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SPECIAL CONNECTIONS AND ALMOST
FOLIATED METRICS

E. VIDAL & E. VIDAL-COSTA

On manifolds with a complex almost-product structure, we study some
special connections related to the parallelism and integrability of the distributions
and to a complex symmetric bilinear form (pseudo-metric) compatible with the
structure, and establish the notion of almost-foliated metric which includes as
a particular case the metric of a foliated type on a foliated manifold. (For
Reinhart spaces see [6].)

1. Adapted connections

Let V be a differentiate manifold of class C°° and dimension n, and let
TC(V) = T(V) ® RC denote the complexified space of the tangent space T(V)
of the manifold. A complex almost-product structure denned on V gives two
C°°-fields T1 and T2 of supplementary subspaces, with respect to the Whitney
sum, of TC(V) (dim T1 = n19 dim T2 = n2, nx + n2 = ή). If x e V, [then every
vector X e Tc

x is the sum of two vectors PX e Ί\ and QX €T2
X, so that

Ί\ + Ί\ = T£, P + Q = / (identity), P, Q being the projection tensors as-
sociated with Γ1 and T2.

The complex almost-product structure is determined by a vectorial form H
such that H2 = I gives H = P — Q in T c . It is equivalent to the reduction of
the structural group GL(n,C) of the fibration TC(V). The principal fibration
associated with TC(V) has, as a structural group, the subgroup of the complex
linear group GL(nC) of the form

\ 0 GL{n
0 \

- Λl, C)J '
The structure determined by the operator H = P — Q, such that H2 = I,

comprises as particular cases: the almost-complex structure when n is even
and / = iP — ίQ, P — iP, Q = iQ are conjugate operators and the real
almost-product structure when F, Q are real.

We represent by A(V) the fibration of the complex references of Tc with
GL(n, C) as the structural group, and by A\V) the subfibration of the linear
references adapted to the complex almost-product structure with (1) as the
structural group.
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Definition 1. A connection is said to be adapted if it preserves the complex
almost-product structure.

We can easily see that these adapted connections make H parallel that is,
FH = 0 for an adapted connection, and deduce that the adapted connections
are the infinitesimal connections on A'(y). These connections generalize the
almost-complex connections of A. Lichnerowicz [4] and the connections of
Schouten [7], which are the connections established by I. Cattaneo-Gasparini
[1] and by Legrand [3]. For arbitary vector fields X, Y in Tc, in the same
way as for the real case we define a torsion tensor N for the complex almost-
product structure by

( 2) N(X, Y) = i([JMT, HY] + [X, Y] - H[HX, Y] - H[X, HY]) ,

where we write, for a tensor β of type (1, 2),

β(HX, Y) = βH(X, Y) , β(X,HY) = β H(X, Y) .

Proposition 1. // a is a tensor of type (1,2), β a tensor of type (1,1) and
V a symmetric connection, then V — V + a is a connection such that when
applied to β we have V'β = Vβ + a*β = Fβ + a-β — βa.

Proposition 2. For a symmetric connection F in Tc, all the connections
adapted to the complex almost-product structure defined by the tensor H are
given by

(3) F' = F -ψHH + β

with the condition β H — Hβ = 0.
Proof, Since F(HH) = PHΉ + HFH = 0, and HFHH = -FH, we

obtain

PΉ = FH - ±(PHH)*H + β*H - FH - ψH + \HPH-H = 0 .

Definition 2. For the adapted connections Fr and the torsion tensor N of
the structure, we define the connections

( 4 ) E = P' - JN = Γ - ψHH + β - JiV .

Proposition 3. JV = HEH.
Proof. Since

EH = FΉ - \N*H = \{-NH + HN) , HEH = \(-HNH + N) ,

N(X, Y) = WπχH)Y - (FHYH)X - H(FXH)Y + H(FYH)X] 9

we have -HNH(X, Y) = N(X, Y), and hence the proposition.
It is well known that if the complex almost-product structure is integrable,

then there exists a symmetric connection which makes it parallel. However,
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the following immediate proposition, the E connections represent all the con-
nections such that if H is parallel with respect to them then it is integrable,
and conversely.

Proposition 4. A necessary and sufficient condition for the complex almost-
product structure determined by H to be integrable is that H be parallel with
respect to an E connection.

In the case of a real almost-product structure, the connections L of Walker
[10] are defined in the form L — D + N such that they make H parallel, D
being a symmetric connection. Then L c F', D c E.

2. Connections in relation with a pseudo-metric adapted to

the complex almost-product structure

Given the complex almost-product manifold V, whose characteristic tensor
is H, let g be a C-bilinear symmetric form of a complex pseudo-metric C°°
defined on V. We say that g is adapted to the complex almost-product structure if

g(HX,HY)p=g(X,Y)p, VpeV, VZ, Y e Tc .

For the two subspaces Γ1 and T2 of Tc determined by H, the condition for the
pseudo-metric to be adapted to this decomposition is that Γ1 and Γ2 be
orthogonal with respect to g at every point p.

In accordance with Proposition 2, by taking different expressions for β we
can determine the adapted connections with certain special properties as in the
following proposition.

