THE PLATEAU PROBLEM FOR SURFACES OF PRESCRIBED MEAN CURVATURE IN A RIEMANNIAN MANIFOLD

ROBERT D. GULLIVER II

1. Introduction

In this work we treat the problem of finding a surface of prescribed mean curvature in a three-dimensional riemannian manifold M, with a given closed curve as boundary. That is, given a real-valued function H(z) defined on M, we wish to find a mapping $z: B \to M, B$ denoting the two-dimensional unit disk, which satisfies the following conditions:

- (i) $z \in C^2(B) \cap C^0(\overline{B})$,
- (ii) z maps ∂B homeomorphically onto Γ ,
- (iii) z satisfies in B the systems

(1.1)
$$\nabla_{z_u} z_u + \nabla_{z_v} z_v = 2H(z)^*(z_u \wedge z_v) ,$$

(1.2)
$$\langle z_u, z_u \rangle - \langle z_v, z_v \rangle = \langle z_u, z_v \rangle = 0$$
.

Here \langle , \rangle denotes the inner product on the tangent bundle of M, ∇ the associated Levi-Civita connection, *P the tangent vector associated with a two-vector P using \langle , \rangle . Let g_{ij} be the coefficients of \langle , \rangle in some coordinate system. We may write explicity

$$*(z_u \wedge z_v)^k = \sqrt{g} egin{array}{c|c} g^{1k} & g^{2k} & g^{3k} \ z_u^1 & z_u^2 & z_u^3 \ z_v^1 & z_v^2 & z_v^3 \ z_v^1 & z_v^2 & z_v^3 \end{array} ight|,$$

where $g_{ij}g^{jk} = \delta_i^k$ and $g = \det(g_{ij})$. (1.2) states that z is a conformal mapping on its image (possibly with degenerate points); under that condition, (1.1) become the equations for mean curvature H(z) at regular points.

The basic result of the present paper for smooth complete M may be stated as follows. Let K_0 denote an upper bound on sectional curvatures of M, and $\Phi(r)$ the mean curvature with respect to an inward normal of the geodesic sphere of radius r in the space of constant curvature K_0 . Explicitly, $\Phi(r) = \sqrt{K_0} \cot(\sqrt{K_0} r)$. In the case $K_0 > 0$, replace Φ by any smaller function ϕ

Communicated by S. S. Chern, February 14, 1972.

which is monotone decreasing. Then for a rectifiable Jordan curve Γ contained in the geodesic ball $B_r(m)$, where \exp_m is injective on $B_r(0) \subset M_m$, and for a Hölder-continuous function H(z) satisfying $|H(z)| \leq \phi(r)$ in that ball, the problem has a solution (Theorem 2). The injectivity of \exp_m on $B_r(0)$ is not essential (Theorem 3).

For the minimal surface case, i.e., $H \equiv 0$, this problem was considered by Morrey [14] after pioneering work in euclidean space by Radó [16] and Douglas [2]. Heinz [7] considered the case of constant mean curvature H in euclidean space, showing existence under the condition that Γ be contained in a ball of radius $(\sqrt{17} - 1)/(8|H|)$. This radius was sharpened by Werner [19] to $\frac{1}{2}|H|^{-1}$. Hildebrandt [11] improved this to the best possible, requiring radius $|H|^{-1}$. This was accomplished, using regularity results of Morrey, via the introduction of a restricted variational problem in combination with a new maximum principle valid for solutions which are only continuous. Hildebrandt has generalized this result to prescribed mean curvature using a more elegant proof which involves a modified free variational problem [10]. This method appears to run into difficulty in the riemannian context if positive sectional curvatures are allowed. However a variant of the method of [11] is applied to the problem successfully in the present work: the result stated above is a direct generalization of the result of [10]. In the case of nonpositive sectional curvatures our method provides a generalization of Morrey's result in [14]. As in [11], the core of this work is a maximum principle for continuous solutions to the variational problem, which we present in § 4. A similar maximum principle, requiring the mapping to be smooth, has been recently obtained by Kaul [12].

The author is indebted to Joel Spruck for valuable discussions.

2. The functional and its first variation

In order to define the variational problem we shall use, we assume for some point $m \in M$ the map $\exp = \exp_m \colon M_m \to M$ is a diffeomorphism of the ball $B_R(0)$ onto its image, which is the geodesic ball B_R of radius R and center m. If S is a set in M_m we define C(S), the cone on S, to be the set $\{tx \colon 0 \le t \le 1, x \in S\}$. If $S_1 = \exp(S) \subset B_R$ we define the geodesic cone on $S_1, C(S_1) = \exp(C(S))$. If S_1 is an oriented 2-chain, $C(S_1)$ is an oriented 3-chain. Let a mapping $z \colon B \to B_R$ and a measurable real-valued function H(x) defined on B_R be given. Then we may define the functional

$$W[z] = 4 \int_{C(z(B))} H(x) dV(x) ,$$

where dV refers to oriented riemannian volume. For vectors V_1, V_2 tangent to M_m we write the euclidean inner product as $V_1 \cdot V_2$, reserving the symbol $\langle V_1, V_2 \rangle$ for the riemannian inner product on tangent vectors to M. For

 $z: B \to M$ and $y: B \to M_m$ we use the notation $|\nabla y|^2 = y_u \cdot y_u + y_v \cdot y_v$ and $|\nabla z|_M^2 = \langle z_u, z_u \rangle + \langle z_v, z_v \rangle$. We may then write the euclidean and riemannian Dirichlet integrals as

$$\overline{D}[y] = \iint_B |\nabla y|^2 du dv , \qquad D[z] = \iint_B |\nabla z|^2_M du dv .$$

Finally define the functional for our variational problem:

$$E[z] = D[z] + W[z] .$$

For a mapping z into B_R we introduce the notation $\tilde{z} = \exp^{-1} \circ z$. The manifold M is said to be of class C^k if it has a C^k differentiable structure and the inner product \langle , \rangle is of class C^{k-1} .

Proposition 1. If M is of class C^2 and $H \in C^1$, then the Euler equations for E are the system (1.1).

