemannian
manifolds, and M has no conjugate points, then N has no conjugate points,
and dPXs(v) = Xs(Pv), dPXu(v) = Xu(Pv), for every v € SN, where F =
dp: TN —> TM. Λf has no conjugate points since for any Jacobi vector field
Y on a geodesic f in N, PY is a Jacobi vector field on the geodesic poγ in M.
If πx:TN —>N and π-2: TM-> M are the projection maps, then /?oπx — π2oP.
Also, Po Tt = Tt oP for every / € /?, where Tέ is the geodesic flow in both
TN and TM. From these two relations if follows that (dPξ)t = dP(ft) for
any tφ 0, any v € TN, and any f e (TN),. If <f, F(^)> = 0, then <dPf, V(Pv)}
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= 0 by Proposition 1.5. Therefore dPXs(v) = Xs(Pv) and dPXu(y) = Xu(Pv).
Proposition 2.4. 1) For every v e SM, Xs(v) and Xu(v) are vector sub-

spaces of (SM)υ.
2) If S: SM —> SM is the map which takes a vector v into —v, then

Xu(-v) = dSXs(v) and Xs(-v) = dSXu(v).
3) For any teR and any v e SM, dTtXs(v) = Xs{Ttv) and dTtXu(y) =

Xu(Ttv).
Proof. 1) is a direct consequence of the linearity of the map ξ —>?t: (TM)V

—> (TM)V for any v e TM and any t Φ 0.
2) For any ξ g (TM)V and any / φ 0, dS(ξt) = (dS£)_t this fact is an

easy consequence of the definitions and the relations πoS = π, SoTa=T_aoS
for every a e R. The desired conclusion follows.

3) To prove this assertion we need the following:
Lemma 2.5. Let v e SM be given. Then there exist numbers b ~ b(v) > 0

and t0 = tQ(v) > 0 such that if ξ ζ (TM)υ satisfies dπ o dTt{ξ) = 0 for some
t>t0, then\\K$\\<b\\dπξ\\.

Proof. We may assume that dπξ Φ 0, or otherwise the Jacobi vector field
Yξ == 0 (since it vanishes at 0 and t > tQ > 0), and Kξ = Y{(0) = 0. We
first consider the case where Yξ is perpendicular to γv. Relative to the matrix
equation (J) defined by an adapted frame field along γΌ9 let Dt be the unique
solution of (J) such that £^(0) = / and Dt(t) = 0, where t > 0. If dπ o dTtξ = 0
for some t > 0, then Y = Yζ corresponds to the curve s —> Dt(s)x for some
vector x e Rn~\ and \\Kξ\\ = || γ;(0) | | - ||D;(O)JC|| < | | D ; ( 0 ) | U | Λ | | - -
| |D;(0) |U| |^ f | | , where || |U = sup{||.(jc)||: ||JC|| = 1}. Since D'tφ) - , D'ίO)
as ί —> + oo by the discussion at the beginning of § 2, we may choose t0 =
ίo(iθ > 1 so that ||Dί(0)|U < 1 + \\D'(0)\\» for t > tQ. It b = 1 + ||£>'(0)|U,
and JTΓodΓ^f) = 0 for some / > t0, then \\Kξ\\ < b \\dπξ\\.

If Y is an arbitrary Jacobi vector field on γ, we may write Y(s) = Yj^) +
Y2(5), where Yx is a perpendicular Jacobi vector field, and Y2 is a tangential
Jacobi vector field of the from Y2(s) = (as + β)γ'(s) for suitable constants a
and β. If Y(t) = 0 for some ί > /0, then Yx(0 = 0, Y2(ί) = 0, and hence
« = -jS/ί. ||Y;(0)|| = \a\ < \β\ - ||Y2(0)|| and ||Y;(0)|| <b\\YM\\ Since
b > 1 it follows that ||X£|| = || Y'(0)|| < b \\ Y(0)|| = 6 ||dττf ||..

We now complete the proof of 3). Let v e SM and ξ e (SM)V be given, and
fix a number a e R. For any * =£ 0, \\dTaξ - (dTaξ)t\\ < \\dTa(ξ - f ί + β ) | | +
\\dTaξt+a - (dTaξ\\\. If ψ t = dΓ α (f t + β ) - (dΓβf) t, then dπodTtψt = .0 and
d Γψί — dπo dTa(ξt+a — ξ). If ί > f0 = to(Tav) > 0, then the previous Lemma
implies that | | ^ ί | | < frlld^H, where b = b(Tav) > 0 is independent
of ί and ψt. Therefore | |ψ t || < (1 + 2>2)1/2|| dπ o dTa(ξt+a - | ) || <
(l + ^ ) i / 2 | | d Γ α ( f ί + α _ f ) | | ? a n d ||dΓαf _ ( d Γ α f ) t | | ^ [ l + (1 + 62)1/2]||dΓα(ft+α —f)||
for t > t0. If <£, F(i;)> = 0, then <dΓαf, 7(Γαi;)> = 0 by Proposition 1.7
(5). Since α e Λ i s fixed, ξ e Z s (^) if and only if dΓαf e Xs(Tav). This fact
and 2) of this Proposition imply the similar invariance relation for Xu.
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Proposition 2.6. Let there be given a point p € M and a unit vector v e Mp,
the tangent space to M at p. For each vector w in Mp, which is orthogonal to
v, there exists a unique vector ξw e Xs(v) (respectively Xu(v)) such that dπξ.
— w, and the map w —> ξw is a linear isomorphism of the orthogonal comple-
ment of v in Mp onto Xs(v) (respectively Xu(v)).

Proof. We first prove the assertion for Xs(v). Since Xs(v) is a vector space,
the uniqueness part of the assertion will follow when we show that ξ = 0 if
ξ e Xs(v) and dπξ = 0. Let ξ e Xs(v) satisfy the condition dπξ = 0. For any
t > 0, dπ(ξt) = dπξ = 0 and dπ o dTt(ξt) = 0. Therefore ξt = 0 since Yξt

vanishes at 0 and t, and ξ = 0 since ξt —> ξ as t -+ + oo.

To prove the existence of ξw, where w e Mp is orthogonal to v, we construct
an adapted frame field on the geodesic γv. Relative to equation (J), let D, Dt

be the solutions of (J) defined earlier, where t > 0. If w corresponds to
x € Rn~ι relative to the frame field, let Y(s) = D(s)x. Then Yt(s) = Dt(s)x.
Since D't(O) -> D'(G) as / -> + oo, Yt -> Y as ί -> + oo by the criteria fol-
lowing Definition 1.9. Therefore Y e Js(γ), and if ξ e (TM)υ corresponds to Y,
then ξ € Xs(v) C (SM),, since Y is perpendicular. Finally we see that dπζ =
Y(0) = w, identifying the tangent vector w with the corresponding vector
x zRn~λ. To prove the assertion for Xu(v), it suffices to note that by 2) of
Proposition 2.4, η <= Xu(v) if and only if ξ = ^(jy) € Zs(—t;), and dτr3? = dπf
since πoS = π.

It follows from this Proposition that Z s(i;) and Xu(v) both have dimension
n—\. An interesting and basic question is whether the subspaces Xs(v), Xu(v)
depend continuously on the vector v, that is, whether the sets As = \<JυeSMX8(v)
and Λu = \JV€SM Xu(v) a r ^ closed subsets of T(SM). If M has no focal points,
we shall see that these sets are closed, but it is not clear that this is true with
only the nonconjugacy hypothesis. In Proposition 2.13 we derive a sufficient
condition for the sets As, Au to be closed.

We now derive some results which will be useful in the next section.
Proposition 2.7. Let the sectional curvature of M satisfy the relation

K > —k2 for some k > 0, and Y be a perpendicular Jacobi vector field on a
unit speed geodesic γ in M such that Y(0) = 0. Then \\Y'(s)\\ < k coth (ks) \\Y(s)\\
for every s > 0.