Proposition 5. There exists a unique connection on TC(V) with the follow-
ing conditions:

(a) It is adapted to the structure H.
(b) The connection induced in T1 (or T2) is compatible with g.
(c) The first nx components of the torsion are of type (0,2), and the last

n — nx are of type (2,0).

This connection (called the second connection) is given by

( 5 ) VXY' = VXY + WHYH)X + H((FYH)X) + 2H((FXH)Y)] .

Lemma 1. Suppose V = V + a, where a is a tensor of type (1,2), and
let g be a tensor of type (0, 2). Then

(F'g)(x, y, z) = (Fg)(x, y, z) + (a*g)(x, Y, Z) ,

(«**)(*, y , Z) = -g(a(X, Y), Z) - g(Y, a(X, Z)) .

Proof. Since

Ff

x(g(Y, Z)) = Xg(Y, Z) = (F^)(Y, Z) + g(F'xY, Z) + g(Y, Ff

xZ) ,

) = Xg(Y, Z) = (Fxg)(Y, Z) + g(FxY, Z) + g(Y, FXZ) ,
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substration of these two equations gives the second equation of (6) immediately.
Proof of Proposition 5. a) Since

(FI)Y = (F(HH))Y = (FH)HY + H(FH)Y = 0 ,

H(FH)HY = -(FH)Y ,

in accordance with Proposition 1 we obtain

(FXH)Y = (FXH)Y + WYH)X + H(FHYH)X + 2H(FXH)HY

- H(FHYH)X - (FYH)X - 2((FXH)Y) = 0 .

b) Since F and g are compatible with the complex almost-product structures,

4(FPXg)(PY,PZ) = 4(FPXg)(PY,PZ) + [(FHYH)X + H((FYH)X)

+ 2H(FxH)Y]*g(PX,PY,PZ) .

Since Fg = 0, H(FH)PX = -{FH)PX and (FH)P = 2QFP, by Lemma 1
we obtain

4(FPXg)(PY,PZ) = -g((FPYH)PX + H((FPYH)PX + 2H(FPXH)PY, PZ)

- g(PY, (FPZH)PX + H(FPZH)PX + 2H(FPXH)PZ)

= -g(2H(FPXH)PY, PZ) - g(PY, 2H(FPXH)PZ) .

On the other hand, from F(HP) = (VH)P + HFP = FP it follows P(FH)P

= 0 and therefore

H(FPXH)PY = P(FPXH)PY - Q(FPXH)PY = -Q(FPXH)PY .

Thus

g(2H(FPXH)PY,PZ) = -2g(Q(FPXH)PY,PZ) = 0 .

On account of the orthogonality of T1 and T2, we hence have (FPXg)(PY, PZ)
= 0, which is similarly true with P replaced by Q.

c) We must show that the first components of the torsion of V are of type
(0, 2) and the second ones are of type (2,0), that is,

P TorΓ~ (PY, PZ) = 0 , P Tor? (PY, QZ) = 0 , Q Toη? (QY, QZ) = 0 .

For this purpose, it sufficies to observe that the torsion of V is the Nijenhuis
tensor except for a sign so that

PN(PY, PZ) = PQN(Y, Z) = 0 , N(PY, QZ) = 0 .

Similarly, QN(QY, QZ) = 0.
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To prove that V is the only connection satisfying a), b) and c), we shall
prove that if a connection V = V + β, β being a tensor of type (1,2) satisfies
a), b) and c), then β(Y,Z) = 0, where Y,Z are arbitrary.

From a) we have β*H = 0, that is, β(Y, HZ) - Hβ(Y, Z) = 0, from which
follow

Pβ(Y, HZ) - Pβ(Y, Z) = 0 , Qβ(γ, HZ) + Qβ(Y, Z) = 0 .

Moreover,

( 7 ) Pβ(Y, QZ) = 0 , Qβ(Y, PZ) = 0.

By b) we obtain β*g(PY,PX,PZ) = 0, β*g(QY,QX,QZ) = 0, from the
first of which it follows

-g(β(PY, PX), PZ) - g(PX, β(PY, PZ)) = 0 .

Putting X = Z for arbitrary Z in the above equation yields

g(β(PY,PZ),PZ) = 0,

which implies

( 8 ) Pβ(PY,PZ) = 0 .

In a similar way, we obtain

( 9 ) Qβ(QY,QZ) = 0.

From c) follow

(10) Pβ(PY, QZ) - Pβ(QZ, PY) = 0 , Qβ(QY, PZ) - Qβ(PZ, QY) = 0,

which, together with (7), (8), (9), hence give β(Y,Z) = 0.
The coefficient of this connection was obtained by Vaismann [8] for real

almost-product Riemannian manifolds, and in the case of almost-complex
manifolds this connexion coincides with that introduced in [2, p. 143].

Proposition 6. There exists a connection V on a complex almost-product
manifold adapted to the structure such that its torsion is

(11) Tor,, (X, Y) = WYH)HX - (VXH)HY] .

This connection has also the property that the connections induced in Γ1

and T2 are compatible with the metric induced in T1 and T2.

