SPECIAL CONNECTIONS AND ALMOST FOLIATED METRICS

E. VIDAL \& E. VIDAL-COSTA

On manifolds with a complex almost-product structure, we study some special connections related to the parallelism and integrability of the distributions and to a complex symmetric bilinear form (pseudo-metric) compatible with the structure, and establish the notion of almost-foliated metric which includes as a particular case the metric of a foliated type on a foliated manifold. (For Reinhart spaces see [6].)

1. Adapted connections

Let V be a differentiable manifold of class C^{∞} and dimension n, and let $T^{c}(V)=T(V) \otimes_{R} C$ denote the complexified space of the tangent space $T(V)$ of the manifold. A complex almost-product structure defined on V gives two C^{∞}-fields T^{1} and T^{2} of supplementary subspaces, with respect to the Whitney sum, of $T^{C}(V)\left(\operatorname{dim} T^{1}=n_{1}, \operatorname{dim} T^{2}=n_{2}, n_{1}+n_{2}=n\right)$. If $x \in V$, |then every vector $X \in T_{x}^{c}$ is the sum of two vectors $P X \in T_{x}^{1}$ and $Q X \in T_{x}^{2}$, so that $T_{x}^{1}+T_{x}^{2}=T_{x}^{c}, P+Q=I$ (identity), P, Q being the projection tensors associated with T^{1} and T^{2}.

The complex almost-product structure is determined by a vectorial form H such that $H^{2}=I$ gives $H=P-Q$ in T^{C}. It is equivalent to the reduction of the structural group $G L(n, C)$ of the fibration $T^{C}(V)$. The principal fibration associated with $T^{C}(V)$ has, as a structural group, the subgroup of the complex linear group $G L(n C)$ of the form

$$
\left(\begin{array}{cc}
G L\left(n_{1}, C\right) & 0 \tag{1}\\
0 & G L\left(n-n_{1}, C\right)
\end{array}\right),
$$

The structure determined by the operator $H=P-Q$, such that $H^{2}=I$, comprises as particular cases: the almost-complex structure when n is even and $J=i P-i Q, \bar{P}=i P, \bar{Q}=i Q$ are conjugate operators; and the real almost-product structure when P, Q are real.

We represent by $A(V)$ the fibration of the complex references of T^{C} with $G L(n, C)$ as the structural group, and by $A^{\prime}(V)$ the subfibration of the linear references adapted to the complex almost-product structure with (1) as the structural group.

Communicated by K. Yano, February 7, 1972, and, in revised form July 10, 1972.

Definition 1. A connection is said to be adapted if it preserves the complex almost-product structure.

We can easily see that these adapted connections make H parallel; that is, $\nabla H=0$ for an adapted connection, and deduce that the adapted connections are the infinitesimal connections on $A^{\prime}(V)$. These connections generalize the almost-complex connections of A. Lichnerowicz [4] and the connections of Schouten [7], which are the connections established by I. Cattaneo-Gasparini [1] and by Legrand [3]. For arbitary vector fields X, Y in T^{C}, in the same way as for the real case we define a torsion tensor N for the complex almostproduct structure by

$$
\begin{equation*}
N(X, Y)=\frac{1}{4}([H X, H Y]+[X, Y]-H[H X, Y]-H[X, H Y]), \tag{2}
\end{equation*}
$$

where we write, for a tensor β of type $(1,2)$,

$$
\beta(H X, Y)=\beta H(X, Y), \quad \beta(X, H Y)=\beta \cdot H(X, Y) .
$$

Proposition 1. If α is a tensor of type $(1,2), \beta$ a tensor of type $(1,1)$ and ∇ a symmetric connection, then $\nabla^{\prime}=\nabla+\alpha$ is a connection such that when applied to β we have $\nabla^{\prime} \beta=\nabla \beta+\alpha * \beta=\nabla \beta+\alpha \cdot \beta-\beta \alpha$.

