
J . DIFFERENTIAL GEOMETRY
8 (1973) 383-400

EXTREMAL SETS OF p-TH SECTIONAL CURVATURE

ANN STEHNEY

The object of this paper is to study the pointwise behavior of the p-th order
sectional curvature function a of a Riemannian manifold M. At m e M, σ is a
real-valued function on the compact Grassmann manifold ^ of p-planes in
the tangent space Mm of M at m. We shall describe the subsets of & on which
σ assumes its maximum and minimum.

We shall work in the setting of an arbitrary inner product space V and
arbitrary integer p (2 < p < d i m F ) . A p-th curvature operator is a self-
adjoint linear transformation R: Λp —» Av, where Λp = ΛP(V) has the inner
product induced by that of V. (For example, if V = Mm and p is even, the
Riemannian p-th curvature operator Rp as defined by Thorpe [4].) The
Grassmann manifold ^ of oriented p-planes in V is viewed as a subset of the
unit sphere in Λp.

For R in the vector space 0t of p-th curvature operators, we consider its
sectional curvature σR: ^ —> R given by

With respect to the inner product

<Γ, C/> = tr T o £/ (T,U e@) ,

& decomposes orthogonally into Sf 0 US, where ^ is the span of the Gras-
smann quadratic p-relations which define ^ :

& = {azΛp\ \\a\\ = 1 and <S(α), α> = 0 for all S ε ^} ,

and ^ is the subspace of operators satisfying generalized Bianchi identities
(for p = 2, the usual first Bianchi identity for a Riemannian curvature
operator). The first section of this paper is devoted to this decomposition of
0t. We show that R <= Si and σR = 0 imply R = 0. It follows that ^ is the
set of curvature operators whose sectional curvature is identically zero.

In § 2 we find a basis for S?. This gives a reduction of the Grassmann
quadratic p-relations to a minimal set of conditions. We believe that this
result in exterior algebra is new and so we state it here (cf. Lemma 1.1).
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Theorem A. Let {xλ, , xn} be any basis for V. The p-vector

a = Σ 0Cix...ιpXiι Λ • Λ Xip

is decomposable if and only if its Plucker coordinates aίl...ip satisfy

P + l

Σ (~^k(Xh'~ik...ip + 1

(XikJi~-Jp-i ~ ^

for all 1 < ^ < - - < ip+ί < j p _ 1 9 1 < /Ί < < jp-ι < n such that

Our main theorem asserts that for any curvature operator R, the set of
p-planes in V on which σR assumes its maximum or minimum is the intersec-
tion of ^ with a linear subspace of Λp. In particular, we prove

Theorem B. If Re& and σR > 0, then there exists S e S? such that

{& e &\σR(0>) = 0} = 0 Π Ker (R - S) .

The case of an arbitrary minimum or maximum is an easy consequence of
this special case.

To prove the main theorem, we shall prove that if βP is a critical point of
σR, and σR(^) vanishes, then there exists Sg, e S?9 in fact unique modulo
elements of & which annihilate &9 for which 9 β Ker (R — S,). Since Ap is
finite dimensional, we may piece together these unique S/s into an S which
has the desired property.

The theorem is a generalization of Thorpe's result [5] for p = 2. We have
omitted proofs of several steps where the obvious generalization of Thorpe's
proof is valid. The main difficulty in the proof for p > 2 is in finding an S
which "works" simultaneously for two arbitrary planes & and Q on which σR

vanishes. Such an S must have the correct orthogonal projections, namely Sg,
and SQ, onto the orthogonal complements of the annihilators of & and Q, and
so S exists if and only if S? and SQ have the same projections onto the inter-
section of these orthogonal complements. We use our basis for £f to find this
intersection explicitly. If (0P + Q)/\\έP + Q\\ is not in <39 this intersection has
dimension 1 and we find a basis for it. If (β* + Q)/\\έ? + Q\\ is in ̂ , then 3P
and Q determine a circle in ̂  of planes on which σR vanishes. The fact that
zero is an extreme value of σR is used only in this case and only to show that
each plane in the circle is a critical point of σR. An example shows that the
hypothesis of the theorem cannot be weakened to include the case of a non-
extreme critical value of σR.

Although the theorem holds in a general setting, our main interest is the
p-th curvature operator arising on a tangent space Mm of a Riemannian mani-
fold. Specifically, let A denote the Riemannian curvature tensor at m in M,
and let R(x19 x29 x39 xA) denote the real number ζA(x19 x2)x3, *4> for xteMm.
For even p, the Riemannian p-th curvature operator Rp is defined in [4] by
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u, A Λ up), V i Λ Λ v p >

Σ εtoe(i3)#(wα i, wα2, ̂ , v Λ ) . . -R(uβp_ι9 uap, vβp_l9 vβ) ,

where wί? ^ e Mm, Sp is the permutation group on (1, , p), and ε(a) is the
sign of a e Sp. If n (=dim M) is even, the sectional curvature of Rn is the
Lipschitz-Killing curvature of M at m and therefore (the value at m of) the
Euler integrand according to the generalized Gauss-Bonnet theorem. This
suggests that more geometric information about how the curvature tensor
depends on sectional curvature might help to resolve the conjecture that a
Riemannian manifold with positive sectional curvature (p = 2) has a positive
Euler characteristic. Thorpe [6] has characterized the curvature tensors of
positive sectional curvature for n < 4. If the generalization of his result proved
valid, it would provide a geometric explanation for the phenomenon of our
Theorem B.

This paper includes the main results of the author's doctoral dissertation
at the State University of New York at Stony Brook. I take great pleasure in
thanking Professor John A. Thorpe for his guidance and encouragement as
both my teacher and my advisor.