Proof. We may write

$$W[z] = 4 \iint_{B} \int_{0}^{1} H(tz) < \gamma_{*}(t|\tilde{z}|), *(z_{u}(t|\tilde{z}|) \wedge z_{v}(t|\tilde{z}|)) > |\tilde{z}| dt du dv$$
$$= 4 \iint_{B} \omega(z, \nabla z) du dv .$$

Here we define $tz = \exp(t\tilde{z})$; γ is the arc-length geodesic from m to z; for a vector $V \in M_z$, $V(t|\tilde{z}|)$ denotes the element at $tz = \gamma(t|\tilde{z}|)$ of the Jacobi field along γ determined by $V(|\tilde{z}|) = V$ and V(0) = 0. Let g_{ij} be the coefficients of the inner product of M with respect to normal coordinates at $m, g = \det(g_{ij})$. Then

(2.1)
$$\omega(z, \nabla z) = \int_{0}^{1} H(tz) \sqrt{g}(tz) \frac{\tilde{z}}{|\tilde{z}|} \cdot (t\tilde{z}_{u}) \wedge (t\tilde{z}_{v}) |\tilde{z}| dt$$
$$= \int_{0}^{1} t^{2} H(tz) \sqrt{g}(tz) dt \, \tilde{z} \cdot \tilde{z}_{u} \wedge \tilde{z}_{v} = Q(\tilde{z}) \cdot \tilde{z}_{u} \wedge \tilde{z}_{v}$$

The hypotheses imply $Q \in C^1$. By Lemma 8 of [5] the first variation (in the euclidean context)

$$[\omega]_z = \operatorname{div} Q \widetilde{z}_u \wedge \widetilde{z}_v$$
,

where the divergence operator is euclidean. But div $Q = H(z) \sqrt{g(z)}$, by way of integration by parts. The first variation (again in the euclidean context) of D in the *l*th component z^{i} is readily calculated as

ROBERT D. GULLIVER II

$$-2g_{kl}(z_{uu}^{k}+z_{vv}^{k})-2\Gamma_{ij|l}(z_{u}^{i}z_{u}^{j}+z_{v}^{i}z_{v}^{j}).$$

Here the Γ 's are the coefficients of ∇ . Thus the Euler equations of E are

$$g_{kl}[z_{uu}^k + z_{vv}^k + \Gamma_{ij}^k(z_u^i z_u^j + z_v^i z_v^j)] = 2H(z)\sqrt{g} (\tilde{z}_u \wedge \tilde{z}_v)^l ,$$

or

(2.2)
$$z_{uu}^k + z_{vv}^k + \Gamma_{ij}^k (z_u^i z_u^j + z_v^i z_v^j) = 2H(z)^* (z_u \wedge z_v)^k ,$$

which is the same as

$$\nabla_{z_u} z_u + \nabla_{z_v} z_v = 2H(z)^*(z_u \wedge z_v) .$$

3. Variation with fixed boundary mapping

Let M be a three-dimensional riemannian manifold of class C^3 , with sectional curvatures $K \leq b^2$, b either real or imaginary. Choose $r_0 > 0$; if $b^2 > 0$ we require $|b|r_0 \leq \frac{1}{2}\pi$. We assume for the present that exp is defined on $B_{r_0}(0) \subset M_m$ and is a diffeomorphism of $B_{r_0}(0)$ onto B_{r_0} (this requirement will be dropped in § 6). The radius r_0 will be fixed in this section and the one following.

Define $\mathscr{D}_R = \{x: B \to M_m: x \in H_1(B), |x(w)| \leq R \text{ for almost all } w \in B\}.$ Here H_1 denotes the space of L^2 functions with L^2 first derivatives and norm $||x||_1$ given by $||x||_1^2 = ||x||_{L^2}^2 + \overline{D}[x]$. For $f \in \mathscr{D}_R$, we define $\mathscr{D}_R(f) = \{x \in \mathscr{D}_R: x - f \in \mathring{H}_1(B)\}$, where \mathring{H}_1 denotes the closure in H_1 of smooth functions with compact support. For a given function $H \in L^{\infty}(M)$, we denote by P(f, R, H) the variational problem: $E[y] \to \min$ among mappings y such that $\tilde{y} \in \mathscr{D}_R(f)$ and by e(f, R, H) this minimum. Denote h = ess sup |H(x)|.

Consider a mapping $z: B \to B_{r_0}$ at a point $w_0 \in B$. We need to bound $\omega(z, \nabla z)$ in terms of the riemannian Dirichlet integrand $|\nabla z|_W^2$.

Define a function on C:

$$G(\zeta) = \csc^2 \zeta \cot \zeta (\zeta - \cos \zeta \sin \zeta) \qquad \zeta \neq 0 ,$$

$$G(0) = 2/3 .$$

Observe G is continuous, with $0 \le G(\zeta) < 1$ for $-\frac{1}{2}\pi \le \zeta \le \frac{1}{2}\pi$ and for all imaginary ζ .

Lemma 1. If $r = |z(w_0)| \le r_0$ and $h \le b \cot(br_0)$, then

$$|\omega(z(w_0), \nabla z(w_0))| \leq \frac{1}{4} |\nabla z|_{\mathcal{M}}^2 G(br_0)$$

Proof. Let $F(\rho) = \sqrt{g} (\rho z_0/r)$ be the Jacobian of exp at $\rho \tilde{z}_0/r \in M_m$. Here $z_0 = z(w_0)$. Then from (2.1) we have

$$\omega(z_0, \nabla z(w_0)) = \int_0^1 t^2 H(tz_0) F(tr) dt \, \tilde{z}_0 \cdot \tilde{z}_u(w_0) \wedge \tilde{z}_v(w_0) \, .$$