Proposition 2. For a symmetric connection ∇ in T^{c}, all the connections adapted to the complex almost-product structure defined by the tensor H are given by

$$
\begin{equation*}
\nabla^{\prime}=\nabla-\frac{1}{2} \nabla H \cdot H+\beta \tag{3}
\end{equation*}
$$

with the condition $\beta \cdot H-H \beta=0$.
Proof. Since $\nabla(H H)=\nabla H \cdot H+H \nabla H=0$, and $H \nabla H \cdot H=-\nabla H$, we obtain

$$
\nabla^{\prime} H=\nabla H-\frac{1}{2}(\nabla H \cdot H) * H+\beta * H=\nabla H-\frac{1}{2} \nabla H+\frac{1}{2} H \nabla H \cdot H=0 .
$$

Definition 2. For the adapted connections ∇^{\prime} and the torsion tensor N of the structure, we define the connections

$$
\begin{equation*}
E=\nabla^{\prime}-\frac{1}{2} N=\nabla-\frac{1}{2} \nabla H \cdot H+\beta-\frac{1}{2} N \tag{4}
\end{equation*}
$$

Proposition 3. $N=H E H$.
Proof. Since

$$
\begin{gathered}
E H=\nabla^{\prime} H-\frac{1}{2} N * H=\frac{1}{2}(-N \cdot H+H N), \quad H E H=\frac{1}{2}(-H N \cdot H+N), \\
N(X, Y)=\frac{1}{2}\left[\left(\nabla_{H X} H\right) Y-\left(\nabla_{H Y} H\right) X-H\left(\nabla_{X} H\right) Y+H\left(\nabla_{Y} H\right) X\right]
\end{gathered}
$$

we have $-H N \cdot H(X, Y)=N(X, Y)$, and hence the proposition.
It is well known that if the complex almost-product structure is integrable, then there exists a symmetric connection which makes it parallel. However,
the following immediate proposition, the E connections represent all the connections such that if H is parallel with respect to them then it is integrable, and conversely.

Proposition 4. A necessary and sufficient condition for the complex almostproduct structure determined by H to be integrable is that H be parallel with respect to an E connection.

In the case of a real almost-product structure, the connections L of Walker [10] are defined in the form $L=D+N$ such that they make H parallel, D being a symmetric connection. Then $L \subset \nabla^{\prime}, D \subset E$.

2. Connections in relation with a pseudo-metric adapted to the complex almost-product structure

Given the complex almost-product manifold V, whose characteristic tensor is H, let g be a C-bilinear symmetric form of a complex pseudo-metric C^{∞} defined on V. We say that g is adapted to the complex almost-product structure if

$$
g(H X, H Y)_{p}=g(X, Y)_{p}, \quad \forall p \in V, \quad \forall X, Y \in T^{C}
$$

For the two subspaces T^{1} and T^{2} of T^{C} determined by H, the condition for the pseudo-metric to be adapted to this decomposition is that T^{1} and T^{2} be orthogonal with respect to g at every point p.
In accordance with Proposition 2, by taking different expressions for β we can determine the adapted connections with certain special properties as in the following proposition.

Proposition 5. There exists a unique connection on $T^{c}(V)$ with the following conditions:
(a) It is adapted to the structure H.
(b) The connection induced in T^{1} (or T^{2}) is compatible with g.
(c) The first n_{1} components of the torsion are of type $(0,2)$, and the last $n-n_{1}$ are of type $(2,0)$.

This connection (called the second connection) is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\frac{1}{4}\left[\left(\nabla_{H Y} H\right) X+H\left(\left(\nabla_{Y} H\right) X\right)+2 H\left(\left(\nabla_{X} H\right) Y\right)\right] . \tag{5}
\end{equation*}
$$

Lemma 1. Suppose $\nabla^{\prime}=\nabla+\alpha$, where α is a tensor of type $(1,2)$, and let g be a tensor of type $(0,2)$. Then

$$
\begin{gather*}
\left(\nabla^{\prime} g\right)(X, Y, Z)=(\nabla g)(X, Y, Z)+(\alpha * g)(X, Y, Z) \tag{6}\\
(\alpha * g)(X, Y, Z)=-g(\alpha(X, Y), Z)-g(Y, \alpha(X, Z))
\end{gather*}
$$