1. Decomposition of the space of curvature operators

Let V be an ^-dimensional real inner product space. For p an integer,
1 < P < n, let ΛP(V) or simply Λp denote the space of p-vectors of V. We
recall several facts about Λp. A p-vector a is called decomposable if it can be
written in the form uλ Λ Λ up with ut β V. Any basis E = {e19 , en)
for V induces a basis {eh Λ Λ eip | ̂  < < iv) for Λp consisting of
decomposable p-vectors. It follows that d i m ^ = CnfP. An arbitrary p-vector
is of the form

a = Σ ^ . . . i /ΰ Λ Λ e
p

where the summation extends over all 1 < ix < < ip < n. The coefficients
ah...ip, skew symmetric in their indices, are called the Plϋcker coordinates of
a with respect to the basis E. We define an inner product for Λp on decom-
posable p-vectors by

<«! Λ Λ up, vί Λ Λvp} = det [(uu Vj}] ,

where ut, Vj e V. It is easily seen that the basis for Λp induced as above by
an orthonormal basis for V is itself orthonormal.

We may identity the Grassmann manifold ^ of oriented p-dimensional sub-
spaces of V with the submanifold of Λp consisting of decomposable p-vectors
of length one by
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& <-> ux Λ A up ,

where {u19 , up} is an oriented orthonormal basis for 9. Elements of 9 will
be called p-planes.

We will say that a e Λp contains x e V as a wedge factor iί a = x Λ η tor
some 27 e ^ " K F ) -

Let &p, or simply ^ if p is fixed, denote the vector space of all self-adjoint
linear transformations on Λp, with inner product (T, ί/> = tr To [/. Elements
of ^ will be called p-th curvature operators on V. We associate to each R e &
its p-th sectional curvature function σR: ^ -+R defined by σR(^) = (R(&)9 ^ >

Note. The Plϋcker coordinates of a e Λp will be denoted as above by sub-
scripted α's. A caret Λ above a symbol indicates that that term or index is to
be omitted.

Let a (not necessarily orthonormal) basis {e19 , en) be chosen for V. The
following result is well known. For a proof, see Hodge and Pedoe [1, pp. 309 ίϊ].

Lemma 1.1. {The Grassmann quadratic p-relations). The p-vector a is
decomposable if and only if its Plϋcker coordinates satisfy

p + l

for all 1 < ίk9jm < n.
For ordered sets / = (i19 , ip+1) and / = (j19 , jp^), 1 < ik, j m < n, we

define the quadratic form Sfj on A9 by

Clearly a € Λp is decomposable if and only if Sfj(a) = 0 for all such / and /.
Each Sfj will be called a (Grassmann quadratic) p-relation. To avoid ambiguity,
it may be necessary to write Sf1...ίp+lJl...Jp_1 for Sfj.

Let Zf* denote the subspace generated by the p-relations in the vector space
of quadratic forms on Ap. Since any S* e Sf* is a linear combination of those
given by (2), S*(a) = 0 for all decomposable a. Lemma 1.5 will show that
this property characterizes S?*9 that is, 5* is in Sf* if and only if S*(a) = 0
for all decomposable a. Lemma 1.4 and the remark preceding it will show
that the set ̂ * is independent of the choice of basis.

The set of p-relations {Sfj}, which by definition spans S?*9 is far from
linearly independent. In fact, routine computation shows that Sfj is alternating
in the sets / and /. That is, if σ and τ are permutations of p + 1 and p — 1
elements respectively, then

SΐiDτiD = B(σ)ε(τ)Sfj ,
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where ε denotes the sign of the permutation. The sets / and / need not be
disjoint. It will be shown in § 2 that they may have as many as p — 2 elements
in common without Sf7 vanishing. If, however, / C /, then Sfj is identically
zero on Λp. To span £?*, it therefore suffices to consider only pairs of index-
ing sets / and / such that ix < . . . < ip+1, Λ < < j p _ l 9 and {jl9 , jp+1}
<£{h> '>ip+i}' Such a pair of (p + 1)- and (p — l)-tuples will be said to
be standard. A slightly smaller class of sets / and / will index a basis for ^ *
(§2).

Recall that the space of quadratic forms on Λp is naturally isomorphic to
the space of homomorphisms R: Λp —> (Λp)* such that (Rξ)η = (Rη)ξ. An
isomorphism Φ is given by

for R* a quadratic form on Λp and ξ, η e Λp. Let £f be the image of ^ *
under Φ. We shall denote Φ(S*) by S. Elements of Sf will also be called p-
relations. To avoid confusion, we may write ^(ΛP(V)) for the p-relations on
the vector space V.

Since (Sa)a = 25*(α), we have
Corollary 1.2. a € Ap is decomposable if and only if (Sa)a = 0 for all

Let {e19 , en} be a basis for V, and {β1, , en} the corresponding dual
basis for F * . Since ^ ^ ( F ) * ^ A*(V*),

{Ek = ekl Λ Λ β*»11 < kx < -.. < λ p < n}

is a basis for Λp*. Computation shows that the action of SZJ on basis p-vectors
{Ek = ^ Λ Λ ekp\ 1 < kλ < •. < kp < n} is

^/jfex Λ Λ ί i 2 Λ Λ eip+1) = ( - l)» + a + V' Λ ^ Λ Λ e'*-1 ,

( 4 ) 57 J(β< 2 Λ e Λ Λ Λ ^ p_1) - ( - Ό p + ' - V 1 Λ Λ ^ Λ Λ β*»+1 ,

57t/(other basis vectors) = 0 .

We remark that Su is zero on any basis p-vector whose wedge factors are not
chosen from the e^s and e/s. Furthermore, if k e I Π /, then SJJ is zero on
any basis p-vector not containing ek as a wedge factor, and Su(ek A η) =

ek /\ η* for s o m e η* <z ΛP-1*. Therefore, if SZJ has h repeating indices i19 , ih9

then [Su(eai Λ Λ eap)]eβl Λ Λ eβ is nonzero only if {a19 , ap} Π
{ftj J jSp} = O'u J Ϊ'Λ} Such an SJJ is linearly independent of the span of
the p-relations whose repetitions number other than h. Let ^ h denote the span
of the p-relations with h repeating indices.

Let {Ei} be an ordered bases for Λp of decomposables of the form
eiχ Λ Λ eίp with iι < < ip. For S e S?, we consider the symmetric
matrix
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[stj = (SEJEjl 1 < i, / < dim Λ* .

It is easily shown that nonzero entries for S e Sfh and Sf e Sfh> {h! ψ h) can
not appear in the same position in the matrix. We therefore have

Lemma 1.3. Sf is the direct sum of the subspaces Sfh.
When an inner product is defined for Sf, it will be evident that the subspaces

are orthogonal. It would be interesting to know if this decomposition is inde-
pendent of the choice of basis, but we shall not need this information.

Using the inner product on AP(V), we now identify the space of homo-
morphisms R from Λp to Λp* for which (Rξ)η = (Rη)ξ with the space 3t of
self-adjoint linear transformations on Av by (R(ξ), rj) = (Rξ)η. The space of
p-relations will now be considered a subspace of 9t. Equations (4) hold with
the indices of the right hand side lowered.

Let ^?, the space of Bianchi transformations, be the orthogonal complement
in gt of ST. For any S e Sf, the condition (R, 5> = 0 will be called a Bianchi
identity for R. The Bianchi identities have appeared previously in [4] but
were remarked to be equivalent to the condition Alt R = 0. R e & implies
Alt R = 0 but the converse is false [3].

For p = 2, Sf is spanned by {Sίjkl 11 < / < / < k < I < n}, and "R e.&"
is the usual first Bianchi identity for R by Lemma 1.4. The proof of this
lemma uses only the fact that Sf is the span of the Su defined by (2) and (3).
The lemma gives a condition that R e & be orthogonal to Sf without reference
to a basis, and so we indeed have that Sf is independent of the choice of basis.

Lemma 1.4. R e & satisfies the Bianchi identities (R e &) if and only if

( 5 ) Σ M - D X ^ O i Λ Λ ^ Λ Λ wp + 1), wλ A wp+2 A Λ w2p} = 0

for all w19 - , w2p € V.
Note. (5) is often used to define the Bianchi identities, for instance in [2]

and [4]. We shall prove this lemma to emphasize the role of the p-relations
in this definition.

Proof. Let an orthonormal basis e19 , en be chosen for V, and let / , 7
be a standard pair. Then, using (4),

(R, SJJ} = trRoSjj = Σ<R° SJAEJ, Ek} - Σ <
k k

= '£[<R(etlA • • • ΛiuΛ • • • Λ e ( f t l ) , ^ ( A .Λ ΛiuΛ • Λe< f + 1)>

+ (,R(ehA Λ«4JΛ AejpJ, Sjj{ehA • • • Aetl/\ • • • Ae^J}]

= PΣKR(eilA---AέuA---Aeip+ι)Λ-iy+i+1eι,AeJlA---AeJp_1>

+ <R{etιAe]lA • • • Aejrj, ( - D ^ ^ ^ Λ Λ ^ Λ • Aeip+1>]
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= 2(-1)*-+ 1 P£(- DKRKΛ • • • ΛiuΛ • • Aelp+1),

Now R is in 3& if and only if ζR, SΣjy — 0 for all p-relations indexed by
standard pairs /, /, if and only if for all sets {eil9 , eip+1, eJl9 , ejp_1} of
basis vectors for V,

Σ ( - ί)KRK Λ Λ ^ Λ Λ eip+1), eiλ Λ ^ Λ Λ *,,_,> = 0 .

This is equivalent to (5) by the linearity of R and < , >. q.e.d.
For R e 0t we consider its sectional curvature σR.
Lemma 1.5. // Re& and σR = 0, then R = 0.
Remark. This lemma is a generalization of the well known fact that in the

presence of the Bianchi identity, sectional curvature determines the curvature
operator. For a proof in this case, see [2] or [3].

The following corollary shows that vanishing sectional curvature character-
izes se.

Corollary 1.6. A curvature operator R is a p-relation (R e Sf) if and only
if σR = 0.

Proof. It is clear from Corollary 1.2 that the sectional curvature of every
operator in ¥ is identically zero. Conversely, let R = Rλ + S where R1 € &
and S € &*. Then σRl = σR — σs = 0 and so Rx = 0 by Lemma 1.5, and
therefore R e Sf. •

Remark. Notice that the identity map /, which has sectional curvature 1,
lies in the subspace ^ , for if {Ei} is an orthonormal basis for Λp of decom-
posable p- vectors,

= 0

for all S € Sf. Therefore if R satisfies Bianchi, so does R + λl for all real
numbers λ.

2. A basis for the p-relations

For the computations in § 3 we shall need to know a basis for ^ , and so
we give a proof of

Theorem 2.1. The set of p-relations

{Su\I, J is a standard pair and ip+ι < y'^.J

is a basis for £f'.
For this discussion, we view ^ as a subset of Horn (Λp, Λv*). By a series

of lemmas, we shall find a basis for ^ 0 in the case n = 2p, and use this to
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find a basis for SfQ in general. We shall then show how each /^-relation with h
repeated indices corresponds to a (p — /z)-relation with distinct indices and
the theorem will follow. The decomposition of Sf as the direct sum of the ί/?

h

is crucial.
If / = (jl9 . . . , /p_1) with / Ί < < /p_! < 2p, let ε(/) denote the sign of

the permutation

(1, . ,2p) - > ( 1 , . j 1 9 , i P _i ' * * '>2P>h> ••'ϊ/p-i)

Let S J denote the p-relation ε(/)51... i l... i j )_1... ( 2 p ) y i..., 2,_1 .