Proof. We shall first need the following:
Lemma 2.8. For any integer n > 2 consider the (n — 1) x (n — 1) matrix

Riccati equation

(R) V'(s) + U(s)2 + R(s) •= 0 ,

where R(s) is a symmetric matrix such that ζR(s)x, xy> —k2 for some k > 0,
all unit vectors x ζ. R71'1 and all real numbers s. If U(s) is a symmetric solu-
tion of (R), which is defined for all s > 0, then \(U(s)x, x)\ < k coth (ks) for
all s > 0 and all unit vectors x e Rnί.
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Proof. The proof is a slight modification of that of Lemma 3 in [6]. Let
U(s) be a symmetric solution of (R) defined for s > 0. For a fixed number
sQ > 0 and a fixed unit vector x e R71'1, choose a number d > 0 such that
<t/O0)jt, x) < k coth (ks0 - d). We show that <U(s)x, x} < k coth (ks - d)
for s > s0. The matrix V(s) = k coth (ks — d)I is a solution of the (n — 1) x
(ft — 1) matrix equation

V'(s) + V(s)2 - k2l = 0

defined for s>d/k>0. If /0) = <[£/(» - K(J)]JC, JC> = <C/(J)JC,JC> -
& coth (to — d), then /O0) < 0. If f(s) = 0 for some s > s0, let ΛΊ be the first
such value one then shows as in the proof of Lemma 3 of [6] that f(s^ < 0,
a contradiction.

Given a unit vector x e R71'1 and an integer n > 0, choose a number dw > 0
such that (U(l/n)x, x} < k coth (k/n - dn). If s > 0 is given, then s > 1/n
for sufficiently large n, and the above argument shows that ζU(s)x,xy <
k coth (to — dn). Since dn<k/n, dn-*0 and we have <C/(5 )Λ;, ;t> < A: coth (ks).
One next proves as in Lemma 2.1 of [5] that <U(s)x, JC) > — k for any 51 > 0
and any unit vector x. Since s and x are arbitrary, the Lemma is proved.

We conclude the proof of Proposition 2.7. Let γ be a unit speed geodesic
in M. Relative to an adapted frame field along γ we consider the solution A(s)
to equation (J) discussed at the beginning of §2. The curvature condition
K > — k2 is precisely the condition that </φ)*, x}> —k2 for all unit vectors
x e Rn~ι and all real numbers s. Let Y be a perpendicular Jacobi vector field
on γ such that Y(0) = 0. We may assume that Y^O) ψ 0, since otherwise
there is nothing to prove, and it suffices to consider the case where || Y'(0) || = 1.
For some unit vector x € R71'1, Y may be identified with the curve s —• A(s)x
and Y' with the curve s -> A'(s)x. If U(s) = A'(s)A~\s), then U(s) is defined
for s > 0 and is a solution to equation (R) of the previous Lemma. U(s) is
symmetric for s > 0 since W(A, A)(s) = WX<4, Λ)(0) = 0. For any s > 0, || Y'(s) \\
= \\A'(s)x\\ = || C/(JM(J)JC|| < || U(s)\U\A(s)x\\ = || E/(J)|U| Y(J) | | . Since t/(j)
is symmetric, ||C/(J)||OO = sup{|<t/(j)jc,jc>|: ||JC|| = 1}. The result now follows
from Lemma 2.8.

Proposition 2.9. Let K> —k2 for some k > 0. Let γ be a unit speed
geodesic in M. For any number R>0 we can find a number T = T(R, γ)>0
such that || Y0)|| > R || Y'(0)|| for s>T, where Y is any perpendicular Jacobi
vector field on γ such that Y(0) = 0.

Proof. It suffices to consider the case where HY'CO)!! = 1. Consider the
matrix equation (J) relative to an adapted frame field along γ. For any s > 0

let M(s) = D'(0) - D;(0) = Γ°° A-\u)A'\u)*du9 and let U(s) = A'(s)A'l(s)

and V(s) = D/(s)D~1(s). U(s) and V(s) are solutions defined for s > 0 of
equation (R) of Lemma 2.8. As remarked earlier, U(s) is symmetric for s > 0.



448 PATRICK EBERLEIN

V(s) is symmetric for s > 0 since for every ί > 0, W(Dt,Dt)(t) = 0, and
therefore W(D,D)(s) = W(D,D)(0) = limt_+ββ W(Dt,Dt)(0) = 0. Differentiat-
ing the expression D(s) = y4(»M0), which is valid for s > 0, or using a
Wronskian argument involving W(A,D)(s), we obtain the relation U(s) —
V(s) = y4-1(^)*M-1(5M-1(ιs). For any s > 0 and any unit vector x^Rn~\
\<M-Ks)A-ι(s)x,A-Ks)x>\ < \<U(s)x, x}\ + \(V(s)x,x}\ <4kίoτs>s0>0
by Lemma 2.8, where s0 > 0 is chosen so that k coth (ks) < 2k for s > sQ. If
λ(s) is the largest eigenvalue of MO), then HMO)^ = λ(s), and l/λ(s) is the
smallest eigenvalue of M~\s). Since M~ι(s) is positive definite and symmetric,
we have 4k > \<M-\s)A-ι(s)x,A-\s)x)\ > (l/λ(s)) WA^xW2 or \\A'\s)x\\2

< 4&||M0)||o o for s > sQ. Since x is arbitrary, WA'^Wl < 4k\\M(s)\\oo for
s > s0. If xzR71-1 is any unit vector, then \\A(s)x\\ > ί/WA^is)]^ >
(4k | | M 0 ) | | J - 1 / 2 . Let R > 0 be given. Since M(s) -* 0 as s -> + oo, we may
choose T > s0 > 0 so that s > T implies IIMO)^ < l/(4kR2). If s > T,
then | |4(S)JC|| > R, and the result follows since x is an arbitrary unit vector.

Remark 2.10. We can strengthen the previous Proposition if the vector
spaces X8(v)9 Xu(v) depend continuously on v, that is, if the sets As, Au

defined earlier are closed in T(SM). Relative to equation (J) on the unit speed
geodesic γv, we see that for any t > 0, sup {||f — ξt\\: ξ <= Xs(v), \\dπξ\\ = 1}

I £~ A-l(u)A~\u)*du
1J

is monotone de-

creasing in t. Using this observation and the fact that As is closed, one may
show that for any compact set C C M and any number ε > 0, we can find a
number sQ = so(ε, C) such that if γ is a unit speed geodesic of M with f(0) e C,
then, relative to any adapted frame field along γ, WMζs)^ < ε for s > s0.
The inequality in Proposition 2.9 which involves 11.4(,?).*|| depends only on
IIM^Hoo, and hence, in the statement of that proposition, we may choose
T = T(R, C) depending only on R and C so that the conclusion holds for any
geodesic γ with the initial point in C. As a corollary of this strengthened
result we would then obtain Theorem 1 of [4]. This strengthened result will
not be needed here, and a more detailed proof is therefore omitted.

Proposition 2.11. Let K > —k2 for some k > 0. Then for any v e SM
and any ξ <= Xs(v) or Xu(v) we have \\Kξ\\ < k \\dπξ\\.

Proof. For any tφ 0, ||X(ft)|| <£coth(£|/|) 11^)11 - *coth(Λ|ίp \\dπξ||
by Proposition 2.7. As /-» + oo (or as /-> — oo)ξt-+ξ and k coth (Λ|ί|)->k.
The result follows.

Proposition 2.12. Let K> —k2 for some k > 0. Let v eSM and let
ξz{SM)v be such that <f, FO)> = 0 and \\dπodTtξ\\ is bounded above for
all t > 0 (respectively for all t < 0). Then ξ 6 Xs(v) (respectively ξ e Xu(v)).

Proof. We consider only the case where \\dπodTtξ\\ < A foτt>0 and
some A > 0, since the other case is proved similarly. For any / > 0, ξt e (SM)υ

by Proposition 1.7 (3), since the Jacobi vector field Yξt is perpendicular at 0
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and t and hence everywhere. Therefore (ξ — ξt) € (SM)V, and the Jacobi vector
field which ξ — ξt determines is perpendicular to γv since it vanishes at 0.
Finally, \\dπodTt(ξ-ξt)\\<A, and by Proposition 2.9, H f - f ^ T O - W I I
—> 0 as t —• + oo.

Proposition 2.13. Let K > — k2 for some k > 0. Suppose that there exist
constants A > 0 and so> 0 so that for any perpendicular Jacobi vector field
Y such that Y(0) = 0 and for any numbers t>s>s0 we have \\ Y(i) \\>A\\ Y(s) \\.
Then each of the following is true:

1) For any v € SM and any ξ e (SM)V, ξ e Xs(v) (respectively ξ e Xu(v))
if and only if <(<?, V(v)y = 0 and \\dπodTtξ\\ is bounded above for all t > 0
(respectively all t < 0). In either case, (1 jA) \\dπξ\\ is an upper bound.