Proof. Since

$$
\begin{aligned}
& \nabla_{X}^{\prime}(g(Y, Z))=X g(Y, Z)=\left(\nabla_{x}^{\prime} g\right)(Y, Z)+g\left(\nabla_{X}^{\prime} Y, Z\right)+g\left(Y, \nabla_{x}^{\prime} Z\right), \\
& \nabla_{X}\left(g(Y, Z)=X g(Y, Z)=\left(\nabla_{X} g\right)(Y, Z)+g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)\right.
\end{aligned}
$$

substration of these two equations gives the second equation of (6) immediately.
Proof of Proposition 5. a) Since

$$
\begin{gathered}
(\nabla I) Y=(\nabla(H H)) Y=(\nabla H) H Y+H(\nabla H) Y=0 \\
H(\nabla H) H Y=-(\nabla H) Y
\end{gathered}
$$

in accordance with Proposition 1 we obtain

$$
\begin{aligned}
\left(\tilde{\nabla}_{X} H\right) Y= & \left(\nabla_{X} H\right) Y+\frac{1}{4}\left(\left(\nabla_{Y} H\right) X+H\left(\nabla_{H Y} H\right) X+2 H\left(\nabla_{X} H\right) H Y\right. \\
& -H\left(\nabla_{H Y} H\right) X-\left(\nabla_{Y} H\right) X-2\left(\left(\nabla_{X} H\right) Y\right)=0
\end{aligned}
$$

b) Since V and g are compatible with the complex almost-product structures,

$$
\begin{aligned}
4\left(\tilde{V}_{P X} g\right)(P Y, P Z)= & 4\left(\nabla_{P X} g\right)(P Y, P Z)+\left[\left(\nabla_{H Y} H\right) X+H\left(\left(\nabla_{Y} H\right) X\right)\right. \\
& \left.+2 H\left(\nabla_{X} H\right) Y\right] * g(P X, P Y, P Z)
\end{aligned}
$$

Since $\nabla g=0, H(\nabla H) P X=-(\nabla H) P X$ and $(\nabla H) P=2 Q \nabla P$, by Lemma 1 we obtain

$$
\begin{aligned}
4\left(\tilde{\nabla}_{P X} g\right)(P Y, P Z)= & -g\left(\left(\nabla_{P Y} H\right) P X+H\left(\left(\nabla_{P Y} H\right) P X+2 H\left(\nabla_{P X} H\right) P Y, P Z\right)\right. \\
& -g\left(P Y,\left(\nabla_{P Z} H\right) P X+H\left(\nabla_{P Z} H\right) P X+2 H\left(\nabla_{P X} H\right) P Z\right) \\
= & -g\left(2 H\left(\nabla_{P X} H\right) P Y, P Z\right)-g\left(P Y, 2 H\left(\nabla_{P X} H\right) P Z\right)
\end{aligned}
$$

On the other hand, from $\nabla(H P)=(V H) P+H \nabla P=\nabla P$ it follows $P(\nabla H) P$ $=0$ and therefore

$$
H\left(\nabla_{P X} H\right) P Y=P\left(\nabla_{P X} H\right) P Y-Q\left(\nabla_{P X} H\right) P Y=-Q\left(\nabla_{P X} H\right) P Y
$$

Thus

$$
g\left(2 H\left(\nabla_{P X} H\right) P Y, P Z\right)=-2 g\left(Q\left(\nabla_{P X} H\right) P Y, P Z\right)=0 .
$$

On account of the orthogonality of T^{1} and T^{2}, we hence have $\left(\tilde{V}_{P X} g\right)(P Y, P Z)$ $=0$, which is similarly true with P replaced by Q.
c) We must show that the first components of the torsion of \tilde{V} are of type $(0,2)$ and the second ones are of type $(2,0)$, that is,

$$
P \operatorname{Tor}_{\tilde{\tilde{r}}}(P Y, P Z)=0, \quad P \operatorname{Tor}_{\tilde{\tilde{j}}}(P Y, Q Z)=0, \quad Q \operatorname{Tor}_{\tilde{\tilde{V}}}(Q Y, Q Z)=0
$$

For this purpose, it sufficies to observe that the torsion of $\tilde{\nabla}$ is the Nijenhuis tensor except for a sign so that

$$
P N(P Y, P Z)=P Q N(Y, Z)=0, \quad N(P Y, Q Z)=0
$$

Similarly, $Q N(Q Y, Q Z)=0$.

