THE PLATEAU PROBLEM FOR SURFACES OF PRESCRIBED MEAN CURVATURE IN A RIEMANNIAN MANIFOLD

ROBERT D. GULLIVER II

1. Introduction

In this work we treat the problem of finding a surface of prescribed mean curvature in a three-dimensional riemannian manifold M, with a given closed curve as boundary. That is, given a real-valued function $H(z)$ defined on M, we wish to find a mapping $z: B \rightarrow M, B$ denoting the two-dimensional unit disk, which satisfies the following conditions:
(i) $z \in C^{2}(B) \cap C^{0}(\bar{B})$,
(ii) z maps ∂B homeomorphically onto Γ,
(iii) z satisfies in B the systems

$$
\begin{gather*}
\nabla_{z_{u}} z_{u}+\nabla_{z_{v}} z_{v}=2 H(z)^{*}\left(z_{u} \wedge z_{v}\right) \tag{1.1}\\
\left\langle z_{u}, z_{u}\right\rangle-\left\langle z_{v}, z_{v}\right\rangle=\left\langle z_{u}, z_{v}\right\rangle=0 \tag{1.2}
\end{gather*}
$$

Here \langle,$\rangle denotes the inner product on the tangent bundle of M, \nabla$ the associated Levi-Civita connection, $* P$ the tangent vector associated with a twovector P using \langle,$\rangle . Let g_{i j}$ be the coefficients of \langle,$\rangle in some coordinate$ system. We may write explicity

$$
*\left(z_{u} \wedge z_{v}\right)^{k}=\sqrt{g}\left|\begin{array}{lll}
g^{1 k} & g^{2 k} & g^{3 k} \\
z_{u}^{1} & z_{u}^{2} & z_{u}^{3} \\
z_{v}^{1} & z_{v}^{2} & z_{v}^{3}
\end{array}\right|
$$

where $g_{i j} g^{j k}=\delta_{i}^{k}$ and $g=\operatorname{det}\left(g_{i j}\right)$. (1.2) states that z is a conformal mapping on its image (possibly with degenerate points); under that condition, (1.1) become the equations for mean curvature $H(z)$ at regular points.

The basic result of the present paper for smooth complete M may be stated as follows. Let K_{0} denote an upper bound on sectional curvatures of M, and $\Phi(r)$ the mean curvature with respect to an inward normal of the geodesic sphere of radius r in the space of constant curvature K_{0}. Explicitly, $\Phi(r)=$ $\sqrt{K_{0}} \cot \left(\sqrt{K_{0}} r\right)$. In the case $K_{0}>0$, replace Φ by any smaller function ϕ
which is monotone decreasing. Then for a rectifiable Jordan curve Γ contained in the geodesic ball $B_{r}(m)$, where $\exp _{m}$ is injective on $B_{r}(0) \subset M_{m}$, and for a Hölder-continuous function $H(z)$ satisfying $|H(z)| \leq \phi(r)$ in that ball, the problem has a solution (Theorem 2). The injectivity of $\exp _{m}$ on $B_{r}(0)$ is not essential (Theorem 3).

For the minimal surface case, i.e., $H \equiv 0$, this problem was considered by Morrey [14] after pioneering work in euclidean space by Radó [16] and Douglas [2]. Heinz [7] considered the case of constant mean curvature H in euclidean space, showing existence under the condition that Γ be contained in a ball of radius $(\sqrt{17}-1) /(8|H|)$. This radius was sharpened by Werner [19] to $\frac{1}{2}|H|^{-1}$. Hildebrandt [11] improved this to the best possible, requiring radius $|\boldsymbol{H}|^{-1}$. This was accomplished, using regularity results of Morrey, via the introduction of a restricted variational problem in combination with a new maximum principle valid for solutions which are only continuous. Hildebrandt has generalized this result to prescribed mean curvature using a more elegant proof which involves a modified free variational problem [10]. This method appears to run into difficulty in the riemannian context if positive sectional curvatures are allowed. However a variant of the method of [11] is applied to the problem successfully in the present work: the result stated above is a direct generalization of the result of [10]. In the case of nonpositive sectional curvatures our method provides a generalization of Morrey's result in [14]. As in [11], the core of this work is a maximum principle for continuous solutions to the variational problem, which we present in $\S 4$. A similar maximum principle, requiring the mapping to be smooth, has been recently obtained by Kaul [12].

The author is indebted to Joel Spruck for valuable discussions.

2. The functional and its first variation

In order to define the variational problem we shall use, we assume for some point $m \in M$ the map exp $=\exp _{m}: M_{m} \rightarrow M$ is a diffeomorphism of the ball $B_{R}(0)$ onto its image, which is the geodesic ball B_{R} of radius R and center m. If S is a set in M_{m} we define $C(S)$, the cone on S, to be the set $\{t x: 0 \leq t \leq 1$, $x \in S\}$. If $S_{1}=\exp (S) \subset B_{R}$ we define the geodesic cone on $S_{1}, C\left(S_{1}\right)=$ $\exp (C(S))$. If S_{1} is an oriented 2-chain, $C\left(S_{1}\right)$ is an oriented 3-chain. Let a mapping $z: B \rightarrow B_{R}$ and a measurable real-valued function $H(x)$ defined on B_{R} be given. Then we may define the functional

$$
W[z]=4 \int_{C(z(B))} H(x) d V(x)
$$

where $d V$ refers to oriented riemannian volume. For vectors V_{1}, V_{2} tangent to M_{m} we write the euclidean inner product as $V_{1} \cdot V_{2}$, reserving the symbol $\left\langle V_{1}, V_{2}\right\rangle$ for the riemannian inner product on tangent vectors to M. For
$z: B \rightarrow M$ and $y: B \rightarrow M_{m}$ we use the notation $|\nabla y|^{2}=y_{u} \cdot y_{u}+y_{v} \cdot y_{v}$ and $|\nabla z|_{M}^{2}=\left\langle z_{u}, z_{u}\right\rangle+\left\langle z_{v}, z_{v}\right\rangle$. We may then write the euclidean and riemannian Dirichlet integrals as

$$
\bar{D}[y]=\iint_{B}|\nabla y|^{2} d u d v, \quad D[z]=\iint_{B}|\nabla z|_{M}^{2} d u d v
$$

Finally define the functional for our variational problem:

$$
E[z]=D[z]+W[z]
$$

For a mapping z into B_{R} we introduce the notation $\tilde{z}=\exp ^{-1} \circ z$. The manifold M is said to be of class C^{k} if it has a C^{k} differentiable structure and the inner product \langle,$\rangle is of class C^{k-1}$.

Proposition 1. If M is of class C^{2} and $H \in C^{1}$, then the Euler equations for E are the system (1.1).