2) As = \JυζSMXs(v) and Au = [JvζSM Xu(v) are closed subsets of
T(SM).

Proof. 1) One half of the assertion follows from the preceding result. Now
let v e SM and ξ € Xs(v), and fix a number u > 0. For t > u + s0 it follows
by the hypothesis that \\dπodTu(ξt)\\ < (I/A) \\dπ(ξt)\\ = (I/A) \\dπξ\\. Since
ξt -^ ξ as t -+ + oo, \\dπ°dTuξ\\ < (1/A) \\diuξ\\ by continuity. The proof for
the case where ξ β Xu(v) is similar.

2) It suffices to prove that As is closed, since Au = dS(As) by Proposition
2.4. Let ξn be a sequence in As converging to ξ e T(SM). If ξ β (SM)Ό and
ξn e (SM)υn, then vn-+v and <£, V(v)> = l i m ^ . <fn, V(vn)} = 0. If / > 0
is given, then \\dπodTtξ\\ = l im^^ | | ^odΓ £ ( f n ) | | < lim^TO (1/^) ||dτrfn|| =
(I/A) \\dπξ\\. Therefore ξ e Xs(v) by 1).

Part 1) of this result says that for any unit speed geodesic γ in M, a per-
pendicular Jacobi vector field Y lies in Js(γ) (respectively Ju(γ)) if and only if
\\Y(t)\\ < (I/A) || Y(0)|| for / > 0 (respectively t < 0). It follows from the
discussion in § 1 that if M has no focal points and K > — k2 for some k > 0,
then the hypothesis of Proposition 2.13 is satisfied for A = 1 and 50 = 0.

Corollary 2.14. Let M satisfy the hypotheses of Proposition 2.13, and let
B = [(1 + &2)/,42]1/2. ΓΛert /or m y v e SM and any ξe(SM)v, ξzXs(v)
(respectively ξ β Xu(v)) if and only if <f, V(v)y — 0 and \\dTtξ\\ is bounded
above for all t>0 (respectively t < 0). In either case, B\\ξ\\ is an upper
bound.

Proof. If HdΓίf || is bounded above for all ί > 0 (respectively t < 0), then
\\dπodTtξ\\ < \\dTtξ\\ is bounded above, and ξ € Xs(v) (respectively Xu(v))
by the previous result. Conversely, if ξ e Xs(v)(Xu(v)), then by Propositions
2.4, 3), 2.11 and 2.13 we have for * > 0 (t < 0), Hdl^H2 - \\dπodTtξ\\2 +
\\KodTtξ\\2 < (1 + k2)\\dπodTtξ\\2 < ((1 + ^)/^ 2 ) |μτrf | | 2 < 52||f||2.

Let Jf be the set of all perpendicular Jacobi vector fields on unit speed
geodesies of M.

Proposition 2.15. Let the universal Riemannian covering H of M be
compactly homogeneous. For each s > 0 let g(s) = inf {|| Y(s)||: Y e Jf, Y(0)
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= 0 and || Y'(0) || = 1}. Then g(s) > 0 for each s>0, and g is semi-continuous
in (0, oo).

Proof. Since g is the infimum of a set of continuous functions, it follows
that for any a > 0, {s > 0: g(s) < a} is an open set in (0, oo). Thus g is
semi-continuous. If g*(s) is the function defined in the same way relative to
Jacobi vector fields in H, then g*(s) = g(s) since p: H -> M is a surjective
local isometry, and the Jacobi vector fields along geodesies in M are the
projections of Jacobi vector fields along geodesies in H. To prove that g(s) =
g*(s) is positive for s > 0, we need only to show that g*(s) = Y(s) for some
Y g J* such that Y(0) = 0 and || Y'(0)|| = 1. Given s > 0, let fn c T(SH)
be a sequence such that dπξn = 0 and \\ξn\\ = 1 for every n, and ||dπ odT β£ n | |
—>g*Cs). By Proposition 1.12, there exist a sequence φn of isometries of H
and a vector f * e T(SH) such that f * = dTφnξn —• f * by passing to a sub-
sequence, where T ^ = dφn: T ^ —> T.f/. Since Tφn is an isometry, dπξ* = 0,
||f*|| = 1 and | |ώrodΓ s ?* | | = | |^orfΓ,fn | | - * * ( J ) (see Proposition 1.5). By
continuity, dπξ* = 0, | | ?* | | = 1 and \\dπodTsξ*\\ = g*(s). If Y is the Jacobi
vector field corresponding to ξ*9 then g*(s) =

3. The Anosov equivalences

We first define an Anosov flow. One usually assumes that the underlying
manifold is compact, but we shall not assume this. For convenience we also
assume more differentiability than is necessary. For a discussion of the pro-
perties of Anosov flows on compact Riemannian manifolds see [1].

Definition 3 1. Let Tt be a complete C°° flow on a (complete) C°° Rieman-
nian manifold N of dimension n > 3. The flow is said to be of Anosov type
if the following conditions are satisfied:

1) The vector field V defined by the flow never vanishes on N.
2) For each n eN the tangent space Nn splits into a direct sum.

Nn=X*(ri)®X*(n)®Z(n)

(dim JP* = k > 0, d i m Z * = / > 0, dimZ = 1), where Z(ή) is generated by
V(n), and there exist positive numbers a, b, c, such that

i ) for any ξ g XfQt)

\\dTtξ\\ < a \\ξ\\ e~ct for t > 0, > b \\ξ\\ e~ct for / < 0

ii) for any η e X*(n)

\\dTtV\\<a\\v\\ect f o r ί < 0 , >b\\v\\ect for * > 0 .

We now state the main results. For the rest of this section we assume that
M is a complete, C°° Riemannian manifold of dimension n > 2 without con-
jugate points such that the universal Riemannian covering H is compactly
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homogeneous. Let Tt denote the geodesic flow in TM, SM, TH and SH. Since
M has the same values for the sectional curvature as H, there exists a number
k > 0 such that K > -k2 in M.

Theorem 3.2. The following properties are equivalent:

1) The geodesic flow in SM is of Anosov type.

2) For every v e SM, Xs(v) Π Xu(v) = {0}, where Xs, Xu are the subspaces

defined in § 2.
3) For every v e SM, (SM)υ = Xs(v) Θ Xu(v) Θ Z(v), where Z(v) is the

one-dimensional subspace generated by V(v).

4) There exists no nonzero perpendicular Jacobi vector field Y on a unit
speed geodesic γ of M such that || Y(0|| is bounded above for all t e R.

5) The following two conditions hold:

i ) There exist numbers A > 0, sQ > 0, such that for any perpendicular
Jacobi vector field Y on a unit speed geodesic γ satisfying the condition Y(0)
= 0, we have \\ Y(t)\\ > A \\ Y(s)\\ for any numbers t > s > s0.

π) J ~ U/g(t)]dt < oo, where for t > 0, *(/) = inf{|| Y(t)\\: Y G /O*, Y(0)

= 0,11 (̂0)11 = 1}.
(This is the Lebesgue integral of a positive measurable function.)

As a consequence of the proof of this result, we also show that if the geo-
desic flow in SM is of Anosov type, then Xs(v) = X*(v), and Xu(v) = X*(y)
for every v € SM.

A vector field Z on a differentiable curve σ: R-^M is parallel along σ if
the covariant derivative Z'(j) = 0 for every real number t.

Corollary 3.3. // M has no focal points, then the following properties are
equivalent:

1) The geodesic flow in SM is of Anosov type.

2) There exists no nonzero perpendicular parallel Jacobi vector field Y on
a unit speed geodesic γ of M.

3) J"[ l/*(*)]*< oo.
1

Corollary 3.4. // the geodesic flow in SM is of Anosov type, then the
following property holds: Let γ be any unit speed geodesic of M, and E(t) be
any nonzero perpendicular parallel vector field on γ. Then the sectional cur-
vature K(E, 7*0(0 < 0 for some real number t.

Corollary 3.5. // M has no focal points, and M satisfies the property of
Corollary 3.4, then the geodesic flow in SM is of Anosov type.

Corollary 3.6. // M is a two-dimensional manifold without focal points,
then the geodesic flow in SM is of Anosov type if and only if every geodesic
of M passes through a point of negative Gaussian curvature.

