ISOMETRIC IMMERSIONS OF MANIFOLDS WITH PLANE GEODESICS INTO EUCLIDEAN SPACE

SING-LONG HONG

1. The main theorems

The object of this note is to prove the following
Theorem 1. Assume that (a) M is an n-dimensional ($n \geq 2$) connected Riemannian manifold, (b) $f: M \rightarrow R^{n+p}$ is an isometric immersion of M into an $(n+p)$-dimensional Euclidean space $R^{n+p}, p>0$, and (c) every geodesic on M is locally a plane curve, that is, if $\sigma:(\alpha, \beta) \rightarrow M$ is a geodesic on M, then for every $t \in(\alpha, \beta)$, there exists an open interval I in (α, β) containing t such that $f \circ \sigma(I)$ lies on a certain plane E_{t}. Then either $f(M)$ is an open subset of an n-dimensional plane or M is $\frac{1}{4}$-pinched, i.e., its sectional curvature K satisfies

$$
\frac{1}{4} A \leq K \leq A
$$

for some positive number A.
If M is also $\frac{1}{4}$-pinched, then we have
Theorem 2. Assume that (a), (b), (c) of Theorem 1 hold, and that M is $\frac{1}{4}$-pinched. Then M has positