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THE PLATEAU PROBLEM FOR SURFACES OF
PRESCRIBED MEAN CURVATURE IN

A RIEMANNIAN MANIFOLD

ROBERT D. GULLIVER II

1. Introduction

In this work we treat the problem of finding a surface of prescribed mean
curvature in a three-dimensional riemannian manifold M, with a given closed
curve as boundary. That is, given a real-valued function H(z) defined on M,
we wish to find a mapping z: B —> M, B denoting the two-dimensional unit
disk, which satisfies the following conditions:

(i) z € C\B) Π C°(B),
(ii) z maps dB homeomorphically onto Γ,

(iii) z satisfies in B the systems

(1.1) VZuzu + VZυzυ = 2H(z)*(zu Λ zυ) ,

(1.2) <zu,zuy — (zυ,zυ> = (zu,zυy = 0 .

Here <( , )> denotes the inner product on the tangent bundle of M, F the as-
sociated Levi-Civita connection, *P the tangent vector associated with a two-
vector P using < , >. Let gtJ be the coefficients of < , > in some coordinate
system. We may write explicity

glk

zl
z\

g2k

z\
z\

g3k

7 3

7 3

where gijgjk = δk and g = det {gi3). (1.2) states that z is a conformal mapping
on its image (possibly with degenerate points); under that condition, (1.1)
become the equations for mean curvature H(z) at regular points.

The basic result of the present paper for smooth complete M may be stated
as follows. Let Ko denote an upper bound on sectional curvatures of M, and
Φ(r) the mean curvature with respect to an inward normal of the geodesic
sphere of radius r in the space of constant curvature Ko. Explicitly, Φ{f) =

cot (</KQr). In the case KQ > 0, replace Φ by any smaller function φ
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which is monotone decreasing. Then for a rectifiable Jordan curve Γ contained
in the geodesic ball Br(m), where expm is injective on Br(0) c MTO, and for
a Holder-continuous function H{z) satisfying \H(z)\ < φif) in that ball, the
problem has a solution (Theorem 2). The injectivity of expm on Br(0) is not
essential (Theorem 3).

For the minimal surface case, i.e., H = 0, this problem was considered by
Morrey [14] after pioneering work in euclidean space by Radό [16] and
Douglas [2]. Heinz [7] considered the case of constant mean curvature H in
euclidean space, showing existence under the condition that Γ be contained in
a ball of radius (VΪ7 — l)/(8 |fl |). This radius was sharpened by Werner [19]
to \ \H\~X. Hildebrandt [11] improved this to the best possible, requiring radius
I HI" 1 . This was accomplished, using regularity results of Morrey, via the in-
troduction of a restricted variational problem in combination with a new max-
imum principle valid for solutions which are only continuous. Hildebrandt has
generalized this result to prescribed mean curvature using a more elegant proof
which involves a modified free variational problem [10]. This method appears
to run into difficulty in the riemannian context if positive sectional curvatures
are allowed. However a variant of the method of [11] is applied to the problem
successfully in the present work: the result stated above is a direct generaliza-
tion of the result of [10]. In the case of nonpositive sectional curvatures our
method provides a generalization of Morrey's result in [14]. As in [11], the
core of this work is a maximum principle for continuous solutions to the var-
iational problem, which we present in § 4. A similar maximum principle, re-
quiring the mapping to be smooth, has been recently obtained by Kaul [12].

The author is indebted to Joel Spruck for valuable discussions.