It follows from the proof of Theorem 3.2 and Corollary 3.3 that if
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I [l/g(i)]dt < oo, then there exist positive constants a, c, and t0 such that

g(t) > aect for t > t0.
A consequence of Corollary 3.5 is the theorem that if M is a compact

Riemannian manifold with sectional curvature K < 0, then the geodesic flow
in SM is of Anosov type. We also use Corollary 3.5 to construct examples of
compact manifolds with curvature K < 0, large patches of zero curvature,
and Anosov geodesic flow in SM.

We omit the proof of Corollary 3.6, which is an immediate consequence
of Corollaries 3.4 and 3.5.

Theorem 3.2 will be established by means of the series of Propositions 3.7
through 3.16. Before beginning the proof, we remark that if p: N —> M is a
surjective local isometry of complete Riemannian manifolds, and the geodesic
flow in SM is of Anosov type, then the geodesic flow in SN is of Anosov type.
P = dp: SN —> SM is a local isometry by Proposition 1.5. If we are given
v β SN, then we define X*(v), X*(v) to be those subspaces in (SN)V which
are mapped isomorphically onto X*(Pv), X*(Pv) by dP. It follows by Pro-
position 1.5 that (SN)V = X*(v) © X*(v) 0 Z(v), and that the spaces X*(v),
X*(y) satisfy the Anosov conditions.

Proposition 3.7. Let M admit no nonzero perpendicular Jacobi vector field
Y on a unit speed geodesic γ such that \\ Y(t) \\ is bounded above for all t 6 R.
There exists a constant A > 0 such that if Y is a nonzero perpendicular
Jacobi vector field on a unit speed geodesic γ such that Y(0) = 0, then \\ Y(t)\\
> A || Y(s) || for any numbers t > s > 1.

Proof. By reasoning similar to that used in the proof of Proposition 2.15,
it suffices to prove this assertion for Jacobi vector fields of the same kind in
the universal Riemannian covering H of M. If the assertion were false, then
there would exist nonzero perpendicular Jacobi vector fields Yn on unit speed
geodesies γn in H, and sequences 1 < sn < tn such that for every integer n > 0,
Yn(0) = 0 and \\Yn(tn)\\<(l/n)\\Yn(sn)\\. Multiplying Yn by a scalar if
necessary, we may assume that || YJ,(O)|| = 1. Choose a sequence un(ZR such
that 0 < un < tn and || Yn(j)|| < || Yn(un)\\ for every 0 < s < tn.

We assert that un > δ > 0 for some number δ > 0 and every integer n > 0.
If this were false, then un —> 0, by passing to a subsequence. By Proposition
1.11, we may choose a sequence φn of isometries of H and a Jacobi vector
field Z on a unit speed geodesic γ in H such that Zn = dφnYn-*Z by passing
to a subsequence. By continuity, 0=||2C0)|| = limn—||-ZwC"n)|| = lim«—II^Cw^ll-
However, since tn > 1 for every n, we have || Yn(wn)|| > || Y n(l) | | > g(l) > 0
by Proposition 2.15. This is a contradiction.

For each n, let σn(t) = γn(un + t) and Zn(i) = Yn(un + t)/\\ Yn{un)\\. Then
Zn is a Jacobi vector field on the unit speed geodesic σn such that | |Zw(0)| | = 1,
| | Z Λ ( J ) | | < £ 1 for -un<s<tn-un, Zn(-un) = 0 and \\Zn(tn - un)\\ < 1/n.
Since H is compactly homogeneous, K > —k2 for some k > 0, and by Pro-
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position 2.7, ||Zς(O)|| = \\rM\\l\\YM\\ < kcoth(kun) < kcoth(kδ). By
Proposition 1.11, there exist a sequence φn of isometries of H and a Jacobi
vector field Z* on a unit speed geodesic γ such that Z* = dφnZn -> Z*, by
passing to a subsequence. | |Z*(0)| | = 1 by continuity, so Z* ^ 0.

There are four cases to consider: 1) ίn — ww and wTO both contain bounded
subsequences 2) un —> + oo and /w — ι/w contains a bounded subsequence
3) tn — un^> + oo, and wn contains a bounded subsequence 4) tn — un —» + oo
and wn —• + oo. We derive contradictions in all cases. If case 1) occurs, then
we can find numbers ί > 0 and u > δ > 0 such that ίn — un->t and wn —• w,
by passing to a subsequence. By continuity, Z*(—ύ) = 0 and Z*(0 = 0.
Since t > 0 and — w < — £, this contradicts the fact that Z* Ξ£ 0. If case 2)
occurs, then let tn — un —• / < oo by passing to a subsequence. By continuity,
Z(i) = 0 and ||Z(iι)|| < 1 for all u < t. By Proposion 2.9, however, | |Z(/)||
—> oo as / -+ — oo. The contradiction to case 3) is similar to that of case 2).
If case 4) occurs, then | |Z(ί)| | < 1 for all ί e R by continuity, but this con-
tradicts the hypothesis of the proposition.

Proposition 3.8. Conditions 2), 3) and 4) of Theorem 3.2 are equivalent.
Proof. For any v € SM, (SM)V = V{v)L 0 Z(v), where V(v)L is the

orthogonal complement to V(v), and Z(y) is the.one-dimensional subspace
generated by V(v). Since V(v)L has dimension 2n — 2 and ^sOv), Xu0Ό are
(w — l)-dimensional subspaces of V(v)L, the conditions 2) and 3) are clearly
equivalent. Suppose that M admits a nonzero perpendicular Jacobi vector
field Y on a unit speed geodesic γ such that || Y(i)\\ is bounded above for all
t e R. If v = /(0), and £ e (SM)υ corresponds to Y, then it follows by Pro-
position 2.12 that ξ € Xs(v) Π ̂ ( v ) . Hence 2) implies 4). That assertion 4)
implies 2) follows from Propositions 2.13 and 3.7.

Proposition 3.9. Let M admit no nonzero perpendicular Jacobi vector field
Y on a unit speed geodesic γ such that \\ Y(i)\\ is bounded above for all t e R.
Then for any number ε € 0, there exists a number T > 0 such that.

1) for any v € SM and any ξ € Xs(v), \\dTtξ\\ < ε\\ξ\\ for t >T;
2) for any v e SM and any ξ € Xu(v), \\dTtη\\ < ε\\η\\ for t < -T.
Proof. 1) By Proposition 1.5 and Remark 2.3, 2), it suffices to prove this

assertion for all v e SB and ξ e Xs(v), where H is the universal Riemannian
covering of M. If the assertion were false, then for some ε > 0 there would
exist sequences tn c R, vn c SH and ξn c T(SH) such that ξn ζXs(vn),
tn —> +oo and II^Γί^H > e||fn|| for every integer n. We may assume that
llfJI - 1 for every n. If ψn = dTtJn, then ψn e As = U ^ w ^ . W and
| |ψ n | | > e for every n. It follows from Corollary 2.14 and Proposition 3.7 that
there exists a number B > 0 such that for every n, ||έiZγψ n | | < B for — ίn <
/ < oo. By Proposition 1.12, there exist a sequence^ of isometries bί H and
a vector ψ* € T(SH) such that ψ* = dΓ,nψn->ψ*, by passing to a subsequence,
where T^n = dφn. The vector ψ* lies in As for every π by Remark 2.3, 2).
Since Ttldφn = dφn o Tt for every t e R, we have ||d:zγψ *| | = \\dTtψn\\ < B
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for —tn < ί < oo. The vector ψ* Φ 0 since | |ψ* | | = | |ψ n | | > ε for every n,
and by continuity \\dTtψ* \\ < B for all * e R. If ψ* e (Sfl)β and ψ* € (SH)V*,
then <ψ*, K(v*)> = 0 since <ψ*,r(ι;*)> - 0 for every n. If Y* = Yf*, then
Y* is a nonzero perpendicular Jacobi vector field on γv* such that || Y*(ί) \\<B
for all / e R. Y(t) = dpY*(t) is a nonzero perpendicular Jacobi vector field
on the geodesic poj> such that || Y(ί)|| = \\Y*(0\\ < B for all * <= R, but this
contradicts the hypothesis of the proposition.