Writing $A = \tilde{z}_0 \cdot \tilde{z}_u(w_0) \wedge \tilde{z}_v(w_0)$, note that

$$|AF(r)| = r| < \gamma_*, *(z_u(w_0) \wedge z_v(w_0)) > | \le \frac{1}{2}r |\nabla z(w_0)|_M^2$$

where γ is the arc-length geodesic from m to z_0 . Now F satisfies the growth condition

$$\frac{\rho^2 F(\rho)}{r^2 F(r)} \leq \frac{\sin^2(b\rho)}{\sin^2(br)}$$

for $\rho \leq r$ [6]. So we have

$$\omega(z_0, \nabla z(w_0)) = A \int_0^1 t^2 H(tz_0) F(tr) dt \leq AF(r) h \int_0^1 \frac{t^2 F(tr)}{F(r)} dt ,$$

so that

$$\begin{aligned} |\omega(z_0, \nabla z(w_0))| &\leq \frac{1}{2}r |\nabla z(w_0)|_M^2 h \int_0^1 \frac{\sin^2(bt)}{\sin^2(bt)} dt \\ &= \frac{1}{2} |\nabla z(w_0)|_M^2 h \int_0^r \frac{\sin^2(b\rho)}{\sin^2(br)} d\rho . \end{aligned}$$

The integral is increasing as a function of r since

$$\frac{d}{dr}\int_0^r \frac{\sin^2(b\rho)}{\sin^2(br)}d\rho = 1 - G(br) > 0 .$$

Thus

$$\begin{aligned} |\omega(z_0, \nabla z(w_0))| &\leq \frac{1}{2} |\nabla z(w_0)|_M^2 b \cot(br_0) \int_0^{r_0} \frac{\sin^2(b\rho)}{\sin^2(br_0)} d\rho \\ &= \frac{1}{4} |\nabla z(w_0)|_M^2 G(br_0) \ . \quad \text{q.e.d.} \end{aligned}$$

In the case b = 0, read r for $\sin(br)/b$ and 1 for $\cos(br)$. Thus $\Phi(r) = b \cot(br)$ becomes the familiar 1/r for b = 0.

For a vector V tangent to B_{r_0} denote $\tilde{V} = (\exp^{-1})_*(V)$. Lemma 2. Assume M is of class C^1 . There exists N such that for any tangent vectors $V \in M_z$, $|\tilde{z}| \leq r_0$, we have

$$\frac{1}{N} \tilde{V} \cdot \tilde{V} \leq \langle V, V \rangle \leq N \tilde{V} \cdot \tilde{V} \ .$$

ROBERT D. GULLIVER II

Proof. At each point z of \overline{B}_{r_0} , let $N(z) = \sup \{\langle V, V \rangle, 1/\langle V, V \rangle : V \in M_z, \tilde{V} \cdot \tilde{V} = 1\}$. Since \langle , \rangle is continuous and positive definite, N(z) is continuous and finite, and hence bounded on \overline{B}_{r_0} .

Corollary 1. If $h \leq b \cot(br_0)$ and $\tilde{z} \in \mathcal{D}_{r_0}$, then for any measurable $B' \subset B$ we have

$$\frac{1}{N} [1 - G(br_0)] \bar{D}_{B'}[\tilde{z}] \le E_{B'}[z] \le N[1 + G(br_0)] \bar{D}_{B'}[\tilde{z}]$$

Here the subscripted B' denotes integration over that set.

Lemma 3. Assume $h \le b \cot(br_0)$. Let $\{\tilde{y}_n\}$ be a sequence from \mathcal{D}_R , $R \le r_0$, such that \tilde{y}_n converges weakly to \tilde{y} in $H_1(B)$. Then $\tilde{y} \in \mathcal{D}_R$ and $E[y] \le \liminf E[y_n]$.

Proof. Using Lemma 1, as in [11, Lemma 1].

Lemma 4. Suppose $h \le b \cot(br_0)$ and $f \in \mathcal{D}_R$ for $R \le r_0$. Then there exists a solution z to the variational problem P(f, R, H).

Proof. Choose a sequence $\tilde{z}_n \in \mathcal{D}_R(f)$ such that, with $z_n = \exp \circ \tilde{z}_n$, $\lim E[z_n] = e(f, R, H)$. Then the numbers $E[z_n]$ are uniformly bounded, hence by Corollary 1, $\overline{D}[\tilde{z}_n] <$ uniform bound. So $\|\tilde{z}_n\|_1^2 \leq R^2 \iint_B dudv + \overline{D}[\tilde{z}_n] <$ uniform bound.

form bound, and some subsequence converges weakly to a function $\tilde{z} \in H_1(B)$, with $\tilde{z} - f \in \mathring{H}_1(B)$. Using Lemma 3, $\tilde{z} \in \mathscr{D}_R(f)$ and

$$e(f, R, H) \leq E[z] \leq \lim E[z_n] = e(f, R, H) .$$

Thus z solves P(f, R, H). q.e.d.

As a consequence of its minimizing property and Corollary 1, this z satisfies a uniform Hölder condition in B. If, moreover, $f \in C^0(\partial B)$ then $z \in C^0(\overline{B})$ and z = f on B. These properties follow from results of Morrey [13, Theorem 2.2] using a glueing technique (cf. [11, Lemma 4]). For any subdomain $B' \subset B$ such that $\sup_{w \in B'} |\tilde{z}(w)| < R$, the first variation of E will vanish with respect to any smooth test function with compact support; that is, for $H \in C^1$, z is a weak solution to the Euler equations (1.1) or the equivalent form (2.2). It then follows from a result of Heinz and Tomi (cf. [18]) that $z \in C^{1+\beta}$ for all $\beta < 1$ and has the representation

(3.1)
$$z(w) = y(w) + \iint_{B'} G(w, \zeta) \{ 2H(z(\zeta))^* (z_{\xi} \wedge z_{\eta}) - \Gamma_{ij}^k (z_{\xi}^i z_{\xi}^j + z_{\eta}^i z_{\eta}^j) V_k \} d\xi d\eta ,$$

where y is the harmonic function with z = y on $\partial B'$, $G(w, \zeta)$ the Green's function for B', and V_k the kth coordinate vector. Assuming only that H is C^{α} , it follows by methods of potential theory that $z \in C^{2+\alpha}$ and satisfies (1.1). It is

the purpose of the next section to show that under appropriate hypotheses these considerations may be applied with B' = B itself.