2. The functional and its first variation

In order to define the variational problem we shall use, we assume for some
point m € M the map exp = exρ m : Mm —• M is a difϊeomorphism of the ball
BR(0) onto its image, which is the geodesic ball BR of radius R and center m.
If S is a set in Mm we define C(S), the cone on S, to be the set {tx: 0 < t < 1,
x e S}. If Si = exp (5) c BR we define the geodesic cone on S19 C(Sλ) =
exρ(C(5)). If Si is an oriented 2-chain, CGSΊ) is an oriented 3-chain. Let a
mapping z: B —> BR and a measurable real-valued function H(x) defined on
BR be given. Then we may define the functional

W[z] = 4 J H(x)dV(x) ,
(?(*(£))

where dV refers to oriented riemannian volume. For vectors V19 V2 tangent to
Mm we write the euclidean inner product as PVF 2 , reserving the symbol
(YD VΪ) fo r Λ e riemannian inner product on tangent vectors to M. For
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z: B —> M and y: B —> Mm we use the notation \Vy\2 — yu-yu + yv-yυ and
\FzfM = (zu, zuy + (zυ, zvy. We may then write the euclidean and riemannian
Dirichlet integrals as

D[y] = Jj\Fy\2dudv , D[z] = Jj\Fz\2

Mdudv .
B B

Finally define the functional for our variational problem:

E[z] = D[z] + W[z] .

For a mapping z into BR we introduce the notation z = exp"1 o z. The mani-
fold M is said to be of class Ck if it has a Ck differentiate structure and the
inner product < , > is of class Ck~\

Proposition 1. If M is of class C2 and H eC1, then the Euler equations
for E are the system (1.1).

Proof. We may write

W[z] = 4 J j J W ) < r#O|Z|),*(z»(ί|Z|) Λ zv(t\z\)) > \z\dtdudv

[z,Fz)dudv .

Here we define tz = exp (tz) γ is the arc-length geodesic from m to z for a
vector V € Mz, V(t\z\) denotes the element at tz = γ(t\z\) of the Jacobi field
along γ determined by V(\z\) = V and V(0) = 0. Let g ί 7 be the coefficients of
the inner product of M with respect to normal coordinates at m, g = det (g o ) .
Then

(2.1)

ω(z, Fz) = Γfl(ίz)V ^ ( te)^- (β«) Λ (tzv)\z\dt
J \z\

o ' '

= ΓtΉ(tz)V~g(tz)dtz zu Azv = Q{z)Ίu A zυ .

The hypotheses imply Q € C1. By Lemma 8 of [5] the first variation (in the
euclidean context)

[ω]z = div Qϊu A lv ,

where the divergence operator is euclidean. But div Q = H(z) V g(z), by way
of integration by parts. The first variation (again in the euclidean context) of
D in the /th component zι is readily calculated as
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~2gkl(zk

uu + zkj - 2Γim(zizί + zUί)

Here the Γ's are the coefficients of F. Thus the Euler equations of E are

gkιlz
k

uu + zk

VΌ + ΠjizUί + 4 4 ) ] = 2H(z)\/~g(lu A zv)
1 ,

or

(2.2) z\u + zk

υυ + Γϊjizizί + 4 4 ) = 2H(z)*(zu A zv)
k ,

J 7 ^ + VZυzυ = 2H(z)*(zu A zυ) .

3. Variation with fixed boundary mapping

Let M be a three-dimensional riemannian manifold of class C3, with sectional
curvatures K < b2,b either real or imaginary. Choose r0 > 0 if b2 > 0 we
require |fe|r0 < ^π. We assume for the present that exp is defined on BrQ(0)
C Mm and is a diffeomorphism of BTo(0) onto Bro (this requirement will be
dropped in § 6). The radius r0 will be fixed in this section and the one follow-
ing.

Define 3>B = {x\B-*Mm\ xeH^B), \x(w)\ < R for almost all w € B).
Here H1 denotes the space of L2 functions with L2 first derivatives and norm
ll^lx given by | |* |β = \\x\\*Lt + D[x\. For / e 9Λ, we define 9R(f) = {xe$R:x
— f € H^B)}, where Hx denotes the closure in Hι of smooth functions with
compact support. For a given function H β L°°(M), we denote by P(f,R,H)
the variational problem: E[y] —» min among mappings y such that y € ^ij(/)
and by e(f,R,H) this minimum. Denote Λ = ess sup \H(x)\.