2) η € ZWO) if and only if ξ = dS(η) e Xs(-v), where S: SM-+SM takes
v into — v. Since 5 is an isometry of SM satisfying the relation S o Tt = T_toS
for all tzR, we have | |dΓ_ t ? | | - HdSodΓ^H = ||dΓ tf|l < ε \\ζ\\ = e \\v\\ for
t > T.

Proposition 3.10. Let M admit no nonzero perpendicular Jacobi vector
field Y on a unit speed geodesic γ such that || Y(/)|| is bounded above for all
t € R. Then the geodesic flow in SM is of Anosov type.

This is the result that 4) implies 1) in Theorem 3.2. We first need some
preliminary results.

Lemma 3.11. Let M be a complete manifold without conjugate points,
which satisfies the hypothesis of Proposition 2.13. For each s > 0, let φ(s) =
sup{\\dTsξ\\:ξeAs,\\ξ\\ = 1}. Then

1) there exists a constant B > 0 such that 0 < ^Cs ) < B for every s > 0,
2) φ(s + t) < φ(s) φ(t) for all numbers s > 0, t > 0.
Furthermore, if the universal Rίemannian covering H is compactly homo-

geneous, and M also satisfies the hypothesis of Proposition 3.10, then
3) φ(s) -> 0 as s -^ + oo.
Proof. 1) If B > 0 is the constant of Corollary 2.14, then 0 < φ(s) < B

for every s > 0.
2) For any ξ <s As and any s > 0, | |dΓ,£|| < φ(s) \\ξ\\ by definition. Let

ξ € As, || ξ|| = 1 be given, and let s > 0, t > 0 be arbitrary numbers. Then
\\dTt+sξ\\ = \\dTt(dTsξ)\\ <φ{t)\\dTsξ|| (since Λ is invariant under dΓ s) <
φ{t)-φ{s). Since £ was arbitrary, 2) follows from the definition of φ(s + t).

3) This is a consequence of Proposition 3.9.
Lemma 3.12. Let φ: (0, oo) —• (0, oo) foe α function satisfying properties

1), 2) and 3) of Lemma 3.11. Γ/jefl there exist numbers a > 0 αmi c > 0 .swc/z
/ t o φ{s) < ae~cs for all s > 0.

Proof. It follows from property 2) that if s > 0 is any number and n > 0
is any integer, then φ(ns) < φ(s)n. By 3) we may choose s0 > 0 so that φ(s)
< I for s > s0. The lemma will be proved when we show that φ(s) < e~cs

for s > s0, where c = j(}og 2)/s0. Given any number s > sQ we may choose
an integer n > ϊ such that s0 < s/n < 2s0. Let 5* = s/n. Then [log φ(s)]/s =
[log φ(ns*)]/(ηs*) < [log φ(s*)n]/(ns*) = [log 0 ( S * ) ] / J * < - J(log 2)/j0 = - c .

Proof of Proposition 3.10. It follows from Proposition 3.7, Lemma 3.11
and Lemma 3.12 that for every v € SM and every ξ e Xs(v) we have | |dΓί£||
< a \\ξ\\ e~ct for / > 0, where a > 0 and c > 0 do not depend on f or v.
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T h e r e f o r e \\dTtξ\\ > (1/ά) \\ξ\\ e~ct for t<O,ve SM a n d ξ <= Xs(v). If v e SM
and ξ € Xu(v) are given, then ξ = dS(η) e Xs(—v) by Proposition 2.4. Hence
for / > 0, \\dTtη\\ = \\dTtdS(ξ)\\ = \\dSodT_tξ\\ = \\dT_tξ\\ > (l/a)\\ξ\\e<" =
(1/ά) \\η\\ ect. For / < 0, v β SM and η e Xu{v) we have \\dTtη\\ <a\\η\\ ect.
Therefore, for any v e SM, it follows that Xs(v) Π Xu(v) = {0}, and by
Proposition 3.8 we have (SM)υ = Xs(v) 0 Xu(v) 0 Z(v). If we set X*(v) =
= ^X^) and Z * ^ ) = Xu(v)9 then the conditions for an Anosov flow are
satisfied.

Proposition 3.13. Let the geodesic flow in SM be of Anosov type. Then
M admits no nonzero perpendicular Jacobi vector field Y on a unit speed
geodesic γ such that \\ Y(i)\\ is bounded above for all t ζ. R.

This is the result that 1) implies 4) in Theorem 3.2.
Proof. Suppose that there exists a nonzero perpendicular Jacobi vector

field Y on a unit speed geodesic such that || Y(t)\\ < c for some number c > 0
and all teR.lt v = γ'(0), let ξ € (SM)Ό correspond to Y. Choose k > 0 so
that the sectional curvature satisfies the condition K> —k2. Since Y is
perpendicular, (ξ, V(v)y = 0, and ξ e Xs(v) Π Xu(v) by Proposition 2.12.
For any t e R, dTtξ e Xs(Ttv) Π Xu(Ttv) and ||Ko dTtξ\\ <k\\dπo dTtξ\\<kc
by Proposition 2.11. Hence \\dTtξ\\ < c(l + kψ2 for all t. By the definition
of an Anosov flow, we may write ξ = ξλ + ζ2 + ξz, where ξ1 e Xf(v), ξ2 e
X*(v), and f3 = eV(v) for some number e € R. It is easy to show that HdT^H
= || f3|| for all / e R, since dTtV(w) = F(Γβw) and || F(w)|| = 1 for all w e 5M.
By the properties of the spaces Zf('y) and X*(v), it follows that if ξ1 Φ 0,
then Hέ/Γtf || -> + oo as /-^ - c o , while if £2 ̂  0, then \\dTtξ\\ -> + oo as
/ -> + oo. Therefore ξ1 = ξ2 = 0, but this contradicts the assumption that ξ is
nonzero and orthogonal to V(v).

Corollary 3.14. Let the geodesic flow in SM be of Anosov type. Then
X*(v) = Xu(v), and X*(v) = Xs(v) for every v € SM. In particular, the spaces
X*(v), X*(v) are always of dimension n — 1.

Proof. Let ξ e X*(v) be given. By Propositions 3.8 and 3.13, we can
write ξ = ξ! + ξ2 + f3 where ξλ € Xs(v), ξ2 6 Zw(i;) and f3 = eV(v) for some
eeR. By Proposition 1.7, 5), <dΓ tf l 9 V(Ttv)> = <dTtξ2, V(Ttv)> = 0 for
any t e R, and hence ||f3||

2 = \\dTtξ3\\2 < \\dTtξ3\\2 + \\dTfa + ξ2)\\2 = \\dTtξ\\2.
ξ3 = 0 since f e X*(v}. If f2 ^ 0, then by Proposition 3.13 and the proof of
Proposition 3.10, \\dTtξ2\\-> oo and HdΓ^H -* 0 as / ^ + oo. It would follow
that UdΓjfll—> oo as / ^ + o o , contradicting the hypothesis that ξeX*(v).
Therefore ξ = ξλ e Xs(v) and X*(y) c : Xs{v). Similarly one shows that X*(v)
C Xu(v). Since In - 2 = dim X*(v) + dim Z*(ι;) < dim Xu(v) + dim Z s(i;)
= 2 π - 2 , we see that Xs(v) = X*(v) and Xu(v) = Z*(v).

Proposition 3.15. // /Λe geodesic flow in SM is of Anosov type, then pro-
perty 5) of Theorem 3.2 holds.

Proof. Part 1) of property 5) is a consequence of Propositions 3.7 and
3.13. To establish part 2) of property 5), it suffices to show that g(t) > aect
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for t > ί0 > 0, where a, c, and ί0 are suitably chosen positive constants. This
result has also been proved by W. Klingenberg. By the remarks in the proof
of Proposition 2.15, it suffices to prove this property for the function g(i)
defined relative to the Jacobi fields of the universal Riemannian covering H of
M.

Let v <= SH and f € (SH)V be given such that <?, V(v)) = 0, dπξ = 0, and
||f || == 1. By the remark preceding Proposition 3.7, the geodesic flow in SH is
of Anosov type, and one can show, either directly or by means of Remark
2.3, 2) and Corollary 3.14, that the subspaces X*(v) and X*(v) are orthogonal
to V(v). We may therefore write ξ = ζ1 + ξ29 where ξ1 e X*(v), and f2 6 X*(v).
? ! ^ 0 and f2 Φ 0, by either Proposition 2.9 and the Anosov conditions, or
Propositions 2.6 and 3.14. We show that there exist constants ε > 0 and δ > 0,
independent of ξ, fx and ξ29 such that | |? 2 | | > ε and H&H < δ.