Proof. We may write

$$
\begin{aligned}
W[z] & =4 \iint_{B} \int_{0}^{1} H(t z)<\gamma_{*}(t|\tilde{z}|), *\left(z_{u}(t|\tilde{z}|) \wedge z_{v}(t|\tilde{z}|)\right)>|\tilde{z}| d t d u d v \\
& =4 \iint_{B} \omega(z, \nabla z) d u d v
\end{aligned}
$$

Here we define $t z=\exp (t \tilde{z}) ; \gamma$ is the arc-length geodesic from m to z; for a vector $V \in M_{z}, V(t|\tilde{z}|)$ denotes the element at $t z=\gamma(t|\tilde{z}|)$ of the Jacobi field along γ determined by $V(|\tilde{z}|)=V$ and $V(0)=0$. Let $g_{i j}$ be the coefficients of the inner product of M with respect to normal coordinates at $m, g=\operatorname{det}\left(g_{i j}\right)$. Then

$$
\begin{align*}
\omega(z, \nabla z) & =\int_{0}^{1} H(t z) \sqrt{g}(t z) \frac{\tilde{z}}{|\tilde{z}|} \cdot\left(t \tilde{z}_{u}\right) \wedge\left(t \tilde{z}_{v}\right)|\tilde{z}| d t \tag{2.1}\\
& =\int_{0}^{1} t^{2} H(t z) \sqrt{g}(t z) d t \tilde{z} \cdot \tilde{z}_{u} \wedge \tilde{z}_{v}=Q(\tilde{z}) \cdot \tilde{z}_{u} \wedge \tilde{z}_{v}
\end{align*}
$$

The hypotheses imply $Q \in C^{1}$. By Lemma 8 of [5] the first variation (in the euclidean context)

$$
[\omega]_{z}=\operatorname{div} Q \tilde{z}_{u} \wedge \tilde{z}_{v}
$$

where the divergence operator is euclidean. But $\operatorname{div} Q=H(z) \sqrt{g}(z)$, by way of integration by parts. The first variation (again in the euclidean context) of D in the l th component z^{l} is readily calculated as

$$
-2 g_{k l}\left(z_{u u}^{k}+z_{v v}^{k}\right)-2 \Gamma_{i j \mid l}\left(z_{u}^{i} z_{u}^{j}+z_{v}^{i} z_{v}^{j}\right)
$$

Here the Γ 's are the coefficients of ∇. Thus the Euler equations of E are

$$
g_{k l}\left[z_{u u}^{k}+z_{v v}^{k}+\Gamma_{i j}^{k}\left(z_{u}^{i} z_{u}^{j}+z_{v}^{i} v_{v}^{j}\right)\right]=2 H(z) \sqrt{g}\left(\tilde{z}_{u} \wedge \tilde{z}_{v}\right)^{l}
$$

or

$$
\begin{equation*}
z_{u u}^{k}+z_{v v}^{k}+\Gamma_{i j}^{k}\left(z_{u}^{i} z_{u}^{j}+z_{v}^{i} z_{v}^{j}\right)=2 H(z)^{*}\left(z_{u} \wedge z_{v}\right)^{k} \tag{2.2}
\end{equation*}
$$

which is the same as

$$
\nabla_{z_{u}} z_{u}+\nabla_{z_{v}} z_{v}=2 H(z)^{*}\left(z_{u} \wedge z_{v}\right)
$$

3. Variation with fixed boundary mapping

Let M be a three-dimensional riemannian manifold of class C^{3}, with sectional curvatures $K \leq b^{2}, b$ either real or imaginary. Choose $r_{0}>0$; if $b^{2}>0$ we require $|b| r_{0} \leq \frac{1}{2} \pi$. We assume for the present that exp is defined on $B_{r_{0}}(0)$ $\subset M_{m}$ and is a diffeomorphism of $B_{r_{0}}(0)$ onto $B_{r_{0}}$ (this requirement will be dropped in § 6). The radius r_{0} will be fixed in this section and the one following.

Define $\mathscr{D}_{R}=\left\{x: B \rightarrow M_{m}: x \in H_{1}(B),|x(w)| \leq R\right.$ for almost all $\left.w \in B\right\}$. Here H_{1} denotes the space of L^{2} functions with L^{2} first derivatives and norm $\|x\|_{1}$ given by $\|x\|_{1}^{2}=\|x\|_{L^{2}}^{2}+\bar{D}[x]$. For $f \in \mathscr{D}_{R}$, we define $\mathscr{D}_{R}(f)=\left\{x \in \mathscr{D}_{R}: x\right.$ $\left.-f \in \dot{H}_{1}(B)\right\}$, where \dot{H}_{1} denotes the closure in H_{1} of smooth functions with compact support. For a given function $H \in L^{\infty}(M)$, we denote by $P(f, R, H)$ the variational problem: $E[y] \rightarrow \min$ among mappings y such that $\tilde{y} \in \mathscr{D}_{R}(f)$ and by $e(f, R, H)$ this minimum. Denote $h=\underset{x \in B_{r_{0}}}{\operatorname{ess}}|H(x)|$.

Consider a mapping $z: B \rightarrow B_{r_{0}}$ at a point $w_{0} \in B \in B r_{0}$. We need to bound $\omega(z, \nabla z)$ in terms of the riemannian Dirichlet integrand $|\nabla z|_{{ }_{\mu}^{2}}^{2}$.

Define a function on \boldsymbol{C} :

$$
\begin{aligned}
& G(\zeta)=\csc ^{2} \zeta \cot \zeta(\zeta-\cos \zeta \sin \zeta) \quad \zeta \neq 0 \\
& G(0)=2 / 3
\end{aligned}
$$

Observe G is continuous, with $0 \leq G(\zeta)<1$ for $-\frac{1}{2} \pi \leq \zeta \leq \frac{1}{2} \pi$ and for all imaginary ζ.

Lemma 1. If $r=\left|z\left(w_{0}\right)\right| \leq r_{0}$ and $h \leq b \cot \left(b r_{0}\right)$, then

$$
\left|\omega\left(z\left(w_{0}\right), \nabla z\left(w_{0}\right)\right)\right| \leq \frac{1}{4}|\nabla z|_{M}^{2} G\left(b r_{0}\right) .
$$

Proof. Let $F(\rho)=\sqrt{g}\left(\rho z_{0} / r\right)$ be the Jacobian of \exp at $\rho \tilde{z}_{0} / r \in M_{m}$. Here $z_{0}=z\left(w_{0}\right)$. Then from (2.1) we have

$$
\omega\left(z_{0}, \nabla z\left(w_{0}\right)\right)=\int_{0}^{1} t^{2} H\left(t z_{0}\right) F(t r) d t \tilde{z}_{0} \cdot \tilde{z}_{u}\left(w_{0}\right) \wedge \tilde{z}_{v}\left(w_{0}\right)
$$