Consider a mapping z: B —> .Bro at a point w f l e ΰ . We need to bound ω(z, Γz)
in terms of the riemannian Dirichlet integrand \VzfM

Define a function on C:

G(ζ) = esc2 ζ cot ζ(ζ - cos ζ sin ζ) ζ ^ 0 ,

G(0) = 2/3 .

Observe G is continuous, with 0 < G(ζ) < 1 for — \π < ζ < \π and for all
imaginary ζ.

Lemma 1. // r = \z(w0) \ < r0 and h < b cot (Z?r0),

Proof. Let F ^ ) = V g (̂ oZo/r) be the Jacobian of exp at pzo/r e Mm. Here
z0 = z(w0). Then from (2.1) we have
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ωfeo, Fz(Wo)) = J tΉ(tzo)F(tr)dt Zo'ϊuiwo) Λ zwO 0) .
0

Writing ,4 = zo zα(wo) Λ zfl(w0), note that

\ΛF{r)\ = r\ < u , *(zu(w0) Λ z,(w0)) > | < \r\Vz(wQ)\\ ,

where f is the arc-length geodesic from m to z0. Now F satisfies the growth
condition

pψ(p) sin* (bp)
rΨ(r) ~ ύtf(br)

for p < r [6]. So we have

Γ d t < ΛF(r)h
Fir)

so that

fMh Γ
J sisin2

The integral is increasing as a function of r since

d f r2i5^U = 1 -
J sin2 (£r)dr

Thus

\ω(zo,Fz(wo))\ < Wz(wo)fMb cot (br0) Γ° s™]®p\dp
J sm2 (br0)

= ^\Fz(Wo)\2

MG(bro) . q.e.d.

In the case b = 0, read r for sin (br)/b and 1 for cos (br). Thus Φ(r) = b cot (for)
becomes the familiar 1/r for ft = 0.

For a vector F tangent to Bro denote V = (exp~%(F).
Lemma 2. Assume M is of class C1. There exists N such that for any

tangent vectors V e Mz, \ϊ\ < r0, we have

—V'V < <V,V} <NV V .
N



322 ROBERT D. GULLIVER II

_ Proof. At each point z of Bro, letN(z) = sup{<F, F>, l/(V,V}:Ve MM,
V V = 1}. Since <( , ) is continuous and positive definite, N(z) is continuous
and finite, and hence bounded on Bro.

Corollary 1. If h < b cot (6r0) and z e ^ r o , ίλen /or any measurable Bf d B
we have

- [ 1
iv

Here the subscripted Br denotes integration over that set.
Lemma 3. Assume h<b cot (br0). Let {yn} be a sequence from @R, R < r0,

such that yn converges weakly to y in Hλ(B). Then y e Q)R and E[y] < lim inf
E[ynl

Proof. Using Lemma 1, as in [11, Lemma 1].
Lemma 4. Suppose h < b cot (br0) and f e Q)R for R < r0. Then there

exists a solution z to the variatίonal problem P(/, R,H).

Proof. Choose a sequence zn e @R(f) such that, with zn = exp o zn, lim E[zn]

= e(f,R,H). Then the numbers E[zn] are uniformly bounded, hence by Co-

rollary 1, D[zn] < uniform bound. So ||zn | |J < R2 C£ dudv + D[zn] < uni-
B

form bound, and some subsequence converges weakly to a function z e H^B),

with z — / e i?i(#). Using Lemma 3, z e @R(f) and

e(f,R,H) < E[z] < lim E[zn] = e(f,R,H) .

Thus z solves P(f, R, H). q.e.d.
As a consequence of its minimizing property and Corollary 1, this z satisfies

a uniform Holder condition in B. If, moreover, / e C\dB) then z e C°(B) and
z = f on B. These properties follow from results of Morrey [13, Theorem 2.2]
using a glueing technique (cf. [11, Lemma 4]). For any subdomain ffcΰ
such that sup \z(w)\ < R, the first variation of E will vanish with respect to

w£B'

any smooth test function with compact support that is, for H e C1, z is a weak
solution to the Euler equations (1.1) or the equivalent form (2.2). It then fol-
lows from a result of Heinz and Tomi (cf. [18]) that z 6 C1+β for all β < 1 and
has the representation

ziw) = y(w) + ((G(W, 0{2JΪ(z(0)*(*e Λ
(3.1) JJ

where y is the harmonic function with z = y on dβ7, G(w, ζ) the Green's
function for B\ and Vk the /:th coordinate vector. Assuming only that H is Ca,
it follows by methods of potential theory that z β C2+a and satisfies (1.1). It is
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the purpose of the next section to show that under appropriate hypotheses
these considerations may be applied with Bf = B itself.

4. The maximum principle; smoothness

Let rx ζ. (0, r0) be chosen. We construct a C1 mapping t : Mm —> Mm by de-
ffining f{y) = σ(|y|)j/|y| for a C1 function σ with the properties: σ(r) < r for

all r, (j(r) = r ioτ r ζ [0, r j , and (/'(Λ + ) < 0. Now define T: Bro-> Bro by
T(x) = exp CΓ(Jc)). Observe that if y e ^ Λ then JΌy <= ^ , ( Λ ) .

Lemma 5. Suppose h < ^ c o t ί ^ ) . Then there exists R19 rx < Rλ <r 0,
5 wcΛ ίΛαί for ze $)Rχ Π C°(5) with inf |z(w)| < Λ < sup \z(w)\ there holds

_ w€B wζB

E[Toz] <E[z\. Thus, if zεC°(B) solves P(f,Rλ,H) where feC°(dB) and
sup I/O)I < r19 then z e Θrχ.
WζdB

Proof. We first estimate the effect of T^ on the length of vectors. For
V e Mp we define an orthogonal decomposition V = Vr + Vs where Vr =
(y,γ^)γ^,γ = arc-length geodesic from m to p. We have an analogous de-
composition for V e (MJp, with Vr = exp^(Fr) and Vs = exp*(f s) Writing
R = ||lI we see that (f *V)S = Vsσ(R)/R and (f*V)r = σ'(R)Vr, modulo the
identification of tangents to Mm at different points by parallel translation.
Write V(p) for the Jacobi field along the ray through the origin and p, deter-
mined by V(R) = V and V(0) = 0. Namely V(p) = (p/R)V translated to
(p/R)p. Let f{p) be the Jacobian of exp restricted to the subspace generated
by V(p)s. For ρx < p2 we have the inequality

Pιf(pi) < sin (bPι) ^

P2KP2) ~~ sin (bp2)

(cf. [6] or [17, proof of Theorem 3]). This now yields:

IΓ^FI2 = \{τ*vy? + KΓ#ΪOΊ2 - i(f/) rP + f(σ(R)y\(f *vy\>

= (σ\R))2\Vr\2 + (σ(R)/R)2f(σ(R)y\Vs\2

\ Rf(R)

sm2

Now the function ^(Λ) = sin (bσ(R))/sin (bR) has 0(rx) == 1 and ^(r^ = 0.
Since σ'(r^) = 1 and <7"(r1 + ) < 0, we see that 0 < σ' < φ on some interval
[0,RQ] where RQ> rλ, equality holding on [0,rJ. Then for R < Ro

(4.1)

We need next to estimate the effect of Γ on the volume integrand ω(z, Fz).
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Denote y = Toz, and let zs

u(p),zs

v(ρ) be the Jacobi fields generated by £u,z%.
Thus zsu{p)<zMrip). Observe that yu(p) = zs

u(p),ys

v(P) = zs

v(P) for p < σ(\z\).
First assume that zu and zυ are independent, and let F(p) be the Jacobian of
exp at pz/R. Then for p1 < p2

PιΨ(pι) < sm2(bPι)
p2ψ(pz) ~ sin2 (bp2)

[6]. Now

<r*(ι°), *(yΛp) Λ yv(p))> = <r*(ί>), *(z«(/>) Λ

where C is independent of p. Thus using (2.1),

\ω(z,Fz) -ω(z,Fy)\ =

< h I CRΨ{R) I [B p Ψ ^ dp
~ ' ' J RΨ(R) μ

:Ψ(R)

If zu and zυ are not independent, this relation holds trivially.
Finally, with i(z, Vz) = \Fz\2

M + 4ω(z, Fz), and supposing R = \z\ < RQ we
have from (4.1) and (4.2) that

ί(z,Fz) - i(y,Fy) = \Fz\\ - \FyfM + 4(ω(z,Fz) - ω(y,Fy))

- ' l J fl s in 2 (^)

In straightforward fashion we compute g(R) = 0 for R < r19 g'(r^) = 0, and

- Z7 cot (for,)] > 0 .

Thus there exists Rx <= (r19 R] such that g > 0 on (rl9 RJ. Now assume z 6 S Λ l .
We have i(z,Fz) — i(y,Fy) > 0 everywhere, i.e., EB,,[z] — EB,,\y] > 0 for
all measurable B" a B. Assume further zeC°(B) with
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inf |2(w)l < r, < R2 = sup \z(w)\ < Rt .
wζB wζB

Then |2 | takes every value in [r19R2]. In particular, z is not constant on the
open set

B' = {weB: JCi + Λ2) < |Z(w)| < R2} ,

and thus D^fz] > 0. But there exists δ > 0 such that g > δ on [J(rj + #,,), R2].
Let £ " = £ \ 5 ' . Hence

E[z] - E[y] = EΛ,,b] - £*„[)>] + Eβ,[z] - EB.\y\ > δDB,{z\ > 0 ,

as claimed.
Now, if sup |/(w) I < rλ and z€@Rl(f) then y€@>Rl{f)\ thus if z solves

P(f,R19H), sup |z(w)| > rx is impossible.
WζB

Theorem 1. Suppose M3 w fl rίemannian manifold of class C3 w/ίΛ sectional
curvatures <b2. For some m e M and rQ > 0, with 4b2rQ

2 < π2, suppose that
the restriction of exp = expm to Bro(O) C Mm is a diffeomorphism onto its
image. Let a C1 function H: Bro —> R be given with h = sup | H(x)} < b cot (brλ),

where rλ < r0. Then given f € 9)Ψχ Π C°(dB) there exists a solution ze C\B)
Π C°C§) ίo P(f,rl9H), which satisfies (1.1) m 5 and agrees with expo/ on

Proof. Let /?! be as given by Lemma 5. Let z be a solution to P(/, Λ l f .ί/)
as given by Lemma 4. From results of Morrey we have z e C°(5), as remark-
ed at the end of § 3, and z 6 C2(J50 for any B' (Z B with sup |z(w)| < Rγ. But

Lemma 5 shows that sup \z(w)\ < rλ < R19 so that z e C2(5) and satisfies the
WζB

Euler equations (1.1). q.e.d.
We now drop the condition that H e C1. Given any function H e Ca(Br) with

sup \H(x)\ < b cot (brj we approximate H uniformly in Brχ by a sequence of

functions Hn € C 1 ^ ) with sup \Hn(x)\ < b cot (fc^). Then for each Hn Theo-
χ€Bro

rem 1 gives a solution zw to F(/, rl9 Hn). As in [5, § 5] we find z such that some
subsequence of the zn converges in H^B) to z. Since each zn has a representa-
tion (3.1) with respect to Hn, we obtain that representation for z with respect
to H. It may then be shown, using a standard argument of potential theory,
that z 6 C2+a and satisfies (1.1). This shows

Cotfollary 2. Theorem 1 continues to hold if the function H satisfies only
H e Ca(Bri) and sup \H(x)\ < cot (brλ).

x£Bri

5. The Plateau problem

Let Γ be an oriented closed Jordan curve in Bro. Denote by $(Γ,R) the
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set of mappings xz@R such that x\dB is equal almost everywhere to a con-
tinuous, monotone mapping of degree 1 over the integers onto Γ. Define a
variational problem PH(Γ, R) by E[x] —> min among mappings x such that