Lemma 2.2. If n = 2p, then y o w spanned by

77 = /,_, = 2p}

Remark. We include the factor ε(J) so that if 5 € 77 and E is a basis vector
for Λp, then S(E)*E — 0 or + 1 , where * denotes the Hodge star operator.

Proof of Lemma 2.2. It has been shown that ^ 0 is spanned by the set of
Su such that /, J is a standard pair and / U / = {1, , 2p}, since the 2p
indices of S are distinct and all <n = 2/?. Each such £ is determined by the
set / of its last p —\ indices, and so ^ 0 is spanned by the C2PtP_x relations in
the set

77 = {S'\h <••• < / , _ ! < 2p} .

We shall show that we can span ^ 0 by requiring that j p _ 1 = 2p.
As above, let 77 C 77 be the p-relation AS17 for which jp_1=z2p. Any 5 which

is in 77 but not in 77 is of the form ±SJ,1...I,lj(2l,)/£1...Afi,_1. For such an S and for
λ = 0, 1, . . . , p - 2 , let

Then we claim that

( 6 )

where c0 — and cλ = — ( jc^i
\ p — ^ — 1 /

for λ > 1. This will estab-
p — 1

lish the fact that 77 spans c5̂ 0

Let * : Λp —• yίp denote the Hodge star operator defined by

<*<*, β}eλ Λ e2 Λ Λ e2p = a Λ β

for α, /3 6 Λ*. Up to sign, * takes basis elements to basis elements.
We write the basis elements for Λp in the following order: first we list the

basis elements ekl Λ Λ ekp_x Λ e2p containing e2p as a wedge factor, in
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numerical order of kλ -kp_x. Next we list *0 f c l Λ Λ ekp_1 Λ e2p), also
in numerical order of kγ kp_λ. Let Z^ stand for the /-th basis vector in this
ordering. We have listed all of the basis vectors for Λp since Et contains e2p

as a wedge factor if and only if *Et does not.
With this ordering of the basis vectors, we consider the matrix SiE^Ej.

Letting < (̂S) = S(Et)*Ei9 any S e 77 and therefore any S e ^0 has matrix.

5,(S)

0

0

0

(5

0

)

m

O

o
• 0
• 0

• δJS)

δi(S)
0

0

0
δ2(S)

• •

0

o
o

• 0
• 0

and S is determined by the η = JC2 p,p-tuple (^(S), , ί,(S)). Notice that the
signs for the p-relations in 77 were chosen so that δi(S) = 0 or + 1 for S e 77.

We shall prove (6) by showing that for each i, the coordinates 34 of both
sides are equal.

If i < 27, let X* denote the set {k19 , Λp.
n,-! A e2 p. The only Γ β 77 for which 3t(Γ)

{S? = 5*i i/ϊ *,-i»p

for which Et = ekι Λ Λ
0 are the p — 1 relations

77} .

We shall find the coordinate δi(Svl...Vp(!ip)μi...μp_:)9 depending on the number of
elements in {μ19 , μp_^ Π K\

Case 0: {μ19 ,μp_i} ΓΊ JK* = 0. Let ^ denote both the ordered set
(y, *!,-•-, Λp_i, 2p, /£!,•••, ^p_!) and the permutation of (1, 2, , 2/?) given
by the ordered set. Any S e 77 — 77 which falls into case 0 is of the form
ε(γ)Sγ for some γ (i.e., for some v)9 and

by (4) since [$(£,)]*£, =
Now δi(Γ) = 0 for all T € 77X5) whenever λ > 0 (in case 0, the last p - 1

indices of 5 have no indices in common with the wedge factor of Et)9 and so
δi on the left hand side of (6) reduces to

= Σ Co = 1 = δi(S)
TΠ0(S)

Case m (0 < m < p - 1) :{μ19

group common indices (here kΨl,
, μp_J Π K* = {ΛP1, , ̂ J . We again

, kφj together at the beginning of the last
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p - 1 slots of 5. Let γ = (v19 , vm+ι, k19 , k9l, , k9m, , kp_19 2p, k9ι,

• >k*m>pi>'->K> >^ m ' >i"p-i)» a n d l e t 5 = ε(r) 5 r B y (4)> s ( £ < ) =
S(ekl Λ Λ **p_i Λ έ?2JΪ) = 0 and so δt(S) = 0.

Of the p - 1 relations 5^ for which δ (Sβ) = 1, the m relations 5P Λ are in
Πm-\S) and the other p - m - 1 relations Sβ(β φ ψh) are in Πm(S). Thus 3<
of the left hand side of (6) is

Σ

= mcm_γ + (p — m — \)cm = 0 = δi(S) .

p — 1: {μ1? , ̂ _ J = {k19 , Λp.J. Letting γ = {v1? vp, 2p,
fcp_i), we have 5 = ε(γ)Sr and

by (4).
All S" such that ^(S") = 1 are in i7p"2(5), and ^ of the left hand side of

(6) is

Σ cp_A(T) = (p - Dc p_ 2 = ( - I ) 3 1 - 2 = ί,(S)
Tζ. ΠP~2(S)

This finishes the proof of Lemma 2.2. q.e.d.