Writing $A=\tilde{z}_{0} \cdot \tilde{z}_{u}\left(w_{0}\right) \wedge \tilde{z}_{v}\left(w_{0}\right)$, note that

$$
|A F(r)|=r\left|<\gamma_{*}, *\left(z_{u}\left(w_{0}\right) \wedge z_{v}\left(w_{0}\right)\right)>\left|\leq \frac{1}{2} r\right| \nabla z\left(w_{0}\right)\right|_{M}^{2}
$$

where γ is the arc-length geodesic from m to z_{0}. Now F satisfies the growth condition

$$
\frac{\rho^{2} F(\rho)}{r^{2} F(r)} \leq \frac{\sin ^{2}(b \rho)}{\sin ^{2}(b r)}
$$

for $\rho \leq r$ [6]. So we have

$$
\omega\left(z_{0}, \nabla z\left(w_{0}\right)\right)=A \int_{0}^{1} t^{2} H\left(t z_{0}\right) F(t r) d t \leq A F(r) h \int_{0}^{1} \frac{t^{2} F(t r)}{F(r)} d t
$$

so that

$$
\begin{aligned}
\left|\omega\left(z_{0}, \nabla z\left(w_{0}\right)\right)\right| & \leq \frac{1}{2} r\left|\nabla z\left(w_{0}\right)\right|_{M}^{2} h \int_{0}^{1} \frac{\sin ^{2}(b t r)}{\sin ^{2}(b r)} d t \\
& =\frac{1}{2}\left|\nabla z\left(w_{0}\right)\right|_{M}^{2} h \int_{0}^{r} \frac{\sin ^{2}(b \rho)}{\sin ^{2}(b r)} d \rho
\end{aligned}
$$

The integral is increasing as a function of r since

$$
\frac{d}{d r} \int_{0}^{r} \frac{\sin ^{2}(b \rho)}{\sin ^{2}(b r)} d \rho=1-G(b r)>0
$$

Thus

$$
\begin{aligned}
\left|\omega\left(z_{0}, \nabla z\left(w_{0}\right)\right)\right| & \leq \frac{1}{2}\left|\nabla z\left(w_{0}\right)\right|_{M}^{2} b \cot \left(b r_{0}\right) \int_{0}^{r_{0}} \frac{\sin ^{2}(b \rho)}{\sin ^{2}\left(b r_{0}\right)} d \rho \\
& =\frac{1}{4}\left|\nabla z\left(w_{0}\right)\right|_{M}^{2} G\left(b r_{0}\right) . \quad \text { q.e.d. }
\end{aligned}
$$

In the case $b=0$, read r for $\sin (b r) / b$ and 1 for $\cos (b r)$. Thus $\Phi(r)=b \cot (b r)$ becomes the familiar $1 / r$ for $b=0$.

For a vector V tangent to $B_{r_{0}}$ denote $\tilde{V}=\left(\exp ^{-1}\right)_{*}(V)$.
Lemma 2. Assume M is of class C^{1}. There exists N such that for any tangent vectors $V \in M_{z},|\tilde{z}| \leq r_{0}$, we have

$$
\frac{1}{N} \tilde{V} \cdot \tilde{V} \leq\langle V, V\rangle \leq N \tilde{V} \cdot \tilde{V}
$$

Proof. At each point z of $\bar{B}_{r_{0}}$, let $N(z)=\sup \left\{\langle V, V\rangle, 1 /\langle V, V\rangle: V \in M_{z}\right.$, $\tilde{V} \cdot \tilde{V}=1\}$. Since \langle,$\rangle is continuous and positive definite, N(z)$ is continuous and finite, and hence bounded on $\bar{B}_{r_{0}}$.

Corollary 1. If $h \leq b \cot \left(b r_{0}\right)$ and $\tilde{z} \in \mathscr{D}_{r_{0}}$, then for any measurable $B^{\prime} \subset B$ we have

$$
\frac{1}{N}\left[1-G\left(b r_{0}\right)\right] \bar{D}_{B^{\prime}}[\tilde{z}] \leq E_{B^{\prime}}[z] \leq N\left[1+G\left(b r_{0}\right)\right] \bar{D}_{B^{\prime}}[\tilde{z}]
$$

Here the subscripted B^{\prime} denotes integration over that set.
Lemma 3. Assume $h \leq b \cot \left(b r_{0}\right)$. Let $\left\{\tilde{y}_{n}\right\}$ be a sequence from $\mathscr{D}_{R}, R \leq r_{0}$, such that \tilde{y}_{n} converges weakly to \tilde{y} in $H_{1}(B)$. Then $\tilde{y} \in \mathscr{D}_{R}$ and $E[y] \leq \lim \inf$ $E\left[y_{n}\right]$.

Proof. Using Lemma 1, as in [11, Lemma 1].
Lemma 4. Suppose $h \leq b \cot \left(b r_{0}\right)$ and $f \in \mathscr{D}_{R}$ for $R \leq r_{0}$. Then there exists a solution z to the variational problem $P(f, R, H)$.

Proof. Choose a sequence $\tilde{z}_{n} \in \mathscr{D}_{R}(f)$ such that, with $z_{n}=\exp \circ \tilde{z}_{n}, \lim E\left[z_{n}\right]$ $=e(f, R, H)$. Then the numbers $E\left[z_{n}\right]$ are uniformly bounded, hence by Corollary $1, \bar{D}\left[\tilde{z}_{n}\right]<$ uniform bound. So $\left\|\tilde{z}_{n}\right\|_{1}^{2} \leq R^{2} \iint_{B} d u d v+\bar{D}\left[\tilde{z}_{n}\right]<$ uniform bound, and some subsequence converges weakly to a function $\tilde{z} \in H_{1}(B)$, with $\tilde{z}-f \in \stackrel{\circ}{H}_{1}(B)$. Using Lemma 3, $\tilde{z} \in \mathscr{D}_{R}(f)$ and

$$
e(f, R, H) \leq E[z] \leq \lim E\left[z_{n}\right]=e(f, R, H)
$$

Thus z solves $P(f, R, H)$. q.e.d.
As a consequence of its minimizing property and Corollary 1 , this z satisfies a uniform Hölder condition in B. If, moreover, $f \in C^{0}(\partial B)$ then $z \in C^{0}(\bar{B})$ and $z=f$ on B. These properties follow from results of Morrey [13, Theorem 2.2] using a glueing technique (cf. [11, Lemma 4]). For any subdomain $B^{\prime} \subset B$ such that $\sup _{w \in B^{\prime}}|\tilde{z}(w)|<R$, the first variation of E will vanish with respect to any smooth test function with compact support; that is, for $H \in C^{1}, z$ is a weak solution to the Euler equations (1.1) or the equivalent form (2.2). It then follows from a result of Heinz and Tomi (cf. [18]) that $z \in C^{1+\beta}$ for all $\beta<1$ and has the representation

$$
\begin{align*}
z(w)=y(w)+\iint_{B^{\prime}} G(w, \zeta)\{ & 2 H(z(\zeta)))^{*}\left(z_{\xi} \wedge z_{\eta}\right) \tag{3.1}\\
& \left.-\Gamma_{i j}^{k}\left(z_{\xi}^{i} z_{\xi}^{j}+z_{\eta}^{i} z_{\eta}^{j}\right) V_{k}\right\} d \xi d \eta
\end{align*}
$$

where y is the harmonic function with $z=y$ on $\partial B^{\prime}, G(w, \zeta)$ the Green's function for B^{\prime}, and V_{k} the k th coordinate vector. Assuming only that H is C^{α}, it follows by methods of potential theory that $z \in C^{2+\alpha}$ and satisfies (1.1). It is
the purpose of the next section to show that under appropriate hypotheses these considerations may be applied with $B^{\prime}=B$ itself.