Theorem 2. Let M be a riemannian manifold of dimension 3 and of class
C3 with sectional curvatures <b2. For m^M and rx > 0 with Ar?b2 < π2, as-
sume expm is defined on BTl(0) C Mm and maps Bri(0) diffeomorphically onto
BTl = Bri(m). Let Γ be an oriented closed Jordan curve in B;t such that
@(Γ, oo) is nonempty. Let H be a uniformly Holder-continuous function'.
Bri —» R with h = sup \H(z)\ < b cot (brj. Then there exists a solution z e

_ z£Brχ

C\B) Π C°(B) to the variational problem PH(Γ, rj, mapping dB homeomor-
phically onto Γ in an orientation-preserving fashion and satisfying (1.1) and
(1.2) in B.

Proof. Let r0 > rx be chosen so that 4b2r0

2 < π2 and so that expm is a dif-
feomorphism of Bro(Q) onto BrQ(m). The theorem now follows from Corollary
2 in essentially the same fashion as in [11, Theorem 2]. In the process of the
proof, we modify a minimizing sequence {xn} by requiring each xn to satisfy a
three-point condition. This can be done without changing E[xn] since E is con-
formally invariant. We require the choice of the three points to be such that
every monotone map: 9# —• Γ satisfying the three-point condition will be of
degree 1. In particular, the limiting mapping z\dB will be of degree 1. Observe
that for any C^difϊeomorphism φ: B —• 5 there holds W[φ oz] = W[z] there-
fore since φ o z € @(Γ, rλ) we have D[z] < D[φ o z]. From this it follows that z
satisfies (1.2) by a straightforward adaptation of the method of [1, pp. 107-
112].

To show that z\dB is a homeomorphism, it suffices to show that for any
w0 € dB, a neighborhood of which in dB is mapped into a C2 curve, there holds
an asymptotic representation

zu - feβ = a(w — w0)
1 + 0(|w - wQ\ι)

for some integer / > 1 and a e C*\{0}. This may be obtained by suitable mod-
ification of an argument of Heinz [9, relations (14) and (30)] to allow iso-
thermal parameters in the sense of (1.2).

6. Globalization

We now drop the requirement that exp be injective on Bri(0). We shall need
the following fact, which may be expressed as the statement that exp behaves
like a covering projection with respect to curves which are not too long.

Lemma 6. Let M be a complete riemannian manifold of class O with
sectional curvatures <b2. Suppose a C1 curve γ: [0,1]—>M is given with γ(0)
— m and r = length (γ) < r19 where rfb2 < π2. Then there is a unique mapping
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f: [0,1] —• Mm with f(0) = 0 and exp of = γ. Moreover, suppose {γs} is a
family of such curves such that g(s, t) = γs(t) defines a continuous mapping
g: (—ε, ε) X [0,1] —> M. Then the family {fs} of liftings yields a continuous
mapping g: (-ε,ε) X [0,1] -> Mm by defining g(s, t) = fs(i).

Proof. Every point q € Brii0) C Mm has a neighborhood U(q) such that
exp is a difϊeomorphism of U(q) onto its image. This follows from the condition
r?b2 < π2 using a comparison technique (cf. [3, pp. 176-179]). Let S be the
set of t € [0,1] such that there exists a unique continuous lifting f: [0, t] —> Mm

with exp o f = γ\ίOitl and f (0) = 0. Thus 0 e 5. Suppose t <= S. Then for tx < t,

r*(t)> w > d ί

where ]fr is the radial unit vector field in Mm, and W = exp^d^). Thus
f ( [ 0 , φ c B r ( 0 ) C C B r i ( 0 ) .

In particular, for sufficiently small e > 0, ^([ί, / + ε]) C exp (U(f(t))) so that
for tx € [t, t + ε] defining fit,) = (exp^(Γω))""1 °KO extends f over [0, / + ε].
The extended curve f must be unique, since otherwise this process would pro-
vide a contradiction to the uniqueness of f |co,ί] Thus t + ε 6 5. This shows
So = {t0: [0,t0] C 5} is open.

