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ISOTROPIC IMMERSIONS

TAKEHIRO ITOH & KOICHI OGIUE

1. Introduction

A Kaehler manifold of constant holomorphic sectional curvature is called a
complex space form. A Kaehler immersion is an isometric immersion which
is complex analytic. The second named author proved the following results.

Proposition 1 [2]. Let M be an n-dimensional complex space form of con-
stant holomorphic sectional curvature c, and M be an (n + p)-dimensional
complex space form of constant holomorphic sectional curvature ¢. If M is a
Kaehler submanifold of M with parallel second fundamental form, then either
¢ = ¢ (i.e., M is totally geodesic in M)orc= 3¢, the latter case arising only
when & > 0. Moreover, the immersion is rigid.

Proposition 2 [3]. Let M be an n-dimensional complex space form of con-
stant holomorphic sectional curvature c, and M be an (n + n(n + 1))-
dimensional complex space form of constant holomorphic sectional curvature
¢. If M is a Kaehler submanifold of M, then either ¢ = & (i.e., M is totally
geodesic in M) or ¢ = 3¢, the latter case arising only when ¢ > 0. Moreover,
the immersion is rigid.

In the present paper, we shall prove similar results for real manifolds. An
isotropic i mmersion is an isometric immersion such that all its normal curvature
vectors have the same length at each point. A Riemannian manifold of constant
curvature is called a space form.

Theorem 1. Let M be an n-dimensional space form of constant curvature
c, and M be an (n + in(n + 1) — 1)-dimensional space form of constant
curvature &. If ¢ < &, and M is an isotropic submanifold of M with parallel

n
2(n + 1)

Theorem 2. Let M be an n-dimensional space form of constant curvature
¢, and M be an (n + n(n + 1) — 1)-dimensional space form of constant
curvature &. If ¢ < &, and M is an isotropic submanifold of M, then ¢ =

—n—ﬁ, and the immersion is rigid provided that n < 4.

2n + 1)
Remark., Theorems 1 and 2 give a (local) characterization of a Veronese
manifold.

second fundamental form, then ¢ = ¢, and the immersion is rigid.
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2. Preliminaries

Let M be an n-dimensional Riemannian manifold immersed isometrically in
an (n + p)-dimensional space form M of constant curvature &. We denote by
V (resp. ) the covariant differentiation on M (resp. M). Then the second
fundamental form ¢ of the immersion is given by

O'(X,Y)Zﬁxy—yxya

and satisfies ¢(X,Y) = o(X, Y).

We choose a local field of orthonormal frames e,, ---,e,, €, ---,¢e;in
M in such a way that, restricted to M, e, ---,e, are tangent to M. With
respect to the frame field of M chosen above, let o, - - -, 0", @, - - -, " be
the field of dual frames. Then the structure equations of M are given by

2.1 dot = —Swi N\ o, ot + =0,
2.2) dof = —Swi N\ of + ot N\ o® .

Restricting these forms to M, we have the structure equations of the im-
mersion :

2.3) o =0,
(2.4) of = 3hie! ,  hy =h3,
2.5) do' = —Zoj N o',  oj+0l=0,

(2.6) do’ = — 2o} N\ of + 93, 2% = $3Ri 0" N o,

2.7 Ry = 805, — 0i65) + 2(hghg, — hihs) .

The second fundamental form ¢ can be written as

(2.8) ole, e;) = Zhie, or o= Jhio'ole, .
Define Ay, by

2.9 Shif = dhy; — Xhyof — Yhyef + Shiw; .

Then from (2.2), (2.3) and (2.4) we have

(2.10) h = hgyj .

1We use the following convention on the ranges of indices unless otherwise stated:
A,B,C:l,---,n,T,-o-,ﬁ; i,j,k,l:l,---,n;
a,b,c=1,.-,n—1; 11,/3=I,'--,13.
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The second fundamental form ¢ is said to be parailel if hg;, = O for all
a,i,j and k. It is known that if the immersion is minimal, then the second
fundamental form o satisfies a differential equation. In fact, we have

Lemma 2.1 [1].

%A(Zhgjh?j) = Ehgjkhgjk — 23 (h?jh;khl";lhfi - hgjhgkhﬁh‘?i)
— Shehl b, + neShehs,

where A denotes the Laplacian.