4. The maximum principle; smoothness

Let $r_{1} \in\left(0, r_{0}\right)$ be chosen. We construct a C^{1} mapping $\tilde{T}: M_{m} \rightarrow M_{m}$ by defining $\tilde{T}(y)=\sigma(|y|) y /|y|$ for a C^{1} function σ with the properties: $\sigma(r) \leq r$ for all $r, \sigma(r)=r$ for $r \in\left[0, r_{1}\right]$, and $\sigma^{\prime \prime}\left(r_{1}+\right)<0$. Now define $T: B_{r_{0}} \rightarrow B_{r_{0}}$ by $T(x)=\exp (\tilde{T}(\tilde{x}))$. Observe that if $y \in \mathscr{D}_{R}$ then $\tilde{T} \circ y \in \mathscr{D}_{\sigma(R)}$.

Lemma 5. Suppose $h<b \cot \left(b r_{1}\right)$. Then there exists $R_{1}, r_{1}<R_{1} \leq r_{0}$, such that for $\tilde{z} \in \mathscr{D}_{R_{1}} \cap C^{\circ}(\bar{B})$ with $\inf _{w \in B}|\tilde{z}(w)| \leq r_{1}<\sup _{w \in B}|\tilde{z}(w)|$ there holds $E[T \circ z]<E[z]$. Thus, if $z \in C^{\circ}(\bar{B})$ solves $P\left(f, R_{1}, H\right)$ where $f \in C^{\circ}(\partial B)$ and $\sup _{w \in \partial B}|f(w)| \leq r_{1}$, then $\tilde{z} \in \mathscr{D}_{r_{1}}$.

Proof. We first estimate the effect of T_{*} on the length of vectors. For $V \in M_{p}$ we define an orthogonal decomposition $V=V^{r}+V^{s}$ where $V^{r}=$ $\left\langle V, \gamma_{*}\right\rangle \gamma_{*}, \gamma=$ arc-length geodesic from m to p. We have an analogous decomposition for $\tilde{V} \in\left(M_{m}\right)_{\tilde{p}}$, with $V^{r}=\exp _{*}\left(\tilde{V}^{r}\right)$ and $V^{s}=\exp _{*}\left(\tilde{V}^{s}\right)$. Writing $R=|\tilde{p}|$ we see that $\left(\tilde{T}_{*} \tilde{V}\right)^{s}=\tilde{V}^{s} \sigma(R) / R$ and $\left(\tilde{T}_{*} \tilde{V}\right)^{r}=\sigma^{\prime}(R) \tilde{V}^{r}$, modulo the identification of tangents to M_{m} at different points by parallel translation. Write $\tilde{V}(\rho)$ for the Jacobi field along the ray through the origin and \tilde{p}, determined by $\tilde{V}(R)=\tilde{V}$ and $\tilde{V}(0)=0$. Namely $\tilde{V}(\rho)=(\rho / R) \tilde{V}$ translated to $(\rho / R) \tilde{p}$. Let $f(\rho)$ be the Jacobian of exp restricted to the subspace generated by $\tilde{V}(\rho)^{s}$. For $\rho_{1} \leq \rho_{2}$ we have the inequality

$$
\frac{\rho_{1} f\left(\rho_{1}\right)}{\rho_{2} f\left(\rho_{2}\right)} \leq \frac{\sin \left(b \rho_{1}\right)}{\sin \left(b \rho_{2}\right)}
$$

(cf. [6] or [17, proof of Theorem 3]). This now yields:

$$
\begin{aligned}
\left|T_{*} V\right|^{2} & =\left|\left(T_{*} V\right)^{r}\right|^{2}+\left|\left(T_{*} V\right)^{s}\right|^{2}=\left|\left(\tilde{T}_{*} \tilde{V}\right)^{r}\right|^{2}+f(\sigma(R))^{2}\left|\left(\tilde{T}_{*} \tilde{V}\right)^{s}\right|^{2} \\
& =\left(\sigma^{\prime}(R)\right)^{2}\left|\tilde{V}^{r}\right|^{2}+(\sigma(R) / R)^{2} f(\sigma(R))^{2}\left|\tilde{V}^{s}\right|^{2} \\
& =\left(\sigma^{\prime}(R)\right)^{2}\left|V^{r}\right|^{2}+\left(\frac{\sigma(R) f(\sigma(R))}{R f(R)}\right)^{2}\left|V^{s}\right|^{2} \\
& \leq\left(\sigma^{\prime}(R)\right)^{2}\left|V^{r}\right|^{2}+\frac{\sin ^{2}(b \sigma(R))}{\sin ^{2}(b R)}\left|V^{s}\right|^{2} .
\end{aligned}
$$

Now the function $\phi(R)=\sin (b \sigma(R)) / \sin (b R)$ has $\phi\left(r_{1}\right)=1$ and $\phi^{\prime}\left(r_{1}\right)=0$. Since $\sigma^{\prime}\left(r_{1}\right)=1$ and $\sigma^{\prime \prime}\left(r_{1}+\right)<0$, we see that $0<\sigma^{\prime} \leq \phi$ on some interval [$0, R_{0}$] where $R_{0}>r_{1}$, equality holding on $\left[0, r_{1}\right]$. Then for $R \leq R_{0}$

$$
\begin{equation*}
\left|T_{*} V\right|^{2} \leq(\phi(R))^{2}\left(\left|V^{r}\right|^{2}+\left|V^{s}\right|^{2}\right)=\frac{\sin ^{2}(b \sigma(R))}{\sin ^{2}(b R)}|V|^{2} \tag{4.1}
\end{equation*}
$$

We need next to estimate the effect of T on the volume integrand $\omega(z, \nabla z)$.

Denote $y=T \circ z$, and let $z_{u}^{s}(\rho), z_{v}^{s}(\rho)$ be the Jacobi fields generated by z_{u}^{s}, z_{v}^{s}. Thus $z_{u}^{s}(\rho) \in M_{\gamma(\rho)}$. Observe that $y_{u}^{s}(\rho)=z_{u}^{s}(\rho), y_{v}^{s}(\rho)=z_{v}^{s}(\rho)$ for $\rho \leq \sigma(|\tilde{z}|)$. First assume that z_{u} and z_{v} are independent, and let $F(\rho)$ be the Jacobian of \exp at $\rho \tilde{z} / R$. Then for $\rho_{1} \leq \rho_{2}$

$$
\frac{\rho_{1}^{2} F\left(\rho_{1}\right)}{\rho_{2}^{2} F\left(\rho_{2}\right)} \leq \frac{\sin ^{2}\left(b \rho_{1}\right)}{\sin ^{2}\left(b \rho^{2}\right)}
$$