Suppose that no such constant ε > 0 exists. Then we can find sequences
vn c SH and ξn, ξ.Un, ξ2>n c (SH)Vn, such that for every n, ξn = ξun + ξ2>n,
fi.» e **(*»), ξ2tn € Z * K ) , <fn, F ( y > = 0, ̂ fn = 0, ||fn|| = 1, and ||f2,n||
—> 0 as AZ -> oo. Since ||flfn|| —> 1, it follows from Proposition 1.12 that there
exist isometries1^ of H and vectors ξ*, ff e T(SH) such that by passing to a
subsequence, f* =.dΓ# l lfn ->f*,:f*n = 4Γ#βf l fn -> ff, and ξ*n = dTφJ2,n

-* 0, where Γ^ = d^n. Since T ^ : SH-+SH is an isometry, f*n g X*(Tφnvn) for
every integer w by Proposition 1.5, 2). ff 6 -4* = (Jβesir^f W> s i n c e ^s* i s

closed in T(SH). If f * is tangent to 5/ϊ at v, then by continuity f * = f * e Z*(v),
<f*, F(v)> = 0, ίίTΓf* = 0, and | |?* | | = 1. This contradicts the remarks of
the preceding paragraph.

We next show that the angle between the subspaces Xf (v) and X*(v) is
uniformly bounded away from zero, that is, there exists a number σ (0 < σ < 1)
such that for any v € SH and any unit vectors ξ 6 Xf(v) and η e XZ(v), we
have \(ξ,rf)\ < σ. If this were false, then by arguing as in the previous para-
graph we would be able to find a vector v e SH and unit vectors ξ e Xf(v),
η € X*(y) such that | <£, η) \ = 1. This would imply that ξ = ± η, which con-
tradicts the fact that Xf(v) Π X*(v) = 0.

Let :f• =F ξ! + ?2 be defined as in the second paragraph of the proof. Let
ε > 0 and σ > 0 be the constants chosen above and let δ = l/(2ε(l — σ)).
Then 1 = ||f, + f2||

2 = (HftH - ||f2||)
2 + 211̂ 11 ||f2||{l + Kf^f^/dlfJI ||f2||)]}

> 2 ε | | f 1 | | ( l - σ ) , or I^U < <5.
Let f = f i + f2 be as above, and let a, b, c be the positive constants ap-

pearing in the definition of Anosov flow. For t > 0, \\dTtξ\\ > H^Γ^H —
WdT&W > b \\ξ2\\ ect - a HftH e~ct > bεect - aδe'ct > (bε/2)ect for sufficiently
large t > 0. If k > 0 is chosen so that the curvature satisfies the condition
K>-k\ then | |dΓ t£| | < (1 +k2 coth2(kί))1/2 \\dπ o dTtξ\\<(l+4k2)ι/2 \\dπodTtξ\\
for sufficiently large / > 0 by Proposition 2.7. Therefore there exists a number
t0 > 0, depending only on a, b, c, δ, ε and k, such that \\dπodTtξ\\ > aect for
t > t0, where a = bε/[2(l + 4k2)1/2]. Since ξ was an arbitrary unit vector in
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T(SH) satisfying <£, V(v)> = 0, \\ξ|| = 1, and dπξ = 0, it follows that g(t)
> aect for * > /0.

Proposition 3.16. // condition 5) o/ Theorem 3.2 /ιo/ί/5, ί/ien ί/ie geodesic
flow in SM is of Anosov type.

Proof. By Proposition 2.15, 0 < l/g(t) < oo for any / > 0, and for any
number a > 0, {s > 0: l/g(s) > a} — {s > 0: g(s) < I/a} is an open set in
(0, oo). Since l/g(t) is semi-continuous and finite, the Lebesgue integral

J oo /» oo

[1 /g(*)]Λ makes sense. For s > 0 let ψ(s) = j [1 /g(ί)]dί. Then it follows
1 S

that ψ(s) - ^ 0 as 5-> + o o . Clearly ψ(s) is monotone decreasing in s, and the
Lebesgue convergence theorem shows that for any integer n > 0, ψ(n) =

1

If sQ > 0 is the constant of property 5), we show that there exists a constant

B > 0 such that if ξ € Ά, = L U s * ^ W . ώen II ^ f II < 5 Ψ W II?II for s > sQ.
Given v € SM, construct an adapted frame field along γv, and consider the

matrix equation (J). We show that for some number Bf > 0, independent of
v and the frame field, ||£>0)|U < B'ψ(ϊ) for s > s0. For s > 0, D(s) =

A(s) I A~\u)A~ι{u)*du = A(s)A~λ{u)A~\ύ)*du, since A(s) is a constant

matrix. The following relations hold: a) For s0 < s < u, \\A(s)A~ι(u)\\oo < I/A,
where A > 0 is the other constant of property 5) b) H ^ " 1 ^ ) ^ < \/g(u) for
any number u > 0. To see this, let x e Rn~ι be an arbitrary unit vector, and
let y = A~\u)x. If Y{i) = A(t)y, relative to the adapted frame field, then a)
\\A(s)A-\u)x\\ = | | y ( j ) | | < {l/A) \\Y{u)\\ = (I/A) \\x\\ = I/A for so<s<u;
and b) 1 = ||jκ|| = \\A(u)y\\ = | |y | | \\A(u)(y/\\y\\n ^\\y\\ g(u) - \\AHu)x\\g(μ)
for u > 0. Since x is arbitrary, the results a) and b) follow/Recall that for
any positive integer k we may define a norm || \ "on the set of k X £ matrices
by setting H^l^ == max {|^|: 1 < /,/ < k), for any matrix A = (aί0). It is
easy to show that (l/]fc) \\A\\^ < \\A\\λ < k1/2 \\A\\... If * denotes the transpose
operation, then ^W^Kk^W^kWAlKk^WAlU. Hence for s > s0, \\D(s)\\^

Γ A{s)A-ι(u)A-ι{u)*du < (n - 1) C A{s)A~ι(ύ)A~ι(u)*du\ <

(n-1) Γ \\A(s)A-i(u)A-1(u)*\\1du<(n-lY'2 j°° \\A(s)A-\u)\\i!,\\A-ι(u)*\ldu
s s

< [(π - If/A] J " IIΛ-'OOII.dH < [(/i - l)3/v4] J " [l/*(κ)]dιι = B'ψ(s),

where β 7 = (n — ί)z/A. In the inequalities above, the real valued integrals
may be viewed as either improper Riemann integrals or Lebesgue integrals.
If f 6 Xs(v), then Yξ(s) = D(s)x for some vector x e Rnl. Therefore, if s > sQ,
then \\dπodTsξ\\ = | |D(J)Λ | | < \\D(s)Ux\\ < B'ψ(s) \\dπξ\\ < B'ψ(s) \\ξ\\. Since
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\\KodT8ξ\\ < k\\dπodTsξ\\ by Proposition 2.11 (the curvature satisfies the
condition K > -k2), \\dTsζ\\ < Bψ(s) \\ξ\\ for s > s0, where B = B'(l + kψ2.
For any s > 0, let φ{s) = sup \\\dTsξ\\: ξ e As, \\ξ\\ = 1}. The previous para-
graphs show that φ(s) < Bψ(s) for s > s0, and thus φ(s) —> 0 as s —> oo. By
Lemma 3.11, φ(s) is bounded above for s > 0, and 00 + /) < φ(s) φ(i) for
any numbers * > 0, / > 0. By Lemma 3.12, φ(s) < ae~cs for all s > 0 and
suitable numbers a > 0 and c > 0. Using the same argument found in the last
paragraph of the proof of Proposition 3.10, we see that for every vector v <= SM,
(SM)V = Xs(v) © Xu(v) 0 Z(v), where ZSO) and Zα(i;) satisfy the Anosov
conditions 2) i) and ii) of Definition 3.1.

This completes the proof of Theorem 3.2. Propositions 3.15 and 3.16 to-
gether show that if condition 5) holds, then g(ί) > aect for t > ί0 > 0, where
a > 0, c > 0 and ί0 > 0 are suitably chosen.