If the members of Π are linearly dependent, there must exist real numbers
aJi—jp-2> n o t a ^ z e r o ? s o that

(7) Σ fl*...,,-^'1-''-= o .
Jl<—<Jp-2

If ^ or *E^ is ^fcl Λ Λ ekp_1 A e2p, taking ^ of both sides of (7) gives

(8) Σ1^,..^...^ = o .

Since S ζ &Ό is determined by {3<(S)}, (7) is equivalent to (8) for all sets
*i> * * > fcp-i s u c h ώat ! < * ! < • • • < λp-! < 2p. The next lemma, due to
C. H. Sah, shows that the system (8) of homogeneous equations has no non-
trivial solutions.

Lemma 2.3. Let 1 be a finite set with q elements, and let r > 1 be an
integer such that q > 2r — 1. For each (r — \)-element subset J of /, let a3

be in a field of characteristic zero. If, for each r-element subset K of /,
Σ / c * aj = 0, then all aj = 0.

Proof. By induction. When r = 1, there is only one a0 and at least one
equation a0 = 0.
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We assume that the lemma is valid for r. Let I" be a finite subset with

q > 2r + 1 elements. Let Γ be any subset of /" with 2r + 1 elements. Set

/' = / U { ± r) where / = {0, ± 1, , ± (r — 1)}. The subsystems (for ί c / ,

#(«) = r)

= ~aκ and Σ flJU{_r} = —α^
JcJί

have at most one solution (by the induction hypothesis) depending only on the
aκ's. Thus aJΌ[r} = aJΌ[_r}, i.e., for any two subsets L and V of I" with #(L)
= #(£/) = r and #(L Π L') = r - 1, we have αL = aL,. Since any two r-ele-
ment subsets of I" can be connected by a sequence of subsets such that con-
secutive pairs have r — 1 elements in common, aL = constant. Since the coef-
ficients of the system are + 1 (i.e., nonnegative), any one of the equations
now implies that all aL are zero.

Corollary 2.4. If n = 2p, the set Π of ^-relations is a basis for £f0.
Proof. If K C / = {1, . , 2p} has r = p — 1 elements, (8) becomes

Σ
JK
Σ

JczK

Taking q = 2p, Lemma 2.3 implies that aj = 0 for all / c / such that #(/) =
p — 2. Therefore (7) implies ah...jp_z = 0 for all A < < /p_2, i.e., {S*1'"**-*}
is independent, q.e.d.

The independence of this set of p-relations implies the independence of each
of the spanning sets which will be found in Lemmas 2.5, 2.6 and 2.7, and
therefore in Theorem 2.1.

If U C V, &U will denote the linear span of the set U.
Lemma 2.5. The set

Πo — {Su I /, J is a standard pair such that I Π / = 0 and ip+1 < / ^ J

is a basis for 6f0.
Proof. If n < 2p, then ^ 0 = {0} and so we are left with the case n > 2p.
For each subspace W spanned by 2p basis vectors {eiί9 ,ei2p\ ix< <ι 2 p } ,

the relations

form a basis for ^O(ΛP(W)) by Lemma 2.2.

For 5 € SfQ(Λp(W)), [S(eh A Λ e i p)]e f c l Λ Λ ekp is nonzero only if
{/i> j /p> Λu J ̂ p} = {'i> J ί*2p}5 and so each of the basis relations for
^(ΛV(W)) is independent of the collection of spanning relations for all
•SΌGW)) where R" = se{eλl, , ̂ 2 J ^ W. Since every 5 7 7 € ^O(ΛP(V))
is in £e^{ΛKW)) for W = J^{^x, , e i p + 1, eJl9 , ey p_J, we conclude that
^0 is the direct sum Σ 0 ^O(ΛP{W)) as JF ranges over subspaces spanned by
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2p basis vectors for V, and that Πo is a basis for S?Q. The dimension of ^ 0 is

Lemma 2.5. The set

Πι = {Skil...ipJl...jp_1ik\i1 < < ip < jp-2>h < " < Jp-2>

k i {h, , ΐp, h, , /p_2}, {*Ί, > ip} Π {/Ί, , /p_2} = 0}

w α frα^w for S?19 the span of the p-relations with one repeated index.
Proof. Sfx is the direct sum of the subspaces Sf\9 the span of the p-rela-

tions whose repeated index is k. For if 5 e £f\9 [Sίe^Λ Aejp)]eklA Aekp

is nonzero only if {j19 ,jp} Γ\ {k19 ,kp} = {k} by (4). Similarly, £f\ is
further the direct sum of ^\J, the span of the p-relations whose non-repeating
indices are / = {i19 - , ι2p_2}.

We now find a basis for if1?1. Let W1 be the (2p — 2)-dimensional subspace
of V spanned by {et\i <= /}. Let 5 = SkVί...Vpμί...μp_%k € ̂ ϊ ; / . Then the vs and
^'s are chosen from /. When E is in the chosen basis for AP(V), S(E) = 0 if
E does not contain ek as a wedge factor, or if E = ek Λ Er but E7 $ Λ^^W1)-
Let 3 = ^...v,,!...,,-, be the obvious (p - l)-relation on W1. It E = ek A E'
where £ ' e A^\WΓ), then J(£) = S{Ef) A ek by (4). For fixed k, the cor-
respondence 5 € ̂ J ; J (Λ p (F)) -> S € ̂ oiΛv-XW1)) is clearly an isomorphism.
Therefore the C2p_3,2,_3 basis relations for Sf^Λv'KW1)) give rise to an equal
number of basis relations for « f̂;/, namely {^^...^^.^l/i < < ip <
hp-iJp+i <"- <i2p-2} Therefore the CntlCn_ί>2p_2C2p_3tP_3 relations in the
set Πx form a basis for ^(Λ^V)) = Σk.i® &ΐJ•

Lemma 2.7. ^ feflώ /or &>h(A*(y)) is

/ ! < • • • < . Ip-h + i \ hp-ih > lp-h + 2 \ * * * \ l2p-2h )

{h> ' > ίp-Λ + l} ^ fe-Λ + 2. * * * ? *2P-2Λ} = 0 Λ/ld

R , •• ,ΛΛ}fΊ{/1, •• ,/2p-2Λ} = 0}

Proof. An argument identical to that of L e m m a 2.6 shows that

- Σ θ <n;/ ,

where for fixed K = {/:1? , kh) each element of Sf**J (/ = {/1? , /2P-2Λ})
corresponds to an element of S^0(Ap~h(WI))9 W1 = ^{et \ i e /}, and the lemma
follows, q.e.d.