To prove that $\tilde{\nabla}$ is the only connection satisfying a), b) and c), we shall prove that if a connection $\nabla=\tilde{\nabla}+\beta, \beta$ being a tensor of type $(1,2)$ satisfies a), b) and c), then $\beta(Y, Z)=0$, where Y, Z are arbitrary.

From a) we have $\beta * H=0$, that is, $\beta(Y, H Z)-H \beta(Y, Z)=0$, from which follow

$$
P \beta(Y, H Z)-P \beta(Y, Z)=0, \quad Q \beta(Y, H Z)+Q \beta(Y, Z)=0
$$

Moreover,

$$
\begin{equation*}
P \beta(Y, Q Z)=0, \quad Q \beta(Y, P Z)=0 \tag{7}
\end{equation*}
$$

By b) we obtain $\beta * g(P Y, P X, P Z)=0, \beta * g(Q Y, Q X, Q Z)=0$, from the first of which it follows

$$
-g(\beta(P Y, P X), P Z)-g(P X, \beta(P Y, P Z))=0
$$

Putting $X=Z$ for arbitrary Z in the above equation yields

$$
g(\beta(P Y, P Z), P Z)=0
$$

which implies

$$
\begin{equation*}
P \beta(P Y, P Z)=0 \tag{8}
\end{equation*}
$$

In a similar way, we obtain

$$
\begin{equation*}
Q \beta(Q Y, Q Z)=0 \tag{9}
\end{equation*}
$$

From c) follow

$$
\begin{equation*}
P \beta(P Y, Q Z)-P \beta(Q Z, P Y)=0, \quad Q \beta(Q Y, P Z)-Q \beta(P Z, Q Y)=0 \tag{10}
\end{equation*}
$$

which, together with (7), (8), (9), hence give $\beta(Y, Z)=0$.
The coefficient of this connection was obtained by Vaismann [8] for real almost-product Riemannian manifolds, and in the case of almost-complex manifolds this connexion coincides with that introduced in [2, p. 143].

Proposition 6. There exists a connection ∇^{\prime} on a complex almost-product manifold adapted to the structure such that its torsion is

$$
\begin{equation*}
\operatorname{Tor}_{V^{\prime}}(X, Y)=\frac{1}{2}\left[\left(\nabla_{Y} H\right) H X-\left(\nabla_{X} H\right) H Y\right] \tag{11}
\end{equation*}
$$

This connection has also the property that the connections induced in T^{1} and T^{2} are compatible with the metric induced in T^{1} and T^{2}.

For the connection ∇ corresponding to a g pseudo-metric adapted to the complex almost-product structure, we have

Proposition 7. If the connection $\bar{\nabla}$ makes T^{1} parallel, it also makes \boldsymbol{T}^{2}
parallel, and consequently both T^{1} and T^{2} are integrable.
Proof. Since g is adapted to the structures, ∇ is the metric connection and ∇ makes T^{1} parallel, we have, respectively, $g(P Y, Q Z)=0, \nabla g=0$ and $Q \nabla P=0$, the last of which implies $\nabla P=P \nabla P$. Thus

$$
\begin{aligned}
\nabla(g(P Y, Q Z)) & =(\nabla g)(P Y, Q Z)+g(\nabla P Y, Q Z)+g(P Y, \nabla Q Z) \\
& =g(P(\nabla P) Y, Q Z)+g(P Y,(\nabla Q) Z) \\
& =g(P Y,(\nabla Q) Z))=0
\end{aligned}
$$

Hence $(\nabla Q) Z \in T^{2}$ implies $P(\nabla Q) Z=0$, which is the condition for ∇ to make T^{2} parallel.

The integrability is a consequence of the parallelism with respect to a symmetric connection.

Definition 2. Let V be a symmetric connection. Then a connection is a C connection if it is of the form

$$
\begin{equation*}
C=\nabla-Q \nabla P+Q N+\gamma, \quad Q_{\gamma} \cdot P=0 \tag{12}
\end{equation*}
$$

Proposition 8. A necessary and sufficient condition for T^{1} to be integrable is that it be parallel with respect to a C-connection.

Proof. If T^{1} is integrable, then $Q N=0$, and the expression of C is reduced to the expression of the connection which makes T^{1} parallel. Conversely, $Q C P=Q \nabla P-Q \nabla P+Q N \cdot P+Q \gamma \cdot P=0$ implies that $Q N \cdot P=0$ and therefore that $Q[P, P] \cdot P=Q[P, P]=0$.