3. Isotropically immersed space forms

For a unit vector X, ¢(X, X) is called the normal curvature vector determined
by X. An isometric immersion is said to be isotropic if every normal curvature
vector has the same length at each point. B. O’Neill [4] proved the following
Lemma 3.1. Let M be an n-dimensional space form of constant curvature
¢, and M be an (n + 3n(n + 1) — 1)-dimensional space form of constant
curvature ¢. If ¢ < &, and M is an isotropic submanifold of M, then
(i) M is a minimal submanifold of M,

(ii) |oX,X)|t = z(—lz—_':_—zl—)(é — ¢) for every unit vector X,
n

(iii) JeX, N}E = " Z 3 (¢ — ¢) for every orthonormal pair X and Y,

(iv) the ¥n(n — 1) vectors o(e;, e)), i < j, are orthogonal,

(v) the angle between o(e,, e;) and a(e;, e;) is the same (say 6) for every
pairiand j (i  j) and cos § = —1/(n — 1),

(vi) {o(es, e)}i<i<n is orthogonal to {a(e;, e Dhcicicns

(vii) the dimension of the vector space generated by {a(e;, €;)}1<i<n and

{oles, ePhicicicn is dn(n + 1) — 1.

Let M be an n-dimensional space form of constant curvature ¢, and M be
an (n + 3n(n + 1) — 1)-dimensional space form of constant curvature . We
assume that ¢ < &, and that M is an isotropic submanifold of M.

Lete,, ---,e, be alocal field of orthonormal frames in M. From Lemma
3.1 we can see that the n(n + 1) — 1 vectors o(e,, e,) and a(e;, e,), 1 < a
<n-—1,1<i<j<n, form a basis of the normal space at each point of
M. Using the Gram-Schmidt process, we can obtain an orthonormal basis of
the normal space at each point of M. In fact, we have the following

Lemma 3.2. The in(n + 1) — 1 vectors

Vn 2 {
V2n(n —a)yn —a + 1)@ — ¢

Jn+ 2

V(@ —©)

aZ_IIG(eb,eb) +(n—a+ l)o(ea,ea)}

b=1

and glej,e)) for 1<a<n—1and 1<i<j<n form an



308 TAKEHIRO ITOH & KOICHI OGIUE

orthonormal system.

We choose a local field of orthonormal frames e,, - -+, e,, e, -+ -, ¢; (p =
in(n + 1) — 1) in M in such a way that, restricted to M, e, ---,e, are
tangent to M, and

Vn+2 _
= Vann — a)n —a+ D@ —o) {Z a(ey e) + (n —a + l)a(ea,ea)}
edn = %o(ei, e;) ,

where (i,j) = min {i,j} + 4|i — j|2n + 1 — |i — j) — 1. With respect to
this frame field, using Lemma 3.1 we can obtain

a i i
0 07 -
0 cee 0 e e i
(B.1) ) =| A a, (hm ) — : : ,
Ua . .
: . . DR * .. 0 ]
to ta { ; c
where
v2n(n — a)(€ — ¢) V2n@ — ¢

T Vntdn—axD’ T TVnrdh-—on-a+D’
¥ = v/n@E —c)/vn + 2

Thus from (3.1), Lemma 2.1 and Lemma 3.1 we have

Lemma 3.3. Let M be an n-dimensional space form of constant curvature
¢, and M be an (n + in(n + 1) — 1)-dimensional space form of constant
curvature & If ¢ < &, and M is an isotropic submanifold of M, then

« e 2ni(n® — 1) n B
B = 2R C = of e =)

We need as well the following

Lemma 3.4. Let M be an n-dimensional space form of constant curvature
¢, and M be an (n + in(n + 1) — 1)-dimensional space form of constant
curvature &. Suppose ¢ < & and M is an isotropic submanifold of M. Then
the second fundamental form o is parallel if and only if the following hold :
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(3.2) =0, o5y = —v/n___w o b<a,
(3.9 ol =0t D oy @<,
(3.4) o =0 Gk>a or <a),

B9 e = e a){f_ —et (<a<hb,
6.0 o = ot

(3.7 w;gg =0,

where different indices indicate different numbers.
Proof. From (2.9) and (3.1) it follows that the second fundamental form
o is parallel if and only if (3.2), - - -, (3.7) and the following equations hold:

vVn—b 1
3.8 _yn—0 . a_ o?
(3-8) «/n—b-{-lwb c;:)«/(n—-c)(n—c—l-l)wc
1 _
3.9 =0,
(3.9 cg\::z\/(n—c)(n~—c+1)‘06
(3.10) i’;_ﬂ_"w‘% + 3 1 o0& = A2t ,
Vn—a+1 @ &n—kbhh—k+1 * !