4. The maximum principle; smoothness

Let $r_1 \in (0, r_0)$ be chosen. We construct a C^1 mapping $\tilde{T} : M_m \to M_m$ by defining $\tilde{T}(y) = \sigma(|y|)y/|y|$ for a C^1 function σ with the properties: $\sigma(r) \leq r$ for all $r, \sigma(r) = r$ for $r \in [0, r_1]$, and $\sigma''(r_1+) < 0$. Now define $T : B_{r_0} \to B_{r_0}$ by $T(x) = \exp(\tilde{T}(\tilde{x}))$. Observe that if $y \in \mathcal{D}_R$ then $\tilde{T} \circ y \in \mathcal{D}_{\sigma(R)}$.

Lemma 5. Suppose $h < b \cot(br_1)$. Then there exists R_1 , $r_1 < R_1 \le r_0$, such that for $\tilde{z} \in \mathcal{D}_{R_1} \cap C^{\circ}(\overline{B})$ with $\inf_{w \in B} |\tilde{z}(w)| \le r_1 < \sup_{w \in B} |\tilde{z}(w)|$ there holds $E[T \circ z] < E[z]$. Thus, if $z \in C^{\circ}(\overline{B})$ solves $P(f, R_1, H)$ where $f \in C^{\circ}(\partial B)$ and $\sup_{w \in \partial B} |f(w)| \le r_1$, then $\tilde{z} \in \mathcal{D}_{r_1}$.

Proof. We first estimate the effect of T_* on the length of vectors. For $V \in M_p$ we define an orthogonal decomposition $V = V^r + V^s$ where $V^r = \langle V, \gamma_* \rangle \gamma_*, \gamma =$ arc-length geodesic from m to p. We have an analogous decomposition for $\tilde{V} \in (M_m)_{\tilde{p}}$, with $V^r = \exp_*(\tilde{V}^r)$ and $V^s = \exp_*(\tilde{V}^s)$. Writing $R = |\tilde{p}|$ we see that $(\tilde{T}_*\tilde{V})^s = \tilde{V}^s\sigma(R)/R$ and $(\tilde{T}_*\tilde{V})^r = \sigma'(R)\tilde{V}^r$, modulo the identification of tangents to M_m at different points by parallel translation. Write $\tilde{V}(\rho)$ for the Jacobi field along the ray through the origin and \tilde{p} , determined by $\tilde{V}(R) = \tilde{V}$ and $\tilde{V}(0) = 0$. Namely $\tilde{V}(\rho) = (\rho/R)\tilde{V}$ translated to $(\rho/R)\tilde{p}$. Let $f(\rho)$ be the Jacobian of exp restricted to the subspace generated by $\tilde{V}(\rho)^s$. For $\rho_1 \leq \rho_2$ we have the inequality

$$\frac{\rho_1 f(\rho_1)}{\rho_2 f(\rho_2)} \leq \frac{\sin (b\rho_1)}{\sin (b\rho_2)}$$

(cf. [6] or [17, proof of Theorem 3]). This now yields:

$$\begin{split} |T_*V|^2 &= |(T_*V)^r|^2 + |(T_*V)^s|^2 = |(\tilde{T}_*\tilde{V})^r|^2 + f(\sigma(R))^2 |(\tilde{T}_*\tilde{V})^s|^2 \\ &= (\sigma'(R))^2 |\tilde{V}^r|^2 + (\sigma(R)/R)^2 f(\sigma(R))^2 |\tilde{V}^s|^2 \\ &= (\sigma'(R))^2 |V^r|^2 + \left(\frac{\sigma(R)f(\sigma(R))}{Rf(R)}\right)^2 |V^s|^2 \\ &\leq (\sigma'(R))^2 |V^r|^2 + \frac{\sin^2\left(b\sigma(R)\right)}{\sin^2\left(bR\right)} |V^s|^2 \;. \end{split}$$

Now the function $\phi(R) = \sin (b\sigma(R))/\sin (bR)$ has $\phi(r_1) = 1$ and $\phi'(r_1) = 0$. Since $\sigma'(r_1) = 1$ and $\sigma''(r_1+) < 0$, we see that $0 < \sigma' \le \phi$ on some interval $[0, R_0]$ where $R_0 > r_1$, equality holding on $[0, r_1]$. Then for $R \le R_0$

(4.1)
$$|T_*V|^2 \le (\phi(R))^2 (|V^r|^2 + |V^s|^2) = \frac{\sin^2(b\sigma(R))}{\sin^2(bR)} |V|^2$$

We need next to estimate the effect of T on the volume integrand $\omega(z, \nabla z)$.

.

Denote $y = T \circ z$, and let $z_u^s(\rho)$, $z_v^s(\rho)$ be the Jacobi fields generated by z_u^s, z_v^s . Thus $z_u^s(\rho) \in M_{r(\rho)}$. Observe that $y_u^s(\rho) = z_u^s(\rho)$, $y_v^s(\rho) = z_v^s(\rho)$ for $\rho \le \sigma(|\tilde{z}|)$. First assume that z_u and z_v are independent, and let $F(\rho)$ be the Jacobian of exp at $\rho \tilde{z}/R$. Then for $\rho_1 \le \rho_2$

$$\frac{|\rho_1^{\ 2}F(\rho_1)|}{|\rho_2^{\ 2}F(\rho_2)|} \leq \frac{\sin^2(b\rho_1)}{\sin^2(b\rho^2)}$$

[6]. Now

$$egin{aligned} &\langle \gamma_*(
ho), *(y_u(
ho) \,\wedge\, y_v(
ho))
angle &= \langle \gamma_*(
ho), *(z_u(
ho) \,\wedge\, z_v(
ho))
angle \ &= F(
ho) rac{ ilde{z}}{R} \cdot \left(rac{
ho}{R} ilde{z}_u
ight) \wedge \left(rac{
ho}{R} ilde{z}_v
ight) C
ho^2 F(
ho) \;, \end{aligned}$$

where C is independent of ρ . Thus using (2.1),

$$\begin{split} |\omega(z, \nabla z) - \omega(z, \nabla y)| &= \left| \int_{(\sigma R)}^{R} H\left(\frac{\rho z}{R}\right) C \rho^{2} F(\rho) d\rho \right| \\ &\leq h \left| C R^{2} F(R) \right| \int_{\sigma(R)}^{R} \frac{\rho^{2} F(\rho)}{R^{2} F(R)} d\rho \\ &\leq h \left| \langle \gamma_{*}(R), *(z_{u} \wedge z_{v}) \rangle \right| \int_{\sigma(R)}^{R} \frac{\sin^{2}(b\rho)}{\sin^{2}(bR)} d\rho \\ &\leq \frac{1}{2} h \left| \nabla z \right|_{M}^{2} \int_{\sigma(R)}^{R} \frac{\sin^{2}(b\rho)}{\sin^{2}(bR)} d\rho \end{split}$$

If z_u and z_v are not independent, this relation holds trivially.