[6]. Now

$$
\begin{aligned}
\left\langle\gamma_{*}(\rho), *\left(y_{u}(\rho) \wedge y_{v}(\rho)\right)\right\rangle & =\left\langle\gamma_{*}(\rho), *\left(z_{u}(\rho) \wedge z_{v}(\rho)\right)\right\rangle \\
& =F(\rho) \frac{\tilde{z}}{R} \cdot\left(\frac{\rho}{R} \tilde{z}_{u}\right) \wedge\left(\frac{\rho}{R} \tilde{z}_{v}\right) C \rho^{2} F(\rho),
\end{aligned}
$$

where C is independent of ρ. Thus using (2.1),

$$
\begin{aligned}
|\omega(z, \nabla z)-\omega(z, \nabla y)| & =\left|\int_{(\sigma R)}^{R} H\left(\frac{\rho z}{R}\right) C \rho^{2} F(\rho) d \rho\right| \\
& \leq h\left|C R^{2} F(R)\right| \int_{\sigma(R)}^{R} \frac{\rho^{2} F(\rho)}{R^{2} F(R)} d \rho \\
& \leq h\left|\left\langle\gamma_{*}(R), *\left(z_{u} \wedge z_{v}\right)\right\rangle\right| \int_{\sigma(R)}^{R} \frac{\sin ^{2}(b \rho)}{\sin ^{2}(b R)} d \rho \\
& \leq \frac{1}{2} h|\nabla z|_{M}^{2} \int_{\sigma(R)}^{R} \frac{\sin ^{2}(b \rho)}{\sin ^{2}(b R)} d \rho .
\end{aligned}
$$

If z_{u} and z_{v} are not independent, this relation holds trivially.
Finally, with $i(z, \nabla z)=|\nabla z|_{M}^{2}+4 \omega(z, \nabla z)$, and supposing $R=|\tilde{z}| \leq R_{0}$ we have from (4.1) and (4.2) that

$$
\begin{aligned}
i(z, \nabla z)-i(y, \nabla y) & =|\nabla z|_{M}^{2}-|\nabla y|_{M}^{2}+4(\omega(z, \nabla z)-\omega(y, \nabla y)) \\
& \geq|\nabla z|_{M}^{2}\left\{1-\frac{\sin ^{2}(b \sigma(R))}{\sin ^{2}(b R)}-2 h \int_{\sigma(R)}^{R} \frac{\sin ^{2}(b r)}{\sin ^{2}(b R)} d \rho\right\} \\
& =|\nabla z|_{M}^{2} g(R) .
\end{aligned}
$$

In straightforward fashion we compute $g(R)=0$ for $R \leq r_{1}, g^{\prime}\left(r_{1}\right)=0$, and

$$
g^{\prime \prime}\left(r_{1}+\right)=2 \sigma^{\prime \prime}\left(r_{1}+\right)\left[h-b \cot \left(b r_{1}\right)\right]>0 .
$$

Thus there exists $R_{1} \in\left(r_{1}, R\right]$ such that $g>0$ on $\left(r_{1}, R_{1}\right]$. Now assume $z \in \mathscr{D}_{R_{1}}$. We have $i(z, \nabla z)-i(y, \nabla y) \geq 0$ everywhere, i.e., $E_{B^{\prime \prime}}[z]-E_{B^{\prime \prime}}[y] \geq 0$ for all measurable $B^{\prime \prime} \subset B$. Assume further $z \in C^{\circ}(\bar{B})$ with

$$
\inf _{w \in B}|\tilde{z}(w)| \leq r_{1}<R_{2}=\sup _{w \in B}|\tilde{z}(w)| \leq R_{1}
$$

Then $|\tilde{z}|$ takes every value in $\left[r_{1}, R_{2}\right]$. In particular, z is not constant on the open set

$$
B^{\prime}=\left\{w \in B: \frac{1}{2}\left(r_{1}+R_{2}\right)<|\tilde{z}(w)|<R_{2}\right\}
$$

and thus $D_{B^{\prime}}[z]>0$. But there exists $\delta>0$ such that $g \geq \delta$ on $\left[\frac{1}{2}\left(r_{1}+R_{2}\right), R_{2}\right]$. Let $B^{\prime \prime}=B \backslash B^{\prime}$. Hence

$$
E[z]-E[y]=E_{B^{\prime \prime}}[z]-E_{B^{\prime}}[y]+E_{B^{\prime}}[z]-E_{B^{\prime}}[y] \geq \delta D_{B^{\prime}}[z]>0
$$

as claimed.
Now, if $\sup _{w \in \partial B}|f(w)| \leq r_{1}$ and $z \in \mathscr{D}_{R_{1}}(f)$ then $y \in \mathscr{D}_{R_{1}}(f)$; thus if z solves $P\left(f, R_{1}, H\right), \sup _{w \in B}|\tilde{z}(w)|>r_{1}$ is impossible.

Theorem 1. Suppose M^{3} is a riemannian manifold of class C^{3} with sectional curvatures $\leq b^{2}$. For some $m \in M$ and $r_{0}>0$, with $4 b^{2} r_{0}{ }^{2}<\pi^{2}$, suppose that the restriction of $\exp =\exp _{m}$ to $B_{r_{0}}(0) \subset M_{m}$ is a diffeomorphism onto its image. Let a C^{1} function $H: B_{r_{0}} \rightarrow \boldsymbol{R}$ be given with $h=\sup _{x \in B_{r_{0}}}|H(x)|<b \cot \left(b r_{1}\right)$, where $r_{1}<r_{0}$. Then given $f \in \mathscr{D}_{r_{1}} \cap C^{\circ}(\partial B)$ there exists a solution $z \in C^{2}(B)$ $\cap C^{\circ}(\bar{B})$ to $P\left(f, r_{1}, H\right)$, which satisfies (1.1) in B and agrees with $\exp \circ f$ on ∂B.

Proof. Let R_{1} be as given by Lemma 5. Let z be a solution to $P\left(f, R_{1}, H\right)$ as given by Lemma 4. From results of Morrey we have $z \in C^{\circ}(\bar{B})$, as remarked at the end of $\S 3$, and $z \in C^{2}\left(B^{\prime}\right)$ for any $B^{\prime} \subset B$ with $\sup _{w \in B^{\prime}}|\tilde{z}(w)|<R_{1}$. But Lemma 5 shows that $\sup _{w \in B}|\tilde{z}(w)| \leq r_{1}<R_{1}$, so that $z \in C^{w}(B)$ and satisfies the Euler equations (1.1). q.e.d.

We now drop the condition that $H \in C^{1}$. Given any function $H \in C^{\alpha}\left(\bar{B}_{r_{1}}\right)$ with $\sup _{x \in B_{r_{1}}}|H(x)| \leq b \cot \left(b r_{1}\right)$ we approximate H uniformly in $B_{r_{1}}$ by a sequence of functions $H_{n} \in C^{1}\left(B_{r_{0}}\right)$ with $\sup _{x \in B_{r_{0}}}\left|H_{n}(x)\right|<b \cot \left(b r_{1}\right)$. Then for each H_{n} Theorem 1 gives a solution z_{n} to $\stackrel{\substack{x \in \sigma_{r} \\ P\left(f, r_{1} \\, H_{n}\right.}}{ }$. As in $[5, \S 5]$ we find z such that some subsequence of the z_{n} converges in $H_{1}(B)$ to z. Since each z_{n} has a representation (3.1) with respect to H_{n}, we obtain that representation for z with respect to H. It may then be shown, using a standard argument of potential theory, that $z \in C^{2+\alpha}$ and satisfies (1.1). This shows

Corollary 2. Theorem 1 continues to hold if the function H satisfies only $H \in C^{\alpha}\left(\bar{B}_{r_{1}}\right)$ and $\sup _{x \in B_{r_{1}}}|H(x)| \leq \cot \left(b r_{1}\right)$.