N/n— b s 1 ~
3.11 _ YT T b)) = &h
(3.11) x/n—b+1w5 Eb’\/(n—C)(n—C-f-l)wE

where different indices indicate different numbers. We can see inductively that
(3.8) and (3.9) are equivalent to w? = 0. Moreover, (3.2), ---,(3.5) imply
(3.10) and (3.11). gq.e.d.

From (2.2), (2.3), (2.4) and (3.1) we have

JVZ A
<b§a Vo—bn—-b+1 “”’) Ne

2n — a
(3.12) + b;a (%—%wz‘ - w@:m) N

+Z<'\/2(n—a+l)wg,_wf‘a%)>/\wb___o,
a<d x/n—a
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(J/_Z(L'jiwg _ wfﬁ,)) A ot

vn—a+1
(N2 =b) , V2 N n
(3.13) («/n——ﬁwb & V= —cF D ‘"5)/\“’
V2 o
—Zw(ba/\w +“Z<:’°(N/(n-—a)(n—-a+ l)wk—a)(b,k))/\a)k
=0 O<a,
x/m .
( J/n—a )/\a)
V2(n —j) o JZ » )
(3.14) +<«/n—1+1 ! :;:M/(n—k)(n_k+1) ")A‘"
V2 LA . . .
+L§1(«/(’1—a)(n—a+ 1)% +w(j’”))/\w +c§kw(j’°)/\w
=0 (@<},

V2 — 1) V2 &h ; )
s Wy 7 2 ; :
(3.15) (~/n—i+1“’f ENa—Rhn—k+ D " ol) 1o

+ 2% —w) Aot =0,

(%,k)

(wﬁ‘g—wi)/\w +(co(”’—w)/\w’

\/2(” — @GN _ ﬁ 7 %
G1o -+ (W% AV —Da 1T D )> no

+ Y 0D NG =0,

L#i,7,k *,0

By (3.15) and Cartan’s lemma we may write cogf{;) — wj = YAYw', where
Al = A%, Since “’Z:"j,;; — o] + wi}’g — o* = 0 so that 4% 4+ A% = 0, we can
see A = 0. Hence we have

(3.17) 0D = of .

(1,k)

From (3.16) and (3.17) it follows that “’E;;]i; contain neither w? and w’ nor
o* and @' by symmetry. Therefore

(3.18) wiz fl’ do not contain o', o', o* and ' .
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4. Proofs of theorems

Theorem 1 follows immediately from Lemmas 3.3 and 3.4. We shall give
here a proof of Theorem 2 for n = 4. The proof of Theorem 2 for n = 2 and

n = 3 is quite similar to and easier than that for n = 4.

In consideration of (3.17) and (3.18), equations (3.12), - --,(3.16) can be

written as follows:

(23/__ — au) < o + (2}/_- —wi) N @

—I—({}%Twl—wg)/\w“zo,
4.1 2co—a)4 A o' + Ao+ (W30 — o) N\ &
@b \73 ﬁ
+ W30 — ) Ne*=0,
@ = oh Ao+ @ —ad A&+ (ol —Lal) A e
+(2(1)4—(116)/\(D—0,
1
gw/\ +<g —au)/\w +<ﬁ —(07)/\(1)3
+<%w}—w§)/\w“=0,
4.2) —gwf/\wl—ﬁ/\wz-l-(wf—wg)/\wa
+(w1—w§)/\w‘=0,
—w%Aw1—<¢@§ «/— )/\a) + (@} — o) A o
+ (@ — o) N ot = 0;
(2g2+w4>Aw +ﬁwg/\a) +oA NP+ N =0,
(2://__3_3+a)7)/\a)‘-l-ao?-,/\cuz+(co%————x/chug)/\w3
+w%/\w4=0,
2‘\/—4 ) 1 1 2 1 3
( Ct o) Ao+l A G+ ol A w
ﬁ
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(4.4)

(75
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+ i ANo*=0,

1 w"{-{-w?)/\w‘—}—(ﬁwg-l—w%)/\wz%—(w%—

1
/6

(ot + o) Ao+ WTot+ oD AW+ A

J3

_<1
(0! + o) A\ o' + (08 + o) A 0> + Qb + o) N o

— (——Rw? + T%wi) N o' = 0;