Now suppose {tn} is an increasing sequence from S with tn—*tQ. Uniqueness
implies that the curves f associated with different values tn are merely restric-
tions of one another. This defines f: [0, t0) —• Br(0). Among the various points
of the finite set {q e Br(0): exp(g) = y(Q), at most one can be a cluster point
of fit) as t —> t0 otherwise there would be a continuum of cluster points, each
of which must be mapped to γitQ) by exp. It follows that fit) approaches a
limit as t —> t09 and we define fit0) to be this limit. The uniqueness of this ex-
tended f is clear. Thus t0 e S. This shows So is closed. Therefore So = [0,1],
i.e., S = [0,1].

For the second part of the conclusion, it suffices to show g is continuous at
s = 0. The compact set f([0,1]) is covered by a finite number of neighbor-
hoods Ui, 1 < i < n, where each [/$ is Uifit)) for some t e [0,1], Choose
δ e (0, ε) small enough that for each / e [0,1], g([—δ, δ] X {/}) C exp (E/*) for
some Ϊ. Define T = {* e [0,1]: £ is continuous on [—5,3] X [0, t]}. Thus
0 € Γ. For some * > 0, suppose [0, t) c T. There exist i and η > 0 such that
*([-δ, fl X t - η, t + η\) C exp (17*). For j e [-5,5] and ^ e [/ - y, ί + 9 ]
define fjfo) = (expl^)"1 o y ^ ) this defines a continuous lifting fs of ^)[0,i+,].
By the uniqueness of fs, we have f's — fs, i.e.,

Thus g is continuous on [—3,5] X [t — η, t + η\ and hence on [—5,5] X
[0, t + τj\ via a glueing lemma. So t + ηeT. This shows T = [0,1], i.e., g is
continuous, q.e.d.
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We shall need a new way of limiting the extent of a closed contractible curve
Γ: [0,1] -> M. Let a contraction of Γ be given by g: [0,1] X [0,1] -» M
with g(s, 0) = m, g(s, 1) = Γ(y> and g(l, ί) = g(0, ί) for all s, t e [0,1]. We
may assume the transverse curves gs(t) = g(s, i) are uniformly smooth: gs e
C\[0,1]) and sup length (gs) < oo. We make the following definition: if g is
a contraction of Γ such that each gs is rectifiable and length (gs) < r, we call
g an r-contraction of Γ ; if Γ has an r-contraction, it is called r-contractible.
Thus any contractible curve is r-contractible for sufficiently large r.

Lemma 7 Lei N be a complete riemannίan manifold of class C3 with
sectional curvatures <b2. If a continuous closed curve Γ: [0,1] —> N is r r

contractible, where b2^2 < π2, then there exist n eN and a continuous closed
curve Γ: [0,1] -> 5 r i (0) C Nn such that Γ = expw o Γ.

Proof. Let g: [0,1] X [0, l ] - > i V b e an ^-contraction of Γ, and n the
common point g(s, 0). Write gs(t) = g^, ί) we have length (gs) < rv Apply-
ing Lemma 6 to the family of curves {gs}, there is a family of liftings {gs} such
that gO, ί) = gs(t) defines a continuous mapping g: [0, 1] X {0,1] ->Nn.
Since g0 = g19 it follows from the uniqueness of liftings that gx = g0. Let Γ^)
= g s ( l) . Then Γ is a continuous closed curve with Γ — expTO o Γ.

Theorem 3. Let Γ be an r-contractible Jordan curve in a complete rieman-
nian manifold N3 of class C3 and with sectional curvatures <b2. Assume there
is a mapping x0: B —> N such that x0 maps dB continuously and monotonically
onto Γ, and D[x0] < oo. Suppose that H β Ca(N) satisfies sup \H(x) \ < b cot (brj

_ χζ.N _

and that Ab2r2 < π2. Then there is a mapping z: B ^N,z<=. C2{B) Π C°(5),
taking dB homeomorphically onto Γ and satisfying (1.1) and (1.2) in B.