5. The Plateau problem

Let Γ be an oriented closed Jordan curve in $\boldsymbol{B}_{r_{0}}$. Denote by $\mathscr{D}(\Gamma, R)$ the
set of mappings $\tilde{x} \in \mathscr{D}_{R}$ such that $\left.x\right|_{\partial B}$ is equal almost everywhere to a continuous, monotone mapping of degree 1 over the integers onto Γ. Define a variational problem $P_{H}(\Gamma, R)$ by $E[x] \rightarrow \min$ among mappings x such that $\tilde{x} \in \mathscr{D}(\Gamma, R)$.

Theorem 2. Let M be a riemannian manifold of dimension 3 and of class C^{3} with sectional curvatures $\leq b^{2}$. For $m \in M$ and $r_{1}>0$ with $4 r_{1}^{2} b^{2}<\pi^{2}$, assume $\exp _{m}$ is defined on $\bar{B}_{r_{1}}(0) \subset M_{m}$ and maps $\bar{B}_{r_{1}}(0)$ diffeomorphically onto $\bar{B}_{r_{1}}=\bar{B}_{r_{1}}(m)$. Let Γ be an oriented closed Jordan curve in $\bar{B}_{r_{1}}$ such that $\mathscr{D}(\Gamma, \infty)$ is nonempty. Let H be a uniformly Hölder-continuous function: $\bar{B}_{r_{1}} \rightarrow \boldsymbol{R}$ with $h=\sup _{z \in B_{r_{1}}}|H(z)| \leq b \cot \left(b r_{1}\right)$. Then there exists a solution $z \in$ $C^{2}(B) \cap C^{\circ}(\bar{B})$ to the variational problem $P_{H}\left(\Gamma, r_{1}\right)$, mapping ∂B homeomorphically onto Γ in an orientation-preserving fashion and satisfying (1.1) and (1.2) in B.

Proof. Let $r_{0}>r_{1}$ be chosen so that $4 b^{2} r_{0}{ }^{2}<\pi^{2}$ and so that $\exp _{m}$ is a diffeomorphism of $B_{r_{0}}(0)$ onto $B_{r_{0}}(m)$. The theorem now follows from Corollary 2 in essentially the same fashion as in [11, Theorem 2]. In the process of the proof, we modify a minimizing sequence $\left\{x_{n}\right\}$ by requiring each x_{n} to satisfy a three-point condition. This can be done without changing $E\left[x_{n}\right]$ since E is conformally invariant. We require the choice of the three points to be such that every monotone map: $\partial B \rightarrow \Gamma$ satisfying the three-point condition will be of degree 1 . In particular, the limiting mapping $\left.z\right|_{\partial B}$ will be of degree 1 . Observe that for any C^{1}-diffeomorphism $\phi: \bar{B} \rightarrow \bar{B}$ there holds $W[\phi \circ z]=W[z]$; therefore since $\phi \circ z \in \mathscr{D}\left(\Gamma, r_{1}\right)$ we have $D[z] \leq D[\phi \circ z]$. From this it follows that z satisfies (1.2) by a straightforward adaptation of the method of [1, pp. 107112].

To show that $\left.z\right|_{\partial B}$ is a homeomorphism, it suffices to show that for any $w_{0} \in \partial B$, a neighborhood of which in ∂B is mapped into a C^{2} curve, there holds an asymptotic representation

$$
z_{u}-i z_{v}=a\left(w-w_{0}\right)^{l}+0\left(\left|w-w_{0}\right|^{l}\right)
$$

for some integer $l \geq 1$ and $a \in C^{3} \backslash\{0\}$. This may be obtained by suitable modification of an argument of Heinz [9, relations (14) and (30)] to allow isothermal parameters in the sense of (1.2).

6. Globalization

We now drop the requirement that \exp be injective on $\bar{B}_{r_{1}}(0)$. We shall need the following fact, which may be expressed as the statement that exp behaves like a covering projection with respect to curves which are not too long.

Lemma 6. Let M be a complete riemannian manifold of class C^{3} with sectional curvatures $\leq b^{2}$. Suppose a C^{1} curve $\gamma:[0,1] \rightarrow M$ is given with $\gamma(0)$ $=m$ and $r=$ length $(\gamma)<r_{1}$, where $r_{1}^{2} b^{2}<\pi^{2}$. Then there is a unique mapping
$\tilde{\gamma}:[0,1] \rightarrow M_{m}$ with $\tilde{\gamma}(0)=0$ and $\exp \circ \tilde{\gamma}=\gamma$. Moreover, suppose $\left\{\gamma_{s}\right\}$ is a family of such curves such that $g(s, t)=\gamma_{s}(t)$ defines a continuous mapping $g:(-\varepsilon, \varepsilon) \times[0,1] \rightarrow M$. Then the family $\left\{\tilde{\gamma}_{s}\right\}$ of liftings yields a continuous mapping $\tilde{g}:(-\varepsilon, \varepsilon) \times[0,1] \rightarrow M_{m}$ by defining $\tilde{g}(s, t)=\tilde{\gamma}_{s}(t)$.

Proof. Every point $q \in B_{r_{1}}(0) \subset M_{m}$ has a neighborhood $U(q)$ such that exp is a diffeomorphism of $U(q)$ onto its image. This follows from the condition $r_{1}^{2} b^{2}<\pi^{2}$ using a comparison technique (cf. [3, pp. 176-179]). Let S be the set of $t \in[0,1]$ such that there exists a unique continuous lifting $\tilde{\gamma}:[0, t] \rightarrow M_{m}$ with $\exp \circ \tilde{\gamma}=\left.\gamma\right|_{[0, t]}$ and $\tilde{\gamma}(0)=0$. Thus $0 \in S$. Suppose $t \in S$. Then for $t_{1} \leq t$,

$$
\left|\tilde{\gamma}\left(t_{1}\right)\right|=\int_{0}^{t_{1}} \tilde{\gamma}_{*}(t) \cdot \tilde{W} d t=\int_{0}^{t_{1}}\left\langle\gamma_{*}(t), W\right\rangle d t \leq \text { length }(\gamma)=r,
$$

where \tilde{W} is the radial unit vector field in M_{m}, and $W=\exp _{*}(\tilde{W})$. Thus $\tilde{\gamma}([0, t]) \subset B_{r}(0) \subset \subset B_{r_{1}}(0)$.

In particular, for sufficiently small $\varepsilon>0, \gamma([t, t+\varepsilon]) \subset \exp (U(\tilde{\gamma}(t)))$ so that for $t_{1} \in[t, t+\varepsilon]$ defining $\tilde{\gamma}\left(t_{1}\right)=\left(\left.\exp \right|_{U(\tilde{\gamma}(t))}\right)^{-1} \circ \gamma\left(t_{1}\right)$ extends $\tilde{\gamma}$ over $[0, t+\varepsilon]$. The extended curve $\tilde{\gamma}$ must be unique, since otherwise this process would provide a contradiction to the uniqueness of $\left.\tilde{\gamma}\right|_{[0, t]}$. Thus $t+\varepsilon \in S$. This shows $S_{0}=\left\{t_{0}:\left[0, t_{0}\right] \subset S\right\}$ is open.

