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ISOTROPIC IMMERSIONS

TAKEHIRO ITOH & KOICHI OGIUE

1. Introduction

A Kaehler manifold of constant holomorphic sectional curvature is called a
complex space form. A Kaehler immersion is an isometric immersion which
is complex analytic. The second named author proved the following results.

Proposition 1 [2]. Let M be an n-dimensional complex space form of con-
stant holomorphic sectional curvature c, and M be an (n + p)-dimensional
complex space form of constant holomorphic sectional curvature c. If M is a
Kaehler submanifold of M with parallel second fundamental form, then either
c = c (i.e., M is totally geodesic in M) or c = Jc, the latter case arising only
when c > 0. Moreover, the immersion is rigid.

Proposition 2 [3]. Let M be an n-dimensional complex space form of con-
stant holomorphic sectional curvature c, and M be an (n + \n(n + 1))-
dimensional complex space form of constant holomorphic sectional curvature
c. If M is a Kaehler submanifold of M, then either c = c (i.e., M is totally
geodesic in M) or c — \c, the latter case arising only when c > 0. Moreover,
the immersion is rigid.

In the present paper, we shall prove similar results for real manifolds. An
isotropic immersion is an isometric immersion such that all its normal curvature
vectors have the same length at each point. A Riemannian manifold of constant
curvature is called a space form.

Theorem 1. Let M be an n-dimensional space form of constant curvature
c, and M be an (n + \n(n + 1) — l)-dimensional space form of constant
curvature c. If c < c, and M is an isotropic submanifold of M with parallel

second fundamental form, then c = c, and the immersion is rigid.
2(n + 1)

Theorem 2. Let M be an n-dimensional space form of constant curvature
c, and M be an (n + \n(n + 1) — \)-dίmensίonal space form of constant
curvature c. If c < c, and M is an isotropic submanifold of M, then c =

c, and the immersion is rigid provided that n < 4.
2(n + 1)

Remark. Theorems 1 and 2 give a (local) characterization of a Veronese

manifold.
Received February 14, 1972. Partially supported by the Sakko-kai Foundation and
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2. Preliminaries

Let M be an ^-dimensional Riemannian manifold immersed isometrically in
an (n + p)-dimensional space form M of constant curvature c. We denote by
V (resp. V) the covariant differentiation on M (resp. M). Then the second
fundamental form σ of the immersion is given by

σ(X, Y) = VXY - VXY ,

and satisfies σ(X, Y) = σ(X, Y).
We choose a local field of orthonormal frames e19 , en, e ϊ ? , ep in

M in such a way that, restricted to M, e19 , en are tangent to M. With
respect to the frame field of M chosen above, let ω1, , ωw, ω\ , ωp be
the field of dual frames. Then the structure equations of M are given by1

(2.1) dωΛ = -2Ό>i Λ ωB , α>| + α>̂  = 0 ,

(2.2) dωi = - I 7 ^ Λ ω£ + cω4 Λ ω* .

Restricting these forms to M, we have the structure equations of the im-
mersion :

(2.3) ωa = 0 ,

(2.4) ωi = Σhΐjωi , Λ?y = Λj, ,

(2.5) dω* = -Σω) A ωj , ωj + ω{ = 0 ,

(2.6) dωj = - I ' ω ί Λ ω) + flj , β} = \ΣR)kιω
k A ωι ,

(2.7) R* M = 2(3*a^ - δlδjk) + Σ(Mkh«Jt - h"uh»k) .

The second fundamental form σ can be written as

(2.8) σ(ei9ej) = 2Άί,eβ or a = Σh^jω
ίωjea .

Define hfjk by

(2.9) ^Λ?y4ω* = dftfy - I'ΛjfcOiJ - JΛjyαί

Then from (2.2), (2.3) and (2.4) we have

(2.10) h ; J k = h ; k J .

use the following convention on the ranges of indices unless otherwise stated:

A,B,C = 1, . . . , n , ϊ , ~ ,p; i,j,k,l= 1, -. ,/i;

a , b , c = 1, .. , / i - 1; a 9 β = ϊ, , p .
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The second fundamental form σ is said to be parallel if h°jk = 0 for all
a, i, j and k. It is known that if the immersion is minimal, then the second
fundamental form σ satisfies a differential equation. In fact, we have

Lemma 2.1 [1].

-ΣhtjhljhίMi + j j

where Δ denotes the Laplacian.