Since Sf is the direct sum of the ̂ h (h = 0, , p — 2) and U Πh is the
set of p-relations in Theorem 2.1, the theorem has been proved. The dimen-
sion of Sf is Σn=S CnthCn_ht2p_2hC2p_2h_ι>p_h_2. Translated back to Plucker
corrdinates, Theorem 2.1 is Theorem A of the introduction.
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3. The main theorem

In this section we shall show that for any R e &, the set of points of ^
where σR assumes its maximum or minimum is the intersection with ^ of a
linear subspace of AV(V). We shall consider the zero set Z(R) = {& e & | σB(&)
= 0} of an operator R with nonnegative sectional curvature, for the general
case is an easy corollary of this one.

As in [5], we first show that if & is a critical point of σR and σR(&) = 0,
then there exists S e £f, in fact a unique S orthogonal to the /^-relations which
annihilate ^ , such that R(β*) = S(&). Our main contribution is Theorem 3.6
which uses the basis for Sf to show that if σR > 0 and σR(^) = σR(Q) — 0,
then there exists S e Sf such that {&>, Q} C Ker (R — S). The finite dimension-
ality of Λp guarantees the existence of an S e £f so that all of the zeros of σR

are contained in Ker (R — S). It is immediate that the zeros of R contain
^ ΠKer(fl - S).

Remark. Wherever possible, we refer the reader to [5] for proofs, in
particular for the next five. The proofs of Lemma 3.1 and Proposition 3.2
found in [5] for p = 2 must be generalized to fit our needs. With the help of
the results of §§ 1 and 2, the obvious generalization works.

Lemma 3.1. Let & z&. Then {&} U {S(^) \ S e ¥} spans the normal space
N? to & C Λp at 9.

We remark that if an orthonormal basis {e19 , en} is chosen for V so that
2P = e1 Λ Λ ep, then N^ is spanned by βP and the planes Q of the form
eiχ Λ Λ eίp such that 9 + Q is not decomposable.

Proposition 3.2. Let R € Bl9 and suppose & € ^ is a critical zero of σR.
Then there exists S e &> such that & e Ker (R — S).

In fact, if a basis for V is chosen as above, there exist unique λΊJ € R so
that S = 2 7 f j- λjjSu, where the sum runs only over those SJJ in the basis for

As in [5] we let 2I(Z) denote those p-relations which annihilate Z C &, and
the superscript J_ denote orthogonal complementation in £f.

Lemma 3.3. Let Re & and Z c &. If there exists S € S? such that Z c
Ker (R - S), then there exists a unique So e ^(Z)1- such that Z c Ker (R - So).
For any 5 e y , Z C Ker (R — S) {=} SQ is the orthogonal projection of S onto

Corollary 3.4. / / β? is a critical zero of σR, there exists a unique S& e
such that & € Ker (R - S,).

Corollary 3.5. / / there exists Se6f such that Z(R) c ^ Π Ker (R - 5),
there exists a unique So e ^(ZiR))1- such that Z(R) = & Π Ker (R — SQ).

The proof of the main theorem now depends on the existence of an S e £f
which "works" simultaneously for any two planes in Z(R).

Theoerm 3.6. Suppose i ? e l is such that σR > 0. If 0>,Qe Z(R), then
there exists Seϊf such that {&>, Q) C Ker (R — S).
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Proof. We assume that & and β are linearly independent in ΛP(V) (other-
wise 0* — ± β and we apply Proposition 3.2). Let S# (respectively SQ) denote
any curvature operator in &> such that SJβ>) = R(&)[SQ{Q) = R(Q)], the
existence of which is guaranteed by Proposition 3.2. We must find S e Sf
whose orthogonal projections onto %{2P)L and SKβ)-1 are those of Sφ and SQ,
respectively. Such an S exists if and only if S# and SQ have the same orthogonal
projections onto [2I(^) + Sί(β)]1 = S ί W Π St(β)1. We shall show that they
do through a series of lemmas.

Lemma A. gP + β is decomposable t=? dim (^ ΓΊ β) = p — 1.
Proof of Lemma A. If dim (^ Π β) = p — 1, there is a basis {e17 ., en)

for F (not necessarily orthogonal) such that 9 = ^ Λ Λ ep and β =
î Λ Λ ev_λ A ep+1. Then ^ + β = ^ Λ Λ ^_ x Λ (ep + ep+1), which

is decomposable.
Assuming that 9 Φ ±Q, if dim (β> Π Q) Φ p - 1, let A: = dim (^ Π β)

< p — 2. There is a basis {e1? , en) for V such that ^ = eλ A Λ ep

and β = ex A - Λ ek A ep+1 A Λ ^ _ f e . But S&.ilp_k)1...k(0> + Q) =
(_l)*(p-*) ^ 0 and so ^ + β is not decomposable.

Cα^ 1: ^ + β not decomposable. To prove the theorem in this case, we
shall show that [2ϊ(^0 + Sίίβ)]-1 is one-dimensional and find a basis for it.