Now suppose $\left\{t_{n}\right\}$ is an increasing sequence from S with $t_{n} \rightarrow t_{0}$. Uniqueness implies that the curves $\tilde{\gamma}$ associated with different values t_{n} are merely restrictions of one another. This defines $\tilde{\gamma}:\left[0, t_{0}\right) \rightarrow B_{r}(0)$. Among the various points of the finite set $\left\{q \in \bar{B}_{r}(0): \exp (q)=\gamma\left(t_{0}\right)\right\}$, at most one can be a cluster point of $\tilde{\gamma}(t)$ as $t \rightarrow t_{0}$; otherwise there would be a continuum of cluster points, each of which must be mapped to $\gamma\left(t_{0}\right)$ by exp. It follows that $\tilde{\gamma}(t)$ approaches a limit as $t \rightarrow t_{0}$, and we define $\tilde{\gamma}\left(t_{0}\right)$ to be this limit. The uniqueness of this extended $\tilde{\gamma}$ is clear. Thus $t_{0} \in S$. This shows S_{0} is closed. Therefore $S_{0}=[0,1]$, i.e., $S=[0,1]$.

For the second part of the conclusion, it suffices to show \tilde{g} is continuous at $s=0$. The compact set $\tilde{\gamma}([0,1])$ is covered by a finite number of neighborhoods $U_{i}, 1 \leq i \leq n$, where each U_{i} is $U(\tilde{\gamma}(t))$ for some $t \in[0,1]$. Choose $\delta \in(0, \varepsilon)$ small enough that for each $t \in[0,1], g([-\delta, \delta] \times\{t\}) \subset \exp \left(U_{i}\right)$ for some i. Define $T=\{t \in[0,1]: \tilde{g}$ is continuous on $[-\delta, \delta] \times[0, t]\}$. Thus $0 \in T$. For some $t \geq 0$, suppose $[0, t) \subset T$. There exist i and $\eta>0$ such that $g([-\delta, \delta] \times[t-\eta, t+\eta]) \subset \exp \left(U_{i}\right)$. For $s \in[-\delta, \delta]$ and $t_{1} \in[t-\eta, t+\eta]$ define $\tilde{\gamma}_{s}^{\prime}\left(t_{1}\right)=\left(\left.\exp \right|_{U_{i}}\right)^{-1} \circ \gamma_{s}\left(t_{1}\right)$; this defines a continuous lifting $\tilde{\gamma}_{s}^{\prime}$ of $\left.\gamma_{s}\right|_{[0, t+\eta]}$. By the uniqueness of $\tilde{\gamma}_{s}$, we have $\tilde{\gamma}_{s}^{\prime}=\tilde{\gamma}_{s}$, i.e.,

$$
\left.\tilde{g}\right|_{[-\delta, \delta] \times[t-\eta, t+\eta]}=\left.\left(\left.\exp \right|_{U_{i}}\right)^{-1} \circ g\right|_{[-\delta, \delta] \times[t-\eta, t+\eta]} .
$$

Thus \tilde{g} is continuous on $[-\delta, \delta] \times[t-\eta, t+\eta]$ and hence on $[-\delta, \delta] \times$ $[0, t+\eta]$ via a glueing lemma. So $t+\eta \in T$. This shows $T=[0,1]$, i.e., \tilde{g} is continuous. q.e.d.

We shall need a new way of limiting the extent of a closed contractible curve $\Gamma:[0,1] \rightarrow M$. Let a contraction of Γ be given by $g:[0,1] \times[0,1] \rightarrow M$ with $g(s, 0)=m, g(s, 1) \doteq \Gamma(s)$ and $g(1, t)=g(0, t)$ for all $s, t \in[0,1]$. We may assume the transverse curves $g_{s}(t)=g(s, t)$ are uniformly smooth: $g_{s} \in$ $C^{1}([0,1])$ and sup length $\left(g_{s}\right)<\infty$. We make the following definition: if g is a contraction of Γ such that each g_{s} is rectifiable and length $\left(g_{s}\right) \leq r$, we call g an r-contraction of Γ; if Γ has an r-contraction, it is called r-contractible. Thus any contractible curve is r-contractible for sufficiently large r.

Lemma 7. Let N be a complete riemannian manifold of class C^{3} with sectional curvatures $\leq b^{2}$. If a continuous closed curve $\Gamma:[0,1] \rightarrow N$ is $r_{1}-$ contractible, where $b^{2} r_{1}{ }^{2}<\pi^{2}$, then there exist $n \in N$ and a continuous closed curve $\tilde{\Gamma}:[0,1] \rightarrow \bar{B}_{r_{1}}(0) \subset N_{n}$ such that $\Gamma=\exp _{n} \circ \tilde{\Gamma}$.

Proof. Let $g:[0,1] \times[0,1] \rightarrow N$ be an r_{1}-contraction of Γ, and n the common point $g(s, 0)$. Write $g_{s}(t)=g(s, t)$; we have length $\left(g_{s}\right) \leq r_{1}$. Applying Lemma 6 to the family of curves $\left\{g_{s}\right\}$, there is a family of liftings $\left\{\tilde{g}_{s}\right\}$ such that $\cdot \tilde{g}(s, t)=\tilde{g}_{s}(t)$ defines a continuous mapping $\tilde{g}:[0,1] \times[0,1] \rightarrow N^{n}$. Since $g_{0}=g_{1}$, it follows from the uniqueness of liftings that $\tilde{g}_{1}=\tilde{g}_{0}$. Let $\tilde{\Gamma}(s)$ $=\tilde{g}_{s}(1)$. Then $\tilde{\Gamma}$ is a continuous closed curve with $\Gamma=\exp _{n} \circ \tilde{\Gamma}$.

Theorem 3. Let Γ be an r_{1}-contractible Jordan curve in a complete riemannian manifold N^{3} of class C^{3} and with sectional curvatures $\leq b^{2}$. Assume there is a mapping $x_{0}: \bar{B} \rightarrow N$ such that x_{0} maps ∂B continuously and monotonically onto Γ, and $D\left[x_{0}\right]<\infty$. Suppose that $H \in C^{\alpha}(N)$ satisfies $\sup _{x \in N}|H(x)| \leq b \cot \left(b r_{1}\right)$ and that $4 b^{2} r_{1}{ }^{2}<\pi^{2}$. Then there is a mapping $z: \bar{B} \rightarrow N, z \in C^{2}(B) \cap C^{\circ}(\bar{B})$, taking ∂B homeomorphically onto Γ and satisfying (1.1) and (1.2) in B.