3. Isotropically immersed space forms

For a unit vector X, σ(X, X) is called the normal curvature vector determined
by X. An isometric immersion is said to be isotropίc if every normal curvature
vector has the same length at each point. B. O'Neill [4] proved the following

Lemma 3 1. Let M be an n-dimensional space form of constant curvature
c, and M be an (n + \n{n + 1) — \)-dimensional space form of constant
curvature c. If c <. c, and M is an isotropic submanifold of M9 then

( i ) M is a minimal submanifold of M,

( i i ) \\σ(X, X)\\2 = 2<Jt ~ ^ (c - c) for every unit vector X,
n + 2

(iii) \\σ(X, Y) ||2 = — - — ( c - c) for every orthonormal pair X and Y,
n + 2

(iv) the \n(n — 1) vectors σ f e , ^ ), i < /, are orthogonal,
( v ) the angle between σ(eu e^ and σ{e^ ej) is the same (say θ) for every

pair i and j (i Φ j) and cos θ = — l/(n — 1),

(vi) {σ(ei9 e^izn is orthogonal to {σ(ei9 ^)}^« y ^ n ,
(vii) the dimension of the vector space generated by {σ(ei? ^i)}i<i<n and

Let M be an π-dimensional space form of constant curvature c, and M be
an (n + \n(n + 1) — l)-dimensional space form of constant curvature c. We
assume that c < c, and that M is an isotropic submanifold of M.

Let e19 , en be a local field of orthonormal frames in M. From Lemma
3.1 we can see that the \n(n + 1) — 1 vectors σ(ea,ea) and σ(ei9ej)9 1 < a
< n — 1, 1 < i < j < n, form a basis of the normal space at each point of
M. Using the Gram-Schmidt process, we can obtain an orthonormal basis of
the normal space at each point of M. In fact, we have the following

Lemma 3.2. The \n(n + 1) — 1 vectors

V/Γ
V2n(n — a)(n — a + l)(c — c) U=i

(n - a + ί)σ(ea, ea)\

and . =o(βu ei) ίor ^ < a <n — \ and 1 < i < j < n form an
Vn(c - c)
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orίhonormal system.
We choose a local field of orthonormal frames e19 , en9 eh , ep (p =

\n(n + 1) — 1) in M in such a way that, restricted to M, e19 , e n are
tangent to M, and

{ a-l -\

Σ °(eb, eb) + (n - a + l)σ(ea, ea)),

where (z, /) = min {/, /} + J \i — j\ (2n + 1 — \i — j\) — 1. With respect to
this frame field, using Lemma 3.1 we can obtain

(3.1) (ft?,) - a ,
... o ... ^ ...

... vv ... o ...

where

— ά)(c — c) V2n(c - c)

2)(π - a)(n - fl

Thus from (3.1), Lemma 2.1 and Lemma 3.1 we have
Lemma 3.3. Let M be an n-dimensional space form of constant curvature

c, and M be an (n + \n(n + 1) — \)-dimensional space form of constant
curvature c. If c < c, and M is an isotropic submanifold of M, then

Σh
Σh

h -

ίjkhm -

We need as well the following
Lemma 3.4. Let M be an n-dimensional space form of constant curvature

c, and M be an (n + \n(n + 1) — \)-dimensίonal space form of constant
curvature c. Suppose c < c, and M is an isotropic submanifold of M. Then
the second fundamental form σ is parallel if and only if the following hold:
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(3.2) a>! = 0 , g>*~t)= J2{n-a\ωl (b < a) ,
Vn — a + 1

(3.3) ω"~Λ = v ^ " ~ f l + ^ . y (a < /) ,
V« — α

(3.4) 0)°/̂ , = 0 (j,k> a or < a) ,

(3.5) αfo, =

(3.7) ω ;g = 0 ,

where different indices indicate different numbers.
Proof. From (2.9) and (3.1) it follows that the second fundamental form

σ is parallel if and only if (3.2), , (3.7) and the following equations hold:

— b a v 1 a

V(n c)(n c + 1)
I J . O J —. 0)ΐ = >. — .

Vn - b + 1 e<6 V(n - c)(n - c + 1)

(3.9) Σ y, , / ± 1 / ? = 0 ,
V( )( + 1)

(3.10) Vn ~ a

Λ/Π - a + 1 < e i ' ) *<* V(n - k)(n - A

j n _ b + i » £b V(n - c)(n - c + 1) c

where different indices indicate different numbers. We can see inductively that
(3.8) and (3.9) are equivalent to ω\ = 0. Moreover, (3.2), . ,(3.5) imply
(3.10) and (3.11). q.e.d.