Lemma B. // 0* + β w n<9/ decomposable, then the codimension in £f
of %{&) + 2ί(β) is at most 1.

P/ΌO/ o/ Lemma B. We shall want to find the set 21(̂ 0 explicitly and
without reference to the inner product on Λp. For this lemma only we regard
& as a subset of Horn (Λp, Λp*) and observe that S e %(&>) <=> S(&>) = 0e Ap\

Consider the basis p-relations Su (Theorem 2.1). Most of the basis p-rela-
tions are in either SI(^) or 2ί(β), and for all the others, taken pairwise their
linear span intersects 31(̂ 9 Π 2ί(β) nontrivially.

An elimination argument involving (4) shows that the only basis /^-relations
which are in neither 2ί(^) nor 2ί(β) are S1...pίl...Λ(p+1)...j...(ap_Jfc) where ie
{p + 1, . . , 2p - k). For 1 < h < p - k, letSh = 51...pil...fc(2,+1)...ί...(2p_fc) where
i = p + h. We have SΛ(^) = ( - 1 ) ^ ^ - ^ * where β* € ^p* is dual to β.
Similarly, Sh(Q) = ( - l ) ^ ^ 1 ^ * . Now [51 + ( - 1 ) \ W = [51 + (-DhSh]Q
= 0. Therefore for each A > 2,5X + (-1)Λ5Λ lies in 2T(̂ ) Π 2T(β). The set
{S1} U {511 + (— l)hSh} has the same span as {Sh\h > 1}, and each element
except (possibly) 51 of the new set is in SI(^) Π 2ί(β) c Sί(^) + 2T(β). Since
the basis p-relations not of the form Sh are in 2I(^) + Sί(β) [in fact, they are
in 2I(^) U 2T(β)], ST(̂ ) + 2ί(β) has codimension < 1 in $f. q.e.d.

We shall now see that this codimension is exactly one.
Let V e &t be the curvature operator which interchanges & and β and is

zero on JS?{̂ 5 Q}L. Let T be the projection of T onto Sf.
Lemma C. T spans [Sί(^) + SKβ)]^.
Proo/ of Lemma C. We shall make repeated use of the following fact: for

all S e ST,



p-Ύϋ SECTIONAL CURVATURE 397

- <<?, β > 2 ) .

To see this, compute tr (So T) using an orthonormal basis for Λp containing

3> and (β - <β,^>^)/( l - <β,^>2) 1 / 2

It is now clear that T is orthogonal to 21(̂ 0 and 2l(β). If Γ' does not satisfy
the Bianchi identities, then T Φ 0 and T spans [%(&) + SKβ)]-1. But 9 + β is
not decomposable, and so there exists SQ e S? such that β = <50(^ + β), ^ + β>
=£ 0. Since both & and β are decomposable, β = 2<S0(^), β>. Then <r,5 0 >

= β/(i _ <^? β>2) ^ o and T ί # . Therefore & is spanned by SI(^), 2I(β),
and Γ. q.e.d.

It follows that S& and 5Q may be written

S, = Si + Si + <S,, Γ>Γ/|| Γ||2 , 5 e = 55 + 5g +

where S% S% € SI(^) and 5«, S% € 2I(β). But since S^ SQ €

), β> = 2<i^(^), β> =

- <^, β>2 1 - <^? β>2 1 - <^, β>2

Denoting < ^ , Γ>/| |Γ| | 2 = <Sρ, Γ>/| |Γ| | 2 by α , we have S = S$ + S% + aT
satisfies {^, β} c Ker (R — S) as desired. Theorem 3.6 is proved for the case
& + β not decomposable.

Case 2: ^ + β decomposable. In this case, ^ = [1 + 2(cos 0(sin/)
< ^ J β>]"1/2[(cos t)^ + (sin 0 β ] is decomposable for all values of t by Lemma
A. In fact, &t is in Z(R), for

2 ( c o s / ) s i n / < p m 9 β>.
2(cos ί)(sin 0 < ^ , β>

Since σR > 0 and the coefficient of <Λ(^), β> above changes sign, <Λ(^), β>
= 0 and σR(έPt) = 0 for all /. Thus we see that ^ and β determine a circle
in ^ of zeros (and therefore critical zeros) of σR. For any S € «$*, ̂  and β are
in Ker (R — 5) if and only if &t is in Ker (R — S) for all /, so we may assume

We choose an orthonormal basis for V so that & = eγ Λ Λ ep and
β = ex Λ Λ ep_i Λ ep+ι. By Proposition 3.2, there exist μu and ^ fcJ in
R so that 5^ = 2 μ ί t7S/ t/ and 5 ρ = Σ »kjSKj satisfy ^ € Ker (# - 5̂ ,) and
β € Ker CR — SQ). The sum in the expression for S? ranges over all / , / such
that Su is in the basis for Sf and / = {1, , p, /}, and for SQ ranges over all
K, J such that SKJ is in the basis and K = {1, -,p — l , p + 1,Λ}. Note
that for such / and K,

9 S//(^) ( - D p + 1 ^ Λ ^ Λ Λ

5^(β) - (-Dp+1ek A eh A Λ
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We ask again which of the basis p-relations lie in 2ί(^9 + 21(0.
Lemma D. // 9 = ex A Λ ep and Q = ex A Λ ep_x A ep+19 then

+ 2ί (0 contains all of the basis p-relations except possibly Sλ> ι =
i ..(p-i)i for i > p + 1 and λ < p — 1.

Proof of Lemma D. We shall show that most of the basis p-relations are
in either 2ί(^9 + 21(0 and that, except for those listed above, the rest are
expressible as A + B where A β 21(^9 and B e 21(0.