Corollary.

$$
\begin{equation*}
Q \operatorname{Tor}_{C}(P X, P Y)=0 \tag{13}
\end{equation*}
$$

3. Almost-foliated pseudo-metrics

Definition 3. Let V be a C^{∞} manifold with a complex almost-product structure, g a complex pseudo-metric, and $\tilde{\nabla}$ the second connection given by $\tilde{\nabla}=\nabla+\alpha / 4$, where ∇ is the metric connection. Then g is said to be almostfoliated if

$$
\begin{equation*}
\left(\tilde{V}_{P X} g\right)(Q Y, Q Z)=0, \quad \forall X, Y, Z \in T^{c}(V) \tag{14}
\end{equation*}
$$

Proposition 9. A necessary and sufficient condition for the form g to be almost-foliated is that

$$
(\alpha * g)(P X, Q Y, Q Z)=0
$$

Proposition 10. If the form g is almost-foliated, then the fields of T^{2} parallel with respect to the connection $\tilde{\nabla}$ along any curve preserve their length.

Proof. From Proposition 5 and (14) we obtain $\left(\tilde{\nabla}_{X} g\right)(Q Y, Q Z)=0$.

4. Real foliated manifolds

If we consider a real foliated manifold, then the almost-foliated metric contains the fibre-like metric (Reinhart spaces [6]) as a special case in accordance with the following proposition.

Proposition 11. Given a real foliated Riemannian manifold $\left(V, T^{1}, T^{2}\right), T^{1}$ being integrable, a necessary and sufficient condition for the metric to be fibrelike is that it be almost-foliated.

Proof. Suppose on the manifold there exists a fibre-like metric, ∇ is the metric connection, and taking references adapted to the foliation ($\partial x^{a}, Y_{u}$), ($\left.\theta^{a}, d y^{u}\right),\left(a, b=1, \cdots, n_{1} ; u, v=n_{1}+1, \cdots, n\right)$, we have [5]

$$
\begin{equation*}
d s^{2}=g_{a b}(x, y) \theta^{a} \theta^{b}+G_{u v}(y) d y^{u} d y^{v} \tag{15}
\end{equation*}
$$

Then the condition of fibre-like metric is expressed as

$$
\begin{equation*}
\nabla_{\partial_{a}}\left(g\left(Y_{u}, Y_{v}\right)\right)=\partial_{a} G_{u v}=0 \tag{16}
\end{equation*}
$$

that is,

$$
\begin{equation*}
g\left(\nabla_{\partial_{a}} Y_{u}, Y_{v}\right)+g\left(Y_{u}, \nabla_{\partial_{a}} Y_{v}\right)=0 \tag{17}
\end{equation*}
$$

We must prove that in this case $\left(\tilde{\nabla}_{P X} g\right)(Q Y, Q Z)=0$. For this purpose we shall first demonstrate

$$
\left(\tilde{\nabla}_{\partial_{a}} g\right)\left(Y_{u}, Y_{v}\right)=\left(\nabla_{\partial_{a}} g\right)\left(Y_{u}, Y_{v}\right)+\frac{1}{4}(\alpha * g)\left(\partial_{a}, Y_{u}, Y_{v}\right)=0 .
$$

$(\nabla g)=0$, since V is the metric connection and

$$
\begin{aligned}
-(\alpha * g)\left(\partial_{a}, Y_{u}, Y_{v}\right)= & g\left(\alpha\left(\partial_{a}, Y_{u}\right), Y_{v}\right)+g\left(Y_{u}, \alpha\left(\partial_{a}, Y_{v}\right)\right) \\
= & g\left(\left(\nabla_{-Y_{u}} H\right) \partial_{a}+H\left(V_{Y_{u}} H\right) \partial_{a}+2 H\left(\nabla_{\partial_{a}} H\right) Y_{u}, Y_{v}\right) \\
& +g\left(Y_{v},\left(\nabla_{-Y_{v}} H\right) \partial_{a}+H\left(\nabla_{Y_{v}} H\right) \partial_{a}+2 H\left(\nabla_{\partial_{a}} H\right) Y_{v}\right) .
\end{aligned}
$$