Proof. By Lemma 7, there exist $n \in N$ and a continuous closed curve $\tilde{\Gamma}:[0,1] \rightarrow \bar{B}_{r_{1}}(0) \subset N_{n}$ such that $\Gamma=\exp _{n} \circ \tilde{\Gamma}$. Thus $\tilde{\Gamma}$ is a Jordan curve. We shall define a new manifold M as follows. Let $r_{0}>r_{1}$ be chosen with $b^{2} r_{0}{ }^{2}<\pi^{2}$. Then $\exp _{n}$ has full rank on $B_{r_{0}}(0) \subset N_{n}$. Let M be $B_{r_{0}}(0)$ with the riemannian structure which makes $\exp _{n}$ a local isometry, and denote $m=0$ ϵN_{n}. Then clearly $\exp _{m}$ is a diffeomorphism of $B_{r_{0}}(0) \subset M_{m}$ onto $M=B_{r_{0}}(m)$. Define $\tilde{H}: M \rightarrow R$ by $\tilde{H}(x)=H \circ \exp _{n}(x)$. We need to find $y_{0} \in \mathscr{D}(\tilde{\Gamma}, \infty)$. We may assume x_{0} is smooth in B. It is then possible to modify x_{0} on some compact subdomain of B to a mapping x_{1} which is smooth in B and describes an r_{0}-contraction of Γ to n such that x_{1} is homotopic through r_{0}-contractions of Γ to $\exp _{n}(C(\tilde{\Gamma}))$. Lemma 6 may then be applied to find a lifting $y_{0}: \bar{B} \rightarrow N_{n}$ with $x_{1}=\exp _{n} \circ y_{0}$. Thus $y_{0} \in \mathscr{D}(\tilde{\Gamma}, \infty)$. Now apply Theorem 2 to the curve $\tilde{\Gamma}$ in the manifold M with the prescribed function \tilde{H} : this gives a mapping $y: \bar{B} \rightarrow M$. Define $z=\exp _{n} \circ y$. Then z has the required properties.

Remarks. 1) It is clear from the proof that weaker hypotheses will suffice: if Γ is r_{1}-contractible to a point $n \in N$, then we may replace the requirement that N be complete by the requirement that $\exp _{n}$ be defined on $\bar{B}_{r_{1}}(0)$ $\subset N_{n}$, and require H to be defined only on $\bar{B}_{r_{1}}(n)$, of class $C^{a}\left(\bar{B}_{r_{1}}(n)\right)$, with
$\sup _{x \in \overline{B_{r_{1}}(n)}}|H(x)| \leq b \cot \left(b r_{1}\right)$.
2) Observe that the solution mapping is homotopic to the particular $r_{1}-$ contraction g employed in the proof, up to sign ; that is, the two mappings represent the same element or inverse elements in $\pi_{2}(N, \Gamma)$. In fact either orientation could be specified for Γ so that $z \in[g]$ or $z \in[g]^{-1}$ could be obtained at will. Thus, we may obtain a solution z in any homotopy class in which Γ is r_{1}-contractible.
3) The author [4] has recently demonstrated that the solution mapping z is an immersion, that is, $\left\langle z_{u}, z_{u}\right\rangle=\left\langle z_{v}, z_{v}\right\rangle \neq 0$ in B.
4) By a result of Heinz [8], the restriction on h is the best possible for the case $b=0$; it is reasonable to suppose that it continues to be sharp for other values of b.
5) The requirement that Γ be r_{1}-contractible may not be replaced by the condition of contractibility in conjunction with a general restriction on diameter. This may be seen by considering a flat three-torus T^{3} of arbitrarily small diameter, letting Γ be the image of a plane circle of radius $>h^{-1}$ under the locally isometric covering map $E^{3} \rightarrow T^{3}$. Using the result of [8], this problem has no solution with $H(x) \equiv h$.

7. Minimal surfaces

In the case $H \equiv 0$, we may ignore the volume term $W[z]$ entirely, and the restriction on the dimension of M is no longer necessary. The same considerations, with inessential modifications, now yield:

Theorem 4. Let Γ be an r_{1}-contractible Jordan curve in a complete riemannian manifold N, of class C^{3} and with sectional curvatures $K \leq K_{0}$. Assume there is a mapping $x_{0}: \bar{B} \rightarrow N$ which takes ∂B continuously and monotonically onto Γ, with $D\left[x_{0}\right]<\infty$. Suppose $4 K_{0} r_{1}{ }^{2}<\pi^{2}$. Then there is a minimal surface in N with a conformal representation $z \in C^{2}(B) \cap C^{\circ}(\bar{B})$ mapping ∂B homeomorphically onto Γ.

This is a partial generalization of the theorem of Morrey [14].
Remarks. 1) If $\operatorname{dim} N>3$, we make no claim that the solution mapping will be an immersion.
2) In [14], Morrey constructs an example to shed light on his hypothesis of homogeneous regularity. The example occurs in a manifold of negative sectional curvature; but in such a manifold Theorem 4 gives a minimal surface spanning every contractible rectifiable Jordan curve. Thus no example has yet come to light of a contractible rectifiable Jordan curve in a complete manifold which cannot be spanned by a minimal surface.

Bibliography

[1] R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience, New York, 1950.
[2] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931) 263-321.
[3] D. Gromoll, W. Klingenberg \& W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math. Vol. 55, Springer, Berlin, 1968.
[4] R. Gulliver, Regularity of minimizing surfaces of prescribed mean curvature, Ann. of Math. 97 (1973) 275-305.
[5] R. Gulliver \& J. Spruck, The Plateau problem for surfaces of prescribed mean curvature in a cylinder, Invent. Math. 13 (1971) 169-178.
[6] P. Günther, Einige Sätze über das Volumenelement eines Riemannschen Raumes, Publ. Math. Debrecen 7 (1960) 78-93.
[7] E. Heinz, Uber die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung, Math. Ann. 127 (1954) 258-287.
[8] --, On the non-existence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary, Arch. Rational Mech. Anal. 35 (1969) 249-252.
[9] - U'Uber das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern, Math. Z. 113 (1970) 99-105.
[10] S. Hildebrandt, Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Andwendungen auf die Kapillaritätstheorie. I, Math. Z. 112 (1969) 205-213.
[11] - On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970) 97-114.
[12] H. Kaul, Ein Einschliessungssatz für H-Flächen in Riemannschen Mannigfaltigkeiten, Manuscripta Math. 5 (1971) 103-112.
[13] C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. Math., New series, Vol. 1, No. 1, 1943, 1-130.
[14] —, The problem of Plateau on a Riemannian manifold, Ann. of Math. 49 (1948) 807-851.
[15] , Multiple integrals in the calculus of variations, Springer, New York, 1966.
[16] T. Radó, The problem of the least area and the problem of Plateau, Math. Z. 32 (1930) 763-796.
[17] H. E. Rauch, A contribution to Riemannian geometry in the large, Ann. of Math. 54 (1951) 38-55.
[18] F. Tomi, Ein einfacher Beweis eines Regularitätssatzes für schwache Lösungen gewisser elliptischer Systeme, Math. Z. 112 (1969) 214-218.
[19] H. Werner, Das Problem von Douglas für Flächen konstanter mittlerer Krümmung, Math. Ann. 133 (1957) 303-319.