Finally, with $i(z, \nabla z) = |\nabla z|_M^2 + 4\omega(z, \nabla z)$, and supposing $R = |\tilde{z}| \le R_0$ we have from (4.1) and (4.2) that

$$\begin{split} i(z, \nabla z) &- i(y, \nabla y) = |\nabla z|_{M}^{2} - |\nabla y|_{M}^{2} + 4(\omega(z, \nabla z) - \omega(y, \nabla y)) \\ &\geq |\nabla z|_{M}^{2} \Big\{ 1 - \frac{\sin^{2}(b\sigma(R))}{\sin^{2}(bR)} - 2h \int_{\sigma(R)}^{R} \frac{\sin^{2}(br)}{\sin^{2}(bR)} d\rho \Big\} \\ &= |\nabla z|_{M}^{2} g(R) \;. \end{split}$$

In straightforward fashion we compute g(R) = 0 for $R \le r_1$, $g'(r_1) = 0$, and

$$g''(r_1+) = 2\sigma''(r_1+)[h-b\cot(br_1)] > 0$$
.

Thus there exists $R_1 \in (r_1, R]$ such that g > 0 on $(r_1, R_1]$. Now assume $z \in \mathcal{D}_{R_1}$. We have $i(z, \nabla z) - i(y, \nabla y) \ge 0$ everywhere, i.e., $E_{B''}[z] - E_{B''}[y] \ge 0$ for all measurable $B'' \subset B$. Assume further $z \in C^{\circ}(\overline{B})$ with

$$\inf_{w \in B} |\tilde{z}(w)| \le r_1 < R_2 = \sup_{w \in B} |\tilde{z}(w)| \le R_1 .$$

Then $|\tilde{z}|$ takes every value in $[r_1, R_2]$. In particular, z is not constant on the open set

$$B' = \{ w \in B \colon \frac{1}{2}(r_1 + R_2) < |\tilde{z}(w)| < R_2 \},$$

and thus $D_{B'}[z] > 0$. But there exists $\delta > 0$ such that $g \ge \delta$ on $[\frac{1}{2}(r_1 + R_2), R_2]$. Let $B'' = B \setminus B'$. Hence

$$E[z] - E[y] = E_{B''}[z] - E_{B''}[y] + E_{B'}[z] - E_{B'}[y] \ge \delta D_{B'}[z] > 0 ,$$

as claimed.

Now, if $\sup_{w \in \partial B} |f(w)| \le r_1$ and $z \in \mathcal{D}_{R_1}(f)$ then $y \in \mathcal{D}_{R_1}(f)$; thus if z solves $P(f, R_1, H)$, $\sup_{w \in B} |\tilde{z}(w)| > r_1$ is impossible.

Theorem 1. Suppose M^3 is a riemannian manifold of class C^3 with sectional curvatures $\leq b^2$. For some $m \in M$ and $r_0 > 0$, with $4b^2r_0^2 < \pi^2$, suppose that the restriction of $\exp = \exp_m$ to $B_{r_0}(0) \subset M_m$ is a diffeomorphism onto its image. Let a C^1 function $H: B_{r_0} \to \mathbf{R}$ be given with $h = \sup_{x \in B_{r_0}} |H(x)| < b \cot(br_1)$, where $r_1 < r_0$. Then given $f \in \mathcal{D}_{r_1} \cap C^{\circ}(\partial B)$ there exists a solution $z \in C^2(B) \cap C^{\circ}(\overline{B})$ to $P(f, r_1, H)$, which satisfies (1.1) in B and agrees with $\exp \circ f$ on ∂B .

Proof. Let R_1 be as given by Lemma 5. Let z be a solution to $P(f, R_1, H)$ as given by Lemma 4. From results of Morrey we have $z \in C^{\circ}(\overline{B})$, as remarked at the end of § 3, and $z \in C^2(B')$ for any $B' \subset B$ with $\sup_{w \in B'} |\tilde{z}(w)| < R_1$. But Lemma 5 shows that $\sup_{w \in B} |\tilde{z}(w)| \le r_1 < R_1$, so that $z \in C^2(B)$ and satisfies the Euler equations (1.1). q.e.d.

We now drop the condition that $H \in C^1$. Given any function $H \in C^{\alpha}(\overline{B}_{r_1})$ with $\sup_{x \in B_{r_1}} |H(x)| \leq b \cot(br_1)$ we approximate H uniformly in B_{r_1} by a sequence of functions $H_n \in C^1(B_{r_0})$ with $\sup_{x \in B_{r_0}} |H_n(x)| < b \cot(br_1)$. Then for each H_n Theorem 1 gives a solution z_n to $P(f, r_1, H_n)$. As in [5, § 5] we find z such that some subsequence of the z_n converges in $H_1(B)$ to z. Since each z_n has a representation (3.1) with respect to H_n , we obtain that representation for z with respect to H. It may then be shown, using a standard argument of potential theory, that $z \in C^{2+\alpha}$ and satisfies (1.1). This shows

Corollary 2. Theorem 1 continues to hold if the function H satisfies only $H \in C^{\alpha}(\overline{B}_{r_1})$ and $\sup_{x \in B_{r_1}} |H(x)| \le \cot(br_1)$.

5. The Plateau problem

Let Γ be an oriented closed Jordan curve in B_{r_0} . Denote by $\mathscr{D}(\Gamma, R)$ the

set of mappings $\tilde{x} \in \mathscr{D}_R$ such that $x|_{\partial B}$ is equal almost everywhere to a continuous, monotone mapping of degree 1 over the integers onto Γ . Define a variational problem $P_H(\Gamma, R)$ by $E[x] \to \min$ among mappings x such that $\tilde{x} \in \mathscr{D}(\Gamma, R)$.