From (2.2), (2.3), (2.4) and (3.1) we have

=ωδ Λ ω
0 V(n - b){n - b

(3.12) Σ
b<a +

v /V2(W - fl + 1) a a \ Λ b

L I 1 -< — ω (~6 )) Λ ω =
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V2(n - a) a/ V2(n - a) a a
\\>n — a + 1 a, \ ϊ <α>) A ωa

+ 1 /
~ b) rra T S* A A ω"( rr - T

(3.13) Wn-b+1 * e<» V(B - c)(n - c + 1)

a»i - o)^,) Λ a.*
) /

Σ< ( )( — a

(b < a) ,

/ V2(n - a + 1) , a

/ V 2 ( ^ ^ _ /T Λ

(3.14) Wn-j + l3 it) V(n - A)(π - Λ + 1) 7

)( — a

= 0 (α < /) ,

~ Λ Λ α>c

(3.15)

/ V2(« - Q ωfί) _ ST p, _ Λ ,
W n - / + 1 ' *<* V(n - Λ)(« - k + 1) * /

Σ

J@ - α»ί) Λ α>* + (β»«3 - 4 ) Λ

v2(π — A:) ( 0 } y-,

By (3.15) and Cartan's lemma we may write ω(j*P — ω{ = ΣA\{ω\ where

A\{ = AH. Since ω{i/ΰ — ω{ + ω ( ί4 } — ω) = 0 so that A% + Aft = 0, we can

see AH = 0. Hence we have

(3.17) •$ = «*•

From (3.16) and (3.17) it follows that ω(ζ? contain neither ωι and ωJ' nor

u>fc and ωι by symmetry. Therefore

(3.18) ω{iAί) do not contain ω\ ωj, ωk and ωι .
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4. Proofs of theorems

Theorem 1 follows immediately from Lemmas 3.3 and 3.4. We shall give
here a proof of Theorem 2 for n = 4. The proof of Theorem 2 for n = 2 and
n = 3 is quite similar to and easier than that for n = 4.

In consideration of (3.17) and (3.18), equations (3.12), —,(3 .16) can be
written as follows:

4 = 0 ,

(4.1) (-?=<"? - ω?) Λ ω1 + -4=ωϊ Λ ω2 + (/Tω2 - ω§) Λ ω3

+ (/Tα>2 - ωt) A ω* = 0 ,

(ωj - ω|) Λ ω1 + (ωl - aξ) A ω2 + (-£=M + -£=«£) A ω3

\ v 6 V 3 /
+ (2ωl - ωt) A ω* = 0;

^ L f Λ ω1 + i^=ω\ - ωύ A ω> + ί-^=ω\ - <A A
V 2 \v 3 / \v 3

ω4 = 0 ,

(4.2) -^Lω\ A ω1 - ω| Λ ω2 + (ω\ - ω|) Λ ω3

v 2
+ (ω{ - ωl) Λ ω4 = 0 ,

-α>| Λ a)1 - (^Lo>\ - - i « i ) Λ ω2 + (αij - ωl) Λ ω3

\ v 3 V 6 /

(llpLωl + ω\) A ωι + -^=ω\ A ω2 + ω\ A ω3 + ω\ A ω4 = 0 ,
\ V 3 / V 3

+ ωύ A ω1 + ω\ A ω2 + (ωl - -J=ωί) Λ ω3

l A ω4 = 0 ,

\ A ω2 + ω\ A
\ V 3

- (-r=ωl + <>>i) Λ ω4 = 0 ,
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{-^=<»\ + <4) Λ ωι + (VΎωl + ωl) Λ ω2 + (ωl - - i - ω A Λ
\γ 3 / \ v 6 /

(4.3) + ω| Λω4 = 0 ,

ύ\ + ωU A ωι + (</~Tω$ + ωg) Λ ω2 + ω| Λ ω3

{ω\ + ωl) Λαι' + {ω\ + ωf) A ω2 + (2ω\ + ωl) A ω*

f + vτωί)Λ ω4 = 0 ;

(^-Lo>\ - 2ωl) A ω1 = 0 ,

- 2ω?) Λ ω1 = 0 ,

^ ω f - 2«A Λ ω2 = 0 ,
V6 /

— 2ω^| Λ ω2 = 0 ,

(4.4)
/ "I I \

Λύ)3 = 01=^
v 6

- L ω ? - - L ω l - 2ωA Λ ω3 = 0
v 6 3 /

-i=

4

2) Λ «>4 = 0 ,

lj A ω* = 0;