For the connection V corresponding to a g pseudo-metric adapted to the

complex almost-product structure, we have

Proposition 7 // the connection V makes T1 parallel, it also makes T2
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parallel, and consequently both T1 and T2 are integrable.
Proof. Since g is adapted to the structures, F is the metric connection and

V makes Γ1 parallel, we have, respectively, g(PY, QZ) = 0, Vg = 0 and
QFP — 0, the last of which implies FP = PFP. Thus

F(g(PY, QZ)) = (Fg)(PY, QZ) + g(FPY, QZ) + g{PY, FQZ)

= g(P(FP)Y, QZ) + g{PY, (FQ)Z)

= g(PY,(FQ)Z)) = 0.

Hence (FQ)Z e T2 implies P(FQ)Z = 0, which is the condition for F to make
T2 parallel.

The integrability is a consequence of the parallelism with respect to a sym-
metric connection.

Definition 2. Let F be a symmetric connection. Then a connection is a C-
connection if it is of the form

(12) C = F -QFP + QN + γ, Qγ P = 0 .

Proposition 8. A necessary and sufficient condition for T1 to be integrable
is that it be parallel with respect to a C-connection.

Proof. If T1 is integrable, then QN = 0, and the expression of C is re-
duced to the expression of the connection which makes Γ1 parallel. Conversely,
QCP = QFP - QFP + QNP + QγP = 0 implies that QNP = 0 and
therefore that Q[P,P] P = Q[P,P] = 0.

Corollary.

(13) QΊoτc(PX,PY) = 0 .

3. Almost-foliated pseudo-metrics

Definition 3. Let V be a C°° manifold with a complex almost-product
structure, g a complex pseudo-metric, and V the second connection given by
p — F + a I A, where F is the metric connection. Then g is said to be almost-
foliated if

(14) (FPXg)(QY, QZ) = 0 , VZ, Y, Z e TC(V) .

Proposition 9. A necessary and sufficient condition for the form g to be
almost-foliated is that

(a*g)(PX, QY, QZ) = 0.

Proposition 10. // the form g is almost-foliated, then the fields of T2

parallel with respect to the connection F along any curve preserve their length.
Proof. From Proposition 5 and (14) we obtain (Fxg)(QY, QZ) = 0.
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4. Real foliated manifolds

If we consider a real foliated manifold, then the almost-foliated metric con-
tains the fibre-like metric (Reinhart spaces [6]) as a special case in accordance
with the following proposition.

Proposition 11. Given a real foliated Riemannian manifold (V, T\ T2), T1

being integrable, a necessary and sufficient condition for the metric to be fibre-
like is that it be almost-foliated.

Proof. Suppose on the manifold there exists a fibre-like metric, V is the
metric connection, and taking references adapted to the foliation (d;cα, Yu),
(θa, dyu), (a, b = 1, , nx u, v = nx + 1, . , ή), we have [5]

(15) ds2 = gab(x, y)θ«θb + Guυ(y)dyudr .

Then the condition of fibre-like metric is expressed as

(16) Fa.teCr*, Yv)) = daGUΌ = 0 ,

that is,

(17) g(FdaYu, Yv) + g(Y», VdYv) - 0 .

We must prove that in this case ΦPΣg)(QY, QZ) = 0. For this purpose we
shall first demonstrate

u, Yv) + i(a*g)(βa, YU9 Yυ) = 0 .

= 0, since V is the metric connection and

-(α*S)0α, Yu, Yv) = g(a(da, Yu), Yv) + g(Yu, a(da, Yv))

= g((F_YuH)da + H(FYuH)da + 2H(FdaH)Yu, Yv)

+ giYvΛF.YH)da + H(FYH)da + 2H(FdaH)Yv) .

On the other hand,

(FH)P = 2QFP , (FH)Q = -2PFQ .

Since g(PY, QZ) = 0,

- ( « * * ) 0 α , Yu, Yv) = -4(8(QFYuda, Yυ) + g(Yv,QFYυ3a)) ,

or

(18) (a*g)(da, Yu, Yv) = 4(g(FYuSa, Yv) + g(Yv, Fγβa)) .

Since F is symmetric and [3α, Yu] € T1, by (17) we finally obtain

(19) (α*s)0β, Yu, Yv) = 4(g(FdYu, Yv) + g(Yu, FdYv)) = 0 .
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To prove that

(Fdag)(Yu, Yv) = 0 implies (FPXg)(QY, QZ) = 0 ,

it suffices to consider

(FrzέKQY, QZ) = FPX(g(QY, QZ)) - g(FPXPY, QZ) - g(QY,FPZQZ)

= rc«dMΓuYu,r«γυ) - g(Fcadar
uγu,r«γv)

-g(ΓuYu,FcadaΓ"Yυ) .

Conversely, if the metric is almost-foliated and T1 is integrable, then the
metric is fibre-like. In fact, since the metric is almost-foliated we have
(a*g)(PX, QY, QZ) = 0. For the foliated manifold V, by taking adapted
references we thus obtain (19), which is equivalent to daGuv = o.
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