Theorem 2. Let M be a riemannian manifold of dimension 3 and of class C^3 with sectional curvatures $\leq b^2$. For $m \in M$ and $r_1 > 0$ with $4r_1^2b^2 < \pi^2$, assume \exp_m is defined on $\overline{B}_{r_1}(0) \subset M_m$ and maps $\overline{B}_{r_1}(0)$ diffeomorphically onto $\overline{B}_{r_1} = \overline{B}_{r_1}(m)$. Let Γ be an oriented closed Jordan curve in \overline{B}_{r_1} such that $\mathcal{D}(\Gamma, \infty)$ is nonempty. Let H be a uniformly Hölder-continuous function: $\overline{B}_{r_1} \to \mathbf{R}$ with $h = \sup_{z \in B_{r_1}} |H(z)| \leq b \cot(br_1)$. Then there exists a solution $z \in C^2(B) \cap C^{\circ}(\overline{B})$ to the variational problem $P_H(\Gamma, r_1)$, mapping ∂B homeomorphically onto Γ in an orientation-preserving fashion and satisfying (1.1) and (1.2) in B.

Proof. Let $r_0 > r_1$ be chosen so that $4b^2r_0^2 < \pi^2$ and so that \exp_m is a diffeomorphism of $B_{r_0}(0)$ onto $B_{r_0}(m)$. The theorem now follows from Corollary 2 in essentially the same fashion as in [11, Theorem 2]. In the process of the proof, we modify a minimizing sequence $\{x_n\}$ by requiring each x_n to satisfy a three-point condition. This can be done without changing $E[x_n]$ since E is conformally invariant. We require the choice of the three points to be such that every monotone map: $\partial B \to \Gamma$ satisfying the three-point condition will be of degree 1. In particular, the limiting mapping $z|_{\partial B}$ will be of degree 1. Observe that for any C^1 -diffeomorphism $\phi \colon \overline{B} \to \overline{B}$ there holds $W[\phi \circ z] = W[z]$; therefore since $\phi \circ z \in \mathcal{D}(\Gamma, r_1)$ we have $D[z] \leq D[\phi \circ z]$. From this it follows that z satisfies (1.2) by a straightforward adaptation of the method of [1, pp. 107–112].

To show that $z|_{\partial B}$ is a homeomorphism, it suffices to show that for any $w_0 \in \partial B$, a neighborhood of which in ∂B is mapped into a C^2 curve, there holds an asymptotic representation

$$z_u - i z_v = a (w - w_0)^l + 0 (|w - w_0|^l)$$

for some integer $l \ge 1$ and $a \in \mathbb{C}^3 \setminus \{0\}$. This may be obtained by suitable modification of an argument of Heinz [9, relations (14) and (30)] to allow isothermal parameters in the sense of (1.2).

6. Globalization

We now drop the requirement that exp be injective on $\overline{B}_{r_1}(0)$. We shall need the following fact, which may be expressed as the statement that exp behaves like a covering projection with respect to curves which are not too long.

Lemma 6. Let M be a complete riemannian manifold of class C^3 with sectional curvatures $\leq b^2$. Suppose a C^1 curve $\gamma: [0, 1] \rightarrow M$ is given with $\gamma(0) = m$ and $r = \text{length}(\gamma) < r_1$, where $r_1^2 b^2 < \pi^2$. Then there is a unique mapping

 $\tilde{\gamma}: [0, 1] \to M_m$ with $\tilde{\gamma}(0) = 0$ and $\exp \circ \tilde{\gamma} = \gamma$. Moreover, suppose $\{\gamma_s\}$ is a family of such curves such that $g(s, t) = \gamma_s(t)$ defines a continuous mapping $g: (-\varepsilon, \varepsilon) \times [0, 1] \to M$. Then the family $\{\tilde{\gamma}_s\}$ of liftings yields a continuous mapping $\tilde{g}: (-\varepsilon, \varepsilon) \times [0, 1] \to M_m$ by defining $\tilde{g}(s, t) = \tilde{\gamma}_s(t)$.

Proof. Every point $q \in B_{r_1}(0) \subset M_m$ has a neighborhood U(q) such that exp is a diffeomorphism of U(q) onto its image. This follows from the condition $r_1^2 b^2 < \pi^2$ using a comparison technique (cf. [3, pp. 176–179]). Let S be the set of $t \in [0, 1]$ such that there exists a unique continuous lifting $\tilde{\gamma} : [0, t] \to M_m$ with $\exp \circ \tilde{\gamma} = \gamma|_{[0,t]}$ and $\tilde{\gamma}(0) = 0$. Thus $0 \in S$. Suppose $t \in S$. Then for $t_1 \leq t$,

$$|\tilde{\gamma}(t_1)| = \int_0^{t_1} \tilde{\gamma}_*(t) \cdot \tilde{W} dt = \int_0^{t_1} \langle \gamma_*(t), W \rangle dt \leq \text{length} (\gamma) = r ,$$

where \tilde{W} is the radial unit vector field in M_m , and $W = \exp_*(\tilde{W})$. Thus $\tilde{\gamma}([0, t]) \subset B_r(0) \subset \subset B_{r_1}(0)$.

In particular, for sufficiently small $\varepsilon > 0$, $\gamma([t, t + \varepsilon]) \subset \exp(U(\tilde{\gamma}(t)))$ so that for $t_1 \in [t, t + \varepsilon]$ defining $\tilde{\gamma}(t_1) = (\exp|_{U(\tilde{\gamma}(t))})^{-1} \circ \gamma(t_1)$ extends $\tilde{\gamma}$ over $[0, t + \varepsilon]$. The extended curve $\tilde{\gamma}$ must be unique, since otherwise this process would provide a contradiction to the uniqueness of $\tilde{\gamma}|_{[0,t]}$. Thus $t + \varepsilon \in S$. This shows $S_0 = \{t_0: [0, t_0] \subset S\}$ is open.