Proof of Corollary 33. By the discussion in § 1, condition 5), i) of Theorem
3.2 holds when A — \ and ,y0 = 0. Hence condition 3) of Corollary 3.3 and
condition 5) of Theorem 3.2 are equivalent for manifolds without focal points.
We now prove that condition 2) of Corollary 3.3 and condition 4) of Theorem
3.2 are also equivalent for manifolds without focal points. If Y is a non-
zero perpendicular Jacobi vector field on a unit speed geodesic γ such that
Y'(t) = 0 for every real number ί, then | |F(ί)| | is a constant function. Thus
condition 4) of Theorem 3.2 implies condition 2) of Corollary 3.3. Before
proving the converse we need some preliminary observations.

Let γ be any unit speed geodesic in M, If a Jacobi vector field Z is in
Λ(r)(Λ*(7))> then the function ||Z(ί)|| is nonincreasing (nondecreasing) in ί.
Let a vector field Z e Js(γ) and arbitrary real numbers a < b be given. Relative
to the constants A = 1 and^^O, the condition of Proposition 2.13 is satisfied.
Therefore ||Z(/)|| < ||Z(0)|| for all real numbers t> 0 by 1) of Proposition
2.13. For each real number u, let γ*(u) = γ(a + u) and Z*(w) = Z(a -f u).
Since ||Z*(κ)|| < ||Z(0)|| for u > - α , it follows from Proposition 2.12 that
Z* β Λ0-*). The reasoning above then implies that ||Z(6)|| = ||Z*(6 — a)\\ <
||Z*(0)|| = ||Z(fl)||. Therefore ||Z(*)|| is nonincreasing in t. If Z e Ju(γ), then a
similar argument shows that ||Z(*)|| is nondecreasing in /.

Let γ be any unit speed geodesic in M, and consider the Jacobi equation
(J) relative to some adapted frame field along γ. We assert that the symmetric
matrix U(s) = D/(s)D~1(s) is negative semidefinite for every real number s.
Let a real number s and a nonzero vector y eR71'1 be given. Since D(s) is
nonsingular by Lemma 1 of [6], there exists a vector x e R71'1 such that
D(s)x =y. If Z is the vector field in Js(γ) represented by the curve s-+D(s)x,
then the previous paragraph implies that (U(s)y, y} = (U(s)D(s)x, D(s)x} =
<P'(s)x, D(s)x} = J ||Zλx||2/O) < 0. (In this case, < , > denotes the usual inner
product in R71'1). Therefore U(s) is negative semidefinite.

Suppose now that Y is a nonzero perpendicular Jacobi vector field on a unit
speed geodesic γ such that || Y(/)|| is uniformly bounded above for all t e R.
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When we show that Y'(ί) = 0 for all ί e R, it will follow that condition 2) of
Corollary 3.3 implies condition 4) of Theorem 3.2. It follows from Proposition
2.12 that Y e Js(γ) Π Ju(γ). Remarks above imply that the function || Y(ί)|| is
both nonincreasing and nondecreasing in ί, and hence is constant. Relative to
an adapted frame field along γ, we may choose a nonzero vector x € R71'1 such
that Y corresponds to the curve s^D(s)x. We find that (U(s)D(s)x> D(s)x} =
ζD'(s)x, D(s)x} = \1| Y||2/0) = 0. Since U(s) is negative semidefinite, it follows
that D'(s)x = U(s)D(s)x = 0 for every number s. Since D(0) is the identity
matrix, D(s)x — x for every s. Therefore Y is a parallel vector field.

Proof of Corollary 3.4. If Y is a nonzero perpendicular parallel Jacobi
vector field along a unit speed geodesic γ, then || Y(ί)\\ is a constant function
and Y 6 Js(γ) Π Ju(γ) by Proposition 2.12. Therefore the geodesic flow in SM
is not of Anosov type by Theorem 3.2. Corollary 3.4 is now an immediate
consequence of the following:

Proposition 3.17. Let M be a complete manifold without conjugate points.
Let E be a nonzero perpendicular parallel vector field along a unit speed
geodesic γ such that K(E, γ')(t) > 0 for every real number t. Then K(E, γ')(t)
= 0 for every real number t, and E is a Jacobi vector field along γ.

Proof. Relative to an adapted frame field along γ, let the constant curve
x e Rn~λ represent the parallel vector field E. Without loss of generality, we
may assume that \\E(s)\\ = 1 so that x is a unit vector. The curvature hypothesis
and the definition of the matrix R(s) together imply that (R(s)x, x)=K(E, γ')(s)
> 0 for every real number s. Let y{s) = ζϋ(s)x, *>, where U(s) = D/(s)D~1(s).
The function g(s) = {\\U(s)x\\2 - <U(s)x,x}2 + <R(s)x,x}} is > 0 for every
number s by the Schwarz inequality and the curvature hypothesis. Since U(s)
is a symmetric solution of the Riccati equation

(R) U'(s) + U(sY + R(s) = 0 ,

it follows that y(s) satisfies the equation

y(s) + y(s)2 + g(s) = 0 .

For a given positive number ε, g(s) > — ε2 for every real number s. Since y(s)
is defined for every real number s, it follows that \y(s)\ < ε by either Lemma
2.1 of [5] or the essentially identical argument in [9]. Since ε is arbitrary,
y(s) ΞΞ 0 and therefore g(s) = 0. It follows that K(E, γ')(s) = ζR(s)x, x} = 0
and ||[/O)jt||2 — (U(s)x, x}2 = 0 for every number s, since both terms are
nonnegative and their sum is g(s). Since 0 = y'(s) = (U'(s)x,xy, it follows
from equation (R) that \\U(s)x\\2 = (U(s)2x,xy = 0. Therefore U'(s)x = 0,
and it follows again from equation (R) that R(s)x = 0. By the definition of
R(s), Rr,wE(s)f(s) = 0. Finally, E"(s) + Rr,iS)E(s)γ'(s) = 0, and E is a Jacobi
vector field.
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Proof of Corollary 3.5. Suppose that M has no focal points and satisfies
the condition of Corollary 3.4. If the geodesic flow in SM is not of Anosov
type, then Corollary 3.3 implies that there exists a unit speed geodesic γ in M
which admits a nonzero perpendicular parallel Jacobi vector field Y along γ.
Choose an adapted frame field along γ. Since Y e J8(γ), we may choose a vector
x β Rn~ι such that Y corresponds to the curve s—>D{s)x relative to the adapted
frame field. Since Y is parallel, D(s)x = x for every number s, and therefore
D\s)x = 0. We see that U(s)x = D'(s)D-χs)x = D'(s)x = 0, and it follows
from equation (R) that R(s)x = 0. Therefore K(E, γ')(s) = <R(s)x, x} = 0,
which contradicts the hypothesis that M satisfies the condition of Corollary
3.4. This contradiction completes the proof of Corollary 3.5.

We conclude by constructing examples of compact Riemannian manifolds
with curvature K < 0, Anosov geodesic flow, and open subsets where the
sectional curvature is zero on all tangent planes.

We first construct a special convex function. The construction is due to H.
Karcher.

Lemma 3.18. Let numbers b > 0 and ε > 0 be given. Then there exist a
number 0 <a < b and a C°° function f: R-+R such that f\x) > 0 for all
x, f(χ) = x for x < a, and f(x) — sinh x for x > b + ε.

Proof. Because of the convexity condition, the function / must always lie
on one side of its tangent line, so the number a cannot be chosen arbitrarily
close to b. The tangent line at b of the curve y(x) = sinh x is given by the
equation t(s) = sinh b + (cosh b)(s — b). Let 0 < α* < b be chosen so that
t(a*) = α*. If we consider the broken line segment defined by the condition
that y(x) = x for x < α*, and y(x) = t(x) for x > α*, then we shall obtain
the desired function / by smoothing the first derivative of y(x) in the neigh-
borhood of α* and b. More exactly, we shall find a C°° function K(x) such

that f{x) = I K(x)dx. We need a function K(x) such that K(x) = 1 for 0 <

0

x < a, where a is some number near α* K(x) = cosh b in some interval
between α* and b, and K(x) = cosh x for x > β, where β is some number
near b.