ISOTROPIC IMMERSIONS 313

ωl + ω i

+ - L O J Ϊ + α>ί) Λ ω4 = 0 ,

(4 5) (ττ4 - v τ ω ! ) A ω2 = °'
Λ ω3 = 0 , ω? Λ ω1 = 0 ,

(--Lωf + —Lα>S + oil) Λ a)4 - 0 , α i f Λ o ' - O ,
\ v 6 v 3 /

(oil - -J=o)f - -J=ol) Λ ω3 = 0 , ωf Λ ω1 = 0 ,

From (4.1),, (4.4)If , (4.4),; (4.3),, (4.5),, (4.7); (4.3),, (4.5)π, (4.8);
(4.3\, (4.5),, (4.6); (4.3),, (4.6), (4.9), (4.10); (4.3),, (4.7), (4.9), (4.10);
(4.3),, (4.8), (4.10), (4.11); (4.12), •••,(4.14); (4.15),,, (4.10); (4.4),, (4.9);
(4.4),, (4.11); (4.3),, (4.16), (4.18); (4.4),, (4.4),,, (4.10), (4.19); (4.1),,
(4.12), (4.17); (4.1),, (4.12), (4.18), (4.21); we obtain, respectively,

(4.6)

(4.7)

(4.8)

(4.9) αii = 0;

(4.10) α»l = 0;

(4.11) 4 = 0;

(4.12) U
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" € {{ }}" indicating "is a linear combination of "

(4.13) SJc4-ωU{{ω3}};

(4.14) ωl+ VTωUϋω*}};

(4.15) a>l = 0, (4 = 0;

(4.16) ωU{{<o2}};

(4.17)

(4.18)

(4.19) 4 = 0;

(4.20) ωl-2ωl =

(4.21)

(4.22)

and hence

(4.23) / T ω l - 2α>? 6 {{ω1}} .

From (4.2),, (4.15), (4.23) (4.3)4, (4.3)5, (4.15), (4.17), , (4.19) (4.2)lf

(4.3)4,(4.15), ,(4.17), (4.23) (4.2),, (4.3),, (4.15), (4.16), (4.18), (4.23);
(4.4),, (4.9), (4.21); (4.4)u, (4.11), (4.22); (4.2)2, (4.2),, (4.15), (4.28),
(4.29) we have, respectively,

(4.24) vTα>| = 2ω\

(4.25) ωUϋω1}};

(4.26)

(4.27)

(4.28) a>l-ωU{{ω3}};

(4.29) ω | -α, 4

2 6{K}};

(4.30) ω | € {{«2}} .

From (4.5)j and (4.5)2 it follows that ω| 6 {{ω3, ω4}} which, together with
(4.30), implies
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(4.31) col = 0 .

From (4.2)3, (4.15), (4.28), (4.29) and (4.31) we obtain α>f e {{ω2}} which,
together with (4.25), implies

(4.32) 4 = 0 .

From (4.1)3, (4.2)2, (4.15), (4.20), (4.30) and (4.32) we have

(4.33) ωj - ω\ = 0 ,

and hence

(4.34) ωϊ-ωle {{ω2}} ,

(4.35) ωl-ωU {K}} .

From (4.28), (4.34); (4.3)4, (4.15), (4.16), (4.21), (4.32); we obtain,
respectively,

(4.36) a>l-a>l = 0;

and -/Tωf — ω\ e {{ω1}} which, together with (4.26), implies

(4.37) V^ωf - ω\ = 0 .

From (4.3)5, (4.15), (4.16), (4.18) and (4.32) we have -/Tail - ω\ς. {{ω1}}
which, together with (4.27), implies

(4.38) /Tωl - ω\ = 0 .

From (4.3)β, (4.15), (4.20), (4.29), (4.32) and (4.35) we obtain

(4.39) ωl - ω\ = 0 ,

(4.40) 4 - ωl = 0 .

Now it is easy to see that (3.17), (3.18), (4.6), , (4.11), (4.15), (4.19),
(4.22), (4.24), (4.31), , (4.33) and (4.36), , (4.40), together with Lemma
3.4, imply that the second fundamental form is parallel. This, combined with
Theorem 1, thus gives Theorem 2.
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