Now suppose $\{t_n\}$ is an increasing sequence from S with $t_n \to t_0$. Uniqueness implies that the curves $\tilde{\gamma}$ associated with different values t_n are merely restrictions of one another. This defines $\tilde{\gamma}: [0, t_0) \to B_r(0)$. Among the various points of the finite set $\{q \in \overline{B}_r(0) : \exp(q) = \gamma(t_0)\}$, at most one can be a cluster point of $\tilde{\gamma}(t)$ as $t \to t_0$; otherwise there would be a continuum of cluster points, each of which must be mapped to $\gamma(t_0)$ by exp. It follows that $\tilde{\gamma}(t)$ approaches a limit as $t \to t_0$, and we define $\tilde{\gamma}(t_0)$ to be this limit. The uniqueness of this extended $\tilde{\gamma}$ is clear. Thus $t_0 \in S$. This shows S_0 is closed. Therefore $S_0 = [0, 1]$, i.e., S = [0, 1].

For the second part of the conclusion, it suffices to show \tilde{g} is continuous at s = 0. The compact set $\tilde{\gamma}([0, 1])$ is covered by a finite number of neighborhoods $U_i, 1 \le i \le n$, where each U_i is $U(\tilde{\gamma}(t))$ for some $t \in [0, 1]$. Choose $\delta \in (0, \varepsilon)$ small enough that for each $t \in [0, 1], g([-\delta, \delta] \times \{t\}) \subset \exp(U_i)$ for some *i*. Define $T = \{t \in [0, 1]: \tilde{g} \text{ is continuous on } [-\delta, \delta] \times [0, t]\}$. Thus $0 \in T$. For some $t \ge 0$, suppose $[0, t] \subset T$. There exist *i* and $\eta > 0$ such that $g([-\delta, \delta] \times [t - \eta, t + \eta]) \subset \exp(U_i)$. For $s \in [-\delta, \delta]$ and $t_1 \in [t - \eta, t + \eta]$ define $\tilde{\gamma}'_s(t_1) = (\exp|_{U_i})^{-1} \circ \gamma_s(t_1)$; this defines a continuous lifting $\tilde{\gamma}'_s$ of $\gamma_s|_{[0,t+\eta]}$. By the uniqueness of $\tilde{\gamma}_s$, we have $\tilde{\gamma}'_s = \tilde{\gamma}_s$, i.e.,

$$\tilde{g}|_{[-\delta,\delta]\times[t-\eta,t+\eta]} = (\exp|_{U_i})^{-1} \circ g|_{[-\delta,\delta]\times[t-\eta,t+\eta]}.$$

Thus \tilde{g} is continuous on $[-\delta, \delta] \times [t - \eta, t + \eta]$ and hence on $[-\delta, \delta] \times [0, t + \eta]$ via a glueing lemma. So $t + \eta \in T$. This shows T = [0, 1], i.e., \tilde{g} is continuous. q.e.d.

ROBERT D. GULLIVER II

We shall need a new way of limiting the extent of a closed contractible curve $\Gamma: [0, 1] \to M$. Let a contraction of Γ be given by $g: [0, 1] \times [0, 1] \to M$ with $g(s, 0) = m, g(s, 1) = \Gamma(s)$ and g(1, t) = g(0, t) for all $s, t \in [0, 1]$. We may assume the transverse curves $g_s(t) = g(s, t)$ are uniformly smooth: $g_s \in C^1([0, 1])$ and sup length $(g_s) < \infty$. We make the following definition: if g is a contraction of Γ such that each g_s is rectifiable and length $(g_s) \leq r$, we call g an *r*-contraction of Γ ; if Γ has an *r*-contraction, it is called *r*-contractible. Thus any contractible curve is *r*-contractible for sufficiently large *r*.

Lemma 7. Let N be a complete riemannian manifold of class C^3 with sectional curvatures $\leq b^2$. If a continuous closed curve $\Gamma: [0, 1] \to N$ is r_1 -contractible, where $b^2r_1^2 < \pi^2$, then there exist $n \in N$ and a continuous closed curve $\tilde{\Gamma}: [0, 1] \to \bar{B}_{r_1}(0) \subset N_n$ such that $\Gamma = \exp_n \circ \tilde{\Gamma}$.

Proof. Let $g: [0, 1] \times [0, 1] \to N$ be an r_1 -contraction of Γ , and n the common point g(s, 0). Write $g_s(t) = g(s, t)$; we have length $(g_s) \leq r_1$. Applying Lemma 6 to the family of curves $\{g_s\}$, there is a family of liftings $\{\tilde{g}_s\}$ such that $\tilde{g}(s, t) = \tilde{g}_s(t)$ defines a continuous mapping $\tilde{g}: [0, 1] \times [0, 1] \to N^n$. Since $g_0 = g_1$, it follows from the uniqueness of liftings that $\tilde{g}_1 = \tilde{g}_0$. Let $\tilde{\Gamma}(s) = \tilde{g}_s(1)$. Then $\tilde{\Gamma}$ is a continuous closed curve with $\Gamma = \exp_n \circ \tilde{\Gamma}$.

Theorem 3. Let Γ be an r_1 -contractible Jordan curve in a complete riemannian manifold N^3 of class C^3 and with sectional curvatures $\leq b^2$. Assume there is a mapping $x_0: \overline{B} \to N$ such that x_0 maps ∂B continuously and monotonically onto Γ , and $D[x_0] < \infty$. Suppose that $H \in C^{\alpha}(N)$ satisfies $\sup_{x \in N} |H(x)| \leq b \cot(br_1)$

and that $4b^2r_1^2 < \pi^2$. Then there is a mapping $z: \overline{B} \to N, z \in C^2(B) \cap C^{\circ}(\overline{B})$, taking ∂B homeomorphically onto Γ and satisfying (1.1) and (1.2) in B.