An argument similar to that used for in Lemma B shows that the only basis
p-relations which annihilate neither &> nor Q are Slmmmp+1J where /={/Ί, , /p_i}
ςt {1, •••,/?+ 1}, i.e., y'̂ -i > p + 1.

If {/Ί> > /p-2} =£ {1, , 3, , P — 1} for some ϋ < p — 1, then write

But the summand in parentheses is in 21(^9, and the other summand is in
21(0. Therefore Slm..p+1J is in 21(^9 + 2 ί (0 in this case. The only basis
p-relations which may not be in 21(^9 + 21(0 are S^.^+w such that

{h> '-> ip-2} = {1, , i , - - ,p — 1} and jp_t > p + 1 . q.e.d.

We can now write the expressions for S& and SQ as

Q ζ % β
λ<p-l λ<p-l
ί>p + l i>p + l

where S%9 S% e 2T(^) and S% S% β 21(0. If we establish that aλtί = ft,i? then

satisfies {^, β} c Ker (R - 5).
To show that α i#< = βiti let E^* = ^ Λ Λ eλ A Λ ev_x A ep+1 A et.

By (9), aiti = ( - 1 ) % S ^ ) , £ ' - * > . Now since ElΛ + Q is decomposable,
0 = <S(£2 * + Q),Eλί + Q} = 2<S(β),£a *> for all 5 6 ^ . In particular,

^ > = 0. Therefore we have

aλΛ = ( - 1 ) %

Since (^ + Q)\\ΓΣ is a critical zero of σ^, there exists S e Sf so that
Λ[(^ + β ) / / 2 " ] = S\{eP + β ) / V T ] .

Writing § in terms of the basis p-relations, S — Σ TUSIJ- We now have

= (-i)p Σ
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since <S 7 j(0, Eλ *> = 0. But applying (4), Su{^) is either zero or orthogonal
to Ehi except for SλΛ. Recall that <S2 *(^),£ a *> = (-I) 2 ' . Therefore aλΛ =

Γl (p + l)l x (p-l)i

Similarly, letting Fλ'ι = e1 A Λ eλ A Λ ev_λ A ev A ei9 & + F 2 * is
decomposable and

Sa ' ( 0 , ^ ' *>

This establishes Theorem 3.6 for & + β decomposable, q.e.d.
We continue to piece together the S's which work for individual zeros of σR

into one which works for them simultaneously.
Lemma 3.7. // Z is any subset of &, there exists a finite subset

{&i, -•>&]*} C Z such that Sί(Z) = 2ί{^1? . .,0>k}.
Proof. Let ^ Ί , , ̂ f c be planes in Z which span S£{&\0> εZ}.
Theorem 3.8. Let R e 01 have nonnegative sectional curvature. Then there

exists S e £f with

{& € &\aB{&) = 0} = ^ Π Ker (R - S) .

Proof. We construct the unique S € 2ί(Z(.R))J- which has the desired pro-
perty. Let &19 . , &k be as in Lemma 4.7 where Z = {^ € ^ | σ Λ ( ^ ) = 0}.
Then

Let S< € aί^i)-1 be such that ^ € Ker (R - SJ. By Theorem 3.6, for each
ΐ, / there exists a unique S^ 6 ϊ l ^ , ) 1 + ϊ ^ ) 1 such that { ^ , ^ } C
Ker (.R — 5^). By Lemma 3.3, Si is the orthogonal projection in Sί(Z)-1 of 5t</

onto Sft^)-1. Lemma 5.3 of [5] now guarantees a unique 5 in 21 (Z)-1- whose
projection onto Sft^)-1- is St. Using Lemma 3.3 again, ^^ € Ker (Λ — S) for
all / < k, and so Z c Ker (R - S). Finally, if & € ^ Π Ker (R - S),
oR{&) = σ s(^) - 0.

Corollary 3.9. If R e &, and λ is the minimum {respectively, maximum)
value of σR on <&, then there exists S e Sf such that the set of p-planes on
which σR assumes the value λ is <g ΓΊ Ker {R — λl — S).

Proof. Immediate from Theorem 3.8 since σR_λI > 0 (respectively,

<rχi-R > 0). q e.d.
In the proof of Theorem 3.8, the fact that zero is the minimum of σR is

used only to show that if <P + Q is decomposable, the zero &t is a critical
point of σR (last part of Theorem 3.6). The theorem cannot be weakened
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however to the case of zero an arbitrary critical value of σR, as the following
example shows.

Let A be the linear transformation on V which interchanges et and eί+p if
/ < p, and is zero on eά if / > 2p. Then A is self-adjoint and so induces a
self-adjoint transformation R on ΛP(V). Each of the basis planes E% =
eiχ A Λ eip of Λv is a critical zero of σR:

gradσΛ(£i) = 2R(E,) = 2(Aeh Λ Λ Λe,,) = 0 or ± 2 * £ , ,

which is normal to ^ at Et by Lemma 3.1. Here * is the star operator on
Λv{^'{eι, , e2p}). If the theorem were true for zero an arbitrary critical value
of σR, Z(R) would have to be all of ^ . But

Q = (eι± ep+1) A (e2 ± ep+2) A Λ (ep ± e2p)/(<J~2)*

is in ^ and R(Q) = (±)PQ, so σR(Q) = ( ± l)p Φ 0. σR takes on values of
either sign. It is shown in [3] that curvature operators such as this one,
induced by transformations of V, satisfy the Bianchi identities.

On the other hand we may conclude: if λ is a critical value of σR, and
{& € & \σR{&) = λ) contains no pairs of planes which intersect in a (p — 1)-
dimensional subspace, then there exists S e Sf for which

{& e &\σR(0>) = λ} = & Π Ker (R - λl - S) .
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