On the other hand,

$$
(\nabla H) P=2 Q \nabla P, \quad(\nabla H) Q=-2 P \nabla Q
$$

Since $g(P Y, Q Z)=0$,

$$
-(\alpha * g)\left(\partial_{a}, Y_{u}, Y_{v}\right)=-4\left(g\left(Q \nabla_{Y_{u}} \partial_{a}, Y_{v}\right)+g\left(Y_{v}, Q \nabla_{Y_{v}} \partial_{a}\right)\right)
$$

or

$$
\begin{equation*}
(\alpha * g)\left(\partial_{a}, Y_{u}, Y_{v}\right)=4\left(g\left(\nabla_{Y_{u}} \partial_{a}, Y_{v}\right)+g\left(Y_{v}, \nabla_{Y_{v}} \partial_{a}\right)\right) . \tag{18}
\end{equation*}
$$

Since V is symmetric and $\left[\partial_{a}, Y_{u}\right] \in T^{1}$, by (17) we finally obtain

$$
\begin{equation*}
(\alpha * g)\left(\partial_{a}, Y_{u}, Y_{v}\right)=4\left(g\left(\nabla_{\partial_{a}} Y_{u}, Y_{v}\right)+g\left(Y_{u}, \nabla_{\partial_{a}} Y_{v}\right)\right)=0 . \tag{19}
\end{equation*}
$$

To prove that

$$
\left(\tilde{\nabla}_{\partial_{a}} g\right)\left(Y_{u}, Y_{v}\right)=0 \text { implies }\left(\tilde{V}_{P X} g\right)(Q Y, Q Z)=0
$$

it suffices to consider

$$
\begin{aligned}
\left(\tilde{\nabla}_{P X} g\right)(Q Y, Q Z)= & \tilde{\nabla}_{P X}(g(Q Y, Q Z))-g\left(\tilde{\nabla}_{P X} P Y, Q Z\right)-g\left(Q Y, \tilde{V}_{P X} Q Z\right) \\
= & \tilde{\nabla}_{C^{a_{\partial}}}\left(g\left(\Gamma^{u} Y_{u}, \Gamma^{v} Y_{v}\right)-g\left(\tilde{\nabla}_{c a_{\partial_{a}}} \Gamma^{u} Y_{u}, \Gamma^{v} Y_{v}\right)\right. \\
& -g\left(\Gamma^{u} Y_{u}, \tilde{V}_{\sigma^{a_{\partial}}} \Gamma^{v} Y_{v}\right) .
\end{aligned}
$$

Conversely, if the metric is almost-foliated and T^{1} is integrable, then the metric is fibre-like. In fact, since the metric is almost-foliated we have $(\alpha * g)(P X, Q Y, Q Z)=0$. For the foliated manifold V, by taking adapted references we thus obtain (19), which is equivalent to $\partial_{a} G_{u v}=o$.

References

[1] I. Cattaneo-Gasparini, Sulle G-strutture di una V_{n} definite da una 1-forma complessa a valori vettoriali, Ann. Mat. Pura. Appl. 65 (1964) 81-96.
[2] S. Kobayashi \& K. Nomizu, Foundation of differential geometry, Vol. II, Interscience, New York, 1969.
[3] G. Legrand, Sur les variétés a structure de presque-produit complexe, C. R. Acad. Sci. Paris 242 (1956) 335-337.
[4] A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Cremonese. Roma, 1955.
[5] A. M. Naveira, Variedades foliadas con métrica casi-fibrada, Collect. Math. 21 (1970) 1-61.
[6] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959) 119-132.
[7] J. A. Schouten, Ricci calculus, Springer, Berlin, 1954.
[8] I. Vaisman, Sur la cohomologie des variétés riemanniennes feuilletées, C. R. Acad. Sci. Paris 268 (1969) 720-723.
[9] E. Vidal, Sur les variétés à structure de presque-produit complexe avec métrique presque-feuilleté, C. R. Acad. Sci. Paris 273 (1971) 1152-1155.
[10] A. G. Walker, Connexions for parallel distributions in the large, Quart. J. Math. Oxford (2), 9 (1958) 221-231.
[11] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford, 1965.

University of Santiago de Compostela, Spain