Given ε > 0, we may assume that ε is so small that α* + ε < b — 2ε. We
first construct a nonnegative C°° function φe(x) such that φε(x) = 1 for x > ε,
and φε(x) = 0 for t < - ε . If A(JC) = 0 for JC < 0, and h(x) = e~ι/χ2 for x > 0,
thenΛ(jc) is C00. We define a C°° function gε(x) by requiring that gε(x) = e~ε2/(ε2~χ2)

tor -ε<x<ε, and geW = 0 for \x\ > ε. Let φe(x) = f*ge(y)dy j ' f gε(y)dy.
— e — e

φε(x) has the properties desired, and moreover I φε(x)dx = ε, since for any

x > 0, 1 - 0,(*) = ^ . ( - Λ ) .

Let m = cosh b, and let F(x) = 1 + (m — 1)0£U — α*). Then F(x) is a
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C°° function such that F(JC) = 1 for JC < 0* — ε, and F(JC) = m for x > a* + ε .

If G(JC) = C* F(y)dy, then G(x) is C°°, G(JC) = JC for JC < 0* - ε, and G(JC)

0

= ί(x) for JC > α* + ε. This completes the first step in the construction of the
function K(x).

To define K(x) near b, we need a C°° function //(JC) > max {m, cosh JC},
which agrees with max {ra, cosh JC} outside a small neighborhood of b. For
any number r, let ψr(x) = (smhx)φε(x — r). Then 0 < ψr(x) < s inn* for
JC > 0. If r — b — ε, then ψy(jc) = 0 for JC < b — 2e, and -ψv( t) = sinh x for
x > b. If r = b + ε, then ψr(jc) = 0 for JC < £>, and ψr(x) = sinh t for

/

δ f*r + ε

ψr(x)dx — I [sinhx
r-e δ

— ψv(jc)]djc, then we see that for some r0 e (b — ε, b + ε), I ψro(x)dx =
ro-e

J ro + ε px

[sinhjc—ψro(jc)](ijc. If H{x) — m+ I ψvo(;y)d;y, then H(x)>max{m, cosh JC}
δ 0

for JC > 0, and H{x) = max{m, cosh JC} for |Λ — b\ > 2ε.
Finally, for any number r let Kr(x) = F(JC) + (H(JC) — F(JC))^6(JC — r). Then

F{x) < Kr(x) < H(x) for JC > 0, Kr(x) = F(x) for JC < r - ε, and Kr(x) = H(x)
for x > r + ε. If r = Z? — ε, then Kr(x) > max{ra, coshx} for x > a* + ε
if r = fc + 3ε, then Kr(x) < max {m, cosh JC} for JC > α* + ε. By continuity
we can find a number rx e [b — e, b + 3ε] such that I Kri(jc)dΛ: =

δ-2e

Γ Smax {m, cosh JC}̂ JC. If ^C(JC) = Krι(x), then /(JC) = \ x K(y)dy is a C00

δ-2ε 0

function such that /(JC) = JC for JC < α* — ε and /(JC) = sinhjc for JC > b + 4ε.
Since /'(x) = X r i(x) is monotone nondecreasing, j"{x) > 0 for all x. Replacing
ε by ε/4 and setting a = α* — ε, we obtain a function with the properties
described in the statement of the Lemma.

Let M be a compact C°° Riemannian manifold of dimension n > 2, metric
g, and sectional curvature K = — 1. Fix a point p e M. It is known that the
exponential map &: Mp —* M is a covering map. Let N be a covering neigh-
borhood of p, and d be a positive number such that & maps the closed ball of
radius d and center {0} diffeomorphically onto its image F C i V . By modifying
the metric g inside F o , the interior of V, we obtain a new Riemannian manifold
M* with Anosov geodesic flow and curvature K* < 0 such that ίC*(7r) = 0
for each 2-plane TΓ tangent to an arbitrary point of a small p-neighborhood
ί/o C F o .

For any positive number or, let #α(0) denote the vectors in Mv whose g-norm
is less than a. Bd(O) — {0} can be represented diffeomorphically as a product
(0, d) X Sn~ι by means of the projections π: Mp - {0}->(0, oo)5 (π(x) = ||JC||),
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and η: Mp — {0} —> Sn~\ (η(x) — */| |Jt | |). Let g also denote the unique metric

in Bd(0) such that k: Bd(0) —> F o is an isometry. Let x e Bd(0) be given, and

let v and w be vectors in (Mp)x. If JC = 0, then (v, wyg is the usual Euclidean

inner product. If x Φ 0, then

(*) <v, w)g = <τr*tf, TΓ^W) + (sinh2 ||*||)<9*i;, 5?*w> ,

where the inner products on (0, oo) and S71'1 are the usual ones. By Lemma
3.18 we may choose positive numbers a and b such that a < b < d, and a C°°
function /: R-+R such that /"(/) > 0 for ί > 0, /(*) = ί for 0 < t < a, and
f(i) = sinh /for * > Z>. By substituting the quantity f(\\x\\) for the quantity
sinh21| JC|| in the expression (*), we obtain a new C°° metric g on Bd(0) (see [3,
pp. 33-34]). Define a metric g* in M as follows: Let g* = g in M — F o ; in
F o let g* be the unique metric such that k: Bd(O) —> Vo is an isometry with
respect to the metrics g and g*. The metric g* is C00 on M, since it is C°°
inside F o = k(Bd(0)), and it is equal to g in F o — &(i?δ(0)). Let <? be an
arbitrary point of M, and π be an arbitrary 2-plane tangent to M at q. Using
the curvature formula of [3, p. 27] we see that 1) £*(ττ) < 0, 2) £*(ττ) = 0
if q € C/o = A(Bβ(0)) C F o , and 3) K*(π) = -1 if q e M - S ^ δ

If M* denotes the manifold M furnished with the metric g*, then we assert
that the geodesic flow in SM* is of Anosov type. Since K* < 0, by Corollary
3.5 it suffices to show that every geodesic of M* meets M* — F o . Suppose
that some geodesic 7* of M* is contained in F o . Let g* also denote the unique
metric in Mp such that k: Λfp —> M* is a local isometry. Since F o is contained
in a covering neighborhood of the map k, there exists a g*-geodesic f in M p

such that koγ = γ* and γ is contained in Bd(0). Since M p with the metric g*
is complete and has curvature K* < 0, the geodesic γ realizes the distance
between any two of its points and cannot be contained in the compact set
Bd(0). This contradiction shows that γ* meets M* — F o .

We may further modify the metric g* on M so that the g*-geodesic flow is
of Anosov type and all g*-sectional curvatures at points of a larger open subset
of M are identically zero. Let {Ua}, a e S, be a collection of pairwise disjoint
open subsets of M, and for each a let pa be a point of Ua. Let ka: M P α —> M
denote the g-exponential map at pa, and choose a number da > 0 so that
&α: # d α(0) —> Va C J7β is a diffeomorphism. Obtain a new metric g* on M by
modifying the original metric g inside each set Va in the manner described
above. The manifold M* with the metric g* has sectional curvature K* < 0,
and the sectional curvature vanishes in a neighborhood of the set {pa}. The
geodesic flow in SM* is of Anosov type a connectedness argument shows that
no maximal g*-geodesic is contained in the union of the sets Va since these sets
are disjoint covering neighborhoods and Bda(0) ci MPa is compact.



WHEN IS A GEODESIC FLOW OF ANOSOV TYPE? I 463

Bibliography

[ 1 ] D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curva-
ture, Proc. Steklov Inst. Math. Vol. 90, 1960.

[ 2 ] R. L. Bishop & R. J. Crittenden, Geometry of manifolds, Academic Press, New
York, 1964, 220-226.

[ 3 ] R. L. Bishop & B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math.
Soc. 145 (1969) 1-49.

[ 4 ] L. W. Green, Geodesic instability, Proc. Amer. Math. Soc. 7 (1956) 438-448.
[ 5 ] , Surfaces without conjugate points, Trans. Amer. Math. Soc. 76 (1954)

529-546.
[ 6 ] , A theorem of E. Hopf, Michigan Math. J. 5 (1958) 31-34.
[ 7 ] D. Gromoll, W. Klingenberg & W. Meyer, Riemannsche Geometrie im Grossen,

Lecture Notes in Math. Vol. 55, Springer, Berlin, 1968, 43-46.
[ 8 ] P. Hartman, Ordinary differential equations, Wiley, New York, 1964, 384-396.
[ 9 ] E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A.

34 (1948) 47-51.
[10] W. Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, pre-

print, Bonn, 1970.

UNIVERSITY OF BONN