Proof. By Lemma 7, there exist neN and a continuous closed curve
f: [0,1] -> 5 r i (0) C ΛΓn such that Γ = expw o f. Thus Γ is a Jordan curve.
We shall define a new manifold M as follows. Let r0 > ^ be chosen with
b\2 < π2. Then expw has full rank on Bro(O) C iVn. Let M be £ro(O) with the
riemannian structure which makes expn a local isometry, and denote m = 0
€ iVn. Then clearly expm is a diίϊeomorphism of Bro(0) C M m onto M = Bro(m).

Define ^ : M-> R by JΪ(JC) = floexpn(jc). We need to find yoe$(Γ, oo).
We may assume ;t0 is smooth in 5 . It is then possible to modify x0 on some
compact subdomain of B to a mapping JCX which is smooth in B and describes
an ^-contraction of Γ to n such that x1 is homotopic through ^-contractions
of Γ to exp^(C(Γ)). Lemma 6 may then be applied to find a lifting y0: B -*Nn

with jcx = expn oy0. Thus y0 e @(Γ, oo). Now apply Theorem 2 to the curve
.Γ in the manifold M with the prescribed function H: this gives a mapping
y: B —> M. Define z = expnoy. Then z has the required properties.

Remarks. 1) It is clear from the proof that weaker hypotheses will suf-
fice : if Γ is rΓcontractible to a point n eN, then we may replace the require-
ment that N be complete by the requirement that expn be defined on Bri(0)
C Nn, and require H to be defined only on Bri(ri), of class Ca(Bri(ή)), with
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sup I #O)| < b cot O Ί ) .
x€Bri(n)

2) Observe that the solution mapping is homotopic to the particular r Γ

contraction g employed in the proof, up to sign that is, the two mappings re-
present the same element or inverse elements in π2(N,Γ). In fact either ori-
entation could be specified for Γ so that z e [g] or z e [g]'1 could be obtained
at will. Thus, we may obtain a solution z in any homotopy class in which Γ
is r rcontractible.

3) The author [4] has recently demonstrated that the solution mapping z
is an immersion, that is, (zu, zuy = (zv, zυy Φ 0 in B.

4) By a result of Heinz [8], the restriction on h is the best possible for the
case b = 0 it is reasonable to suppose that it continues to be sharp for other
values of b.

5) The requirement that Γ be ^-contractible may not be replaced by the
condition of contractibility in conjunction with a general restriction on diameter.
This may be seen by considering a flat three-torus T3 of arbitrarily small dia-
meter, letting Γ be the image of a plane circle of radius >h~ι under the
locally isometric covering map £? —• T3. Using the result of [8], this problem
has no solution with H(x) = h.

7. Minimal surfaces

In the case H = 0, we may ignore the volume term W[z] entirely, and the
restriction on the dimension of M is no longer necessary. The same considera-
tions, with inessential modifications, now yield:

Theorem 4. Let Γ be an r^contractible Jordan curve in a complete rieman-
nian manifold N, of class C3 and with sectional curvatures K < Ko. Assume
there is a mapping JC0 : B —• N which takes dB continuously and monotonically
onto Γ, with D[x0] < oo. Suppose AK^2 < π2. Then there is a minimal surface
in N with a conformal representation z e C\B) Π C°(B) mapping dB homeo-
morphically onto Γ.

This is a partial generalization of the theorem of Morrey [14].
Remarks. 1) If dim N > 3, we make no claim that the solution mapping

will be an immersion.
2) In [14], Morrey constructs an example to shed light on his hypothesis

of homogeneous regularity. The example occurs in a manifold of negative
sectional curvature but in such a manifold Theorem 4 gives a minimal sur-
face spanning every contractible rectifiable Jordan curve. Thus no example has
yet come to light of a contractible rectifiable Jordan curve in a complete man-
ifold which cannot be spanned by a minimal surface.
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