Proof. By Lemma 7, there exist $n \in N$ and a continuous closed curve $\tilde{\Gamma}: [0, 1] \to \bar{B}_{r_1}(0) \subset N_n$ such that $\Gamma = \exp_n \circ \tilde{\Gamma}$. Thus $\tilde{\Gamma}$ is a Jordan curve. We shall define a new manifold M as follows. Let $r_0 > r_1$ be chosen with $b^2 r_0^2 < \pi^2$. Then \exp_n has full rank on $B_{r_0}(0) \subset N_n$. Let M be $B_{r_0}(0)$ with the riemannian structure which makes \exp_n a local isometry, and denote $m = 0 \in N_n$. Then clearly \exp_m is a diffeomorphism of $B_{r_0}(0) \subset M_m$ onto $M = B_{r_0}(m)$. Define $\tilde{H}: M \to R$ by $\tilde{H}(x) = H \circ \exp_n(x)$. We need to find $y_0 \in \mathcal{D}(\tilde{\Gamma}, \infty)$. We may assume x_0 is smooth in B. It is then possible to modify x_0 on some compact subdomain of F to n such that x_1 is homotopic through r_0 -contractions of Γ to $\exp_n(C(\tilde{\Gamma}))$. Lemma 6 may then be applied to find a lifting $y_0: \bar{B} \to N_n$ with $x_1 = \exp_n \circ y_0$. Thus $y_0 \in \mathcal{D}(\tilde{\Gamma}, \infty)$. Now apply Theorem 2 to the curve $\tilde{\Gamma}$ in the manifold M with the prescribed function \tilde{H} : this gives a mapping $y: \bar{B} \to M$. Define $z = \exp_n \circ y$. Then z has the required properties.

Remarks. 1) It is clear from the proof that weaker hypotheses will suffice: if Γ is r_1 -contractible to a point $n \in N$, then we may replace the requirement that N be complete by the requirement that \exp_n be defined on $\overline{B}_{r_1}(0) \subset N_n$, and require H to be defined only on $\overline{B}_{r_1}(n)$, of class $C^{\alpha}(\overline{B}_{r_1}(n))$, with

 $\sup_{x \in \overline{B}_{r_1}(n)} |H(x)| \le b \cot(br_1).$

2) Observe that the solution mapping is homotopic to the particular r_1 contraction g employed in the proof, up to sign; that is, the two mappings represent the same element or inverse elements in $\pi_2(N, \Gamma)$. In fact either orientation could be specified for Γ so that $z \in [g]$ or $z \in [g]^{-1}$ could be obtained
at will. Thus, we may obtain a solution z in any homotopy class in which Γ is r_1 -contractible.

3) The author [4] has recently demonstrated that the solution mapping z is an immersion, that is, $\langle z_u, z_u \rangle = \langle z_v, z_v \rangle \neq 0$ in B.

4) By a result of Heinz [8], the restriction on h is the best possible for the case b = 0; it is reasonable to suppose that it continues to be sharp for other values of b.

5) The requirement that Γ be r_1 -contractible may not be replaced by the condition of contractibility in conjunction with a general restriction on diameter. This may be seen by considering a flat three-torus T^3 of arbitrarily small diameter, letting Γ be the image of a plane circle of radius $>h^{-1}$ under the locally isometric covering map $E^3 \to T^3$. Using the result of [8], this problem has no solution with $H(x) \equiv h$.

7. Minimal surfaces

In the case $H \equiv 0$, we may ignore the volume term W[z] entirely, and the restriction on the dimension of M is no longer necessary. The same considerations, with inessential modifications, now yield:

Theorem 4. Let Γ be an r_1 -contractible Jordan curve in a complete riemannian manifold N, of class C^3 and with sectional curvatures $K \leq K_0$. Assume there is a mapping $x_0: \overline{B} \to N$ which takes ∂B continuously and monotonically onto Γ , with $D[x_0] < \infty$. Suppose $4K_0r_1^2 < \pi^2$. Then there is a minimal surface in N with a conformal representation $z \in C^2(B) \cap C^{\circ}(\overline{B})$ mapping ∂B homeomorphically onto Γ .

This is a partial generalization of the theorem of Morrey [14].

Remarks. 1) If dim N > 3, we make no claim that the solution mapping will be an immersion.

2) In [14], Morrey constructs an example to shed light on his hypothesis of homogeneous regularity. The example occurs in a manifold of negative sectional curvature; but in such a manifold Theorem 4 gives a minimal surface spanning every contractible rectifiable Jordan curve. Thus no example has yet come to light of a contractible rectifiable Jordan curve in a complete manifold which cannot be spanned by a minimal surface.

Bibliography

- [1] R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience, New York, 1950.
- [2] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931) 263–321.
- [3] D. Gromoll, W. Klingenberg & W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math. Vol. 55, Springer, Berlin, 1968.
- [4] R. Gulliver, Regularity of minimizing surfaces of prescribed mean curvature, Ann. of Math. 97 (1973) 275-305.
- [5] R. Gulliver & J. Spruck, The Plateau problem for surfaces of prescribed mean curvature in a cylinder, Invent. Math. 13 (1971) 169–178.
- [6] P. Günther, Einige Sätze über das Volumenelement eines Riemannschen Raumes, Publ. Math. Debrecen 7 (1960) 78–93.
- [7] E. Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann. **127** (1954) 258–287.
- [8] —, On the non-existence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary, Arch. Rational Mech. Anal. 35 (1969) 249-252.
- [9] —, Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern, Math. Z. 113 (1970) 99–105.
- [10] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Andwendungen auf die Kapillaritätstheorie. I, Math. Z. 112 (1969) 205–213.
- [11] —, On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970) 97-114.
- [12] H. Kaul, Ein Einschliessungssatz für H-Flächen in Riemannschen Mannigfaltigkeiten, Manuscripta Math. 5 (1971) 103–112.
- [13] C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. Math., New series, Vol. 1, No. 1, 1943, 1-130.
- [14] —, The problem of Plateau on a Riemannian manifold, Ann. of Math. 49 (1948) 807-851.
- [15] —, Multiple integrals in the calculus of variations, Springer, New York, 1966.
- [16] T. Radó, The problem of the least area and the problem of Plateau, Math. Z. 32 (1930) 763–796.
- [17] H. E. Rauch, A contribution to Riemannian geometry in the large, Ann. of Math. 54 (1951) 38-55.
- [18] F. Tomi, Ein einfacher Beweis eines Regularitätssatzes für schwache Lösungen gewisser elliptischer Systeme, Math. Z. 112 (1969) 214–218.
- [19] H. Werner, Das Problem von Douglas für Flächen konstanter mittlerer Krümmung, Math. Ann. 133 (1957) 303–319.

UNIVERSITY OF CALIFORNIA, BERKELEY UNIVERSITY OF MINNESOTA