1

——0i + o

V6

)/\w“:O,

of

)/\a)3
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1 1 >
w4_ 4 g/\ 3:0,
(3 JerT e
(x/l_gw‘}—}—-x/%w%—k(ug)/\w“:o,
1 . .
<ﬁwi+ J%w§+w§)Aw‘_0,
4.5) (zwg- lw*';)/\w2=0,
V3 N
] 1 9 1 9) 3
- i Ad*=0, AA@ =0,
<w§ »\/—6‘011 ﬁ% @ i N\ o
(ﬂ%wﬁ %wﬂwé)/\w‘z& f Aot =0,
<w§—¢%w§—¢%w§>Aw3=0, AN =0,
(%wg——«/}_wg)/\af:O

From (4.1),, (4.4),, - - -, (4.4);; (4.3),, (4.5),, (4.7); (4.3),, (4.5),,, (4.8);
(4.3),, (4.5)y, (4.6); (4.3),, (4.6), (4.9), (4.10); (4.3),, (4.7), (4.9), (4.10);
4.3);, (4.8), (4.10), (4.11); (4.12), - - -, (4.14); (4.15),,, (4.10); (4.4),, (4.9);
(4.4), (4.11); (4.3);, (4.16), (4.18); (4.4),, (4.4),,, (4.10), (4.19); (4.1),,
(4.12), (4.17); (4.1),, (4.12), (4.18), (4.21); we obtain, respectively,

4.6) ol = 2g o,
24 2

4.7 w; = J/_:;—wé R
. 24 2

.8) of = %wz;
(4.10) ol = 0;
4.11) ol =0;

(4.12) of € {{o’}} ,
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“e{{---}}” indicating “is a linear combination of - --”;
(4.13) v 30j — wje {0}
(4.14) o} + v 3oje {{o')};
(4.15) wi=0, ol =0;
(4.16) i € {0}
(4.17) o} — ¥ 3oje{{o’}};
(4.18) o — ¥ 30fe{{o};
(4.19) o = 0;
(4.20) of — 208 = 0;
4.21) i — v/ 30} =0;
(4.22) o~ v 30;=0;
and hence

(4.23) V30i — 20 e {{0'}} .

From (4.2),, (4.15), (4.23) ; (4.3),, (4.3),, (4.15), (4.17),---,(4.19); (4.2),,
4.3),, (4.15), - - -, (4.17), (4.23) ; (4.2),, (4.3);, (4.15), (4.16), (4.18), (4.23);
4.4),, (4.9), (4.21); (4.4),, (4.11), (4.22); (4.2),, (4.2),, (4.15), (4.28),
(4.29) ; we have, respectively,

(4.24)
(4.25)
(4.26)
4.27)
(4.28)
(4.29)
(4.30)

V 3o} =20
o} € {{o'}};

Vv 3aj — o e {{0}};
V30 — oje {0}
o} — o} e {{o)};
of — o} e {{o')};

of e {{o™}} .

From (4.5), and (4.5), it follows that o} ¢ {{o’, »'}} which, together with
(4.30), implies
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(4.31) w% =0.

From (4.2),, (4.15), (4.28), (4.29) and (4.31) we obtain f € {{»?}} which,
together with (4.25), implies

(4.32) 03 =0.

oren

From (4.1),, (4.2),, (4.15), (4.20), (4.30) and (4.32) we have

(4.33) @ —al=0,
and hence

(4.34) o} — oj e {o’}}
(4.35) v — o} e {{0'}} .

From (4.28), (4.34); (4.3),, (4.15), (4.16), (4.21), (4.32); we obtain,
respectively,

(4.36) 0 — ol =0;
and v/ 3 0! — } € {{»'}} which, together with (4.26), implies
4.37) V3 —al=0.

From (4.3),, (4.15), (4.16), (4.18) and (4.32) we have ¥/ 3 «f — o} € {{o'}}
which, together with (4.27), implies

(4.38) V3i—aw}=0.

From (4.3),, (4.15), (4.20), (4.29), (4.32) and (4‘.35) we obtain
(4.39) 0 —aof=0,
(4.40) 0} —t=0.

Now it is easy to see that (3.17), (3.18), (4.6), - - -, (4.11), (4.15), (4.19), - - -,
(4.22), (4.24), (4.31), - - -, (4.33) and (4.36), - - -, (4.40), together with Lemma
3.4, imply that the second fundamental form is parallel. This, combined with
Theorem 1, thus gives Theorem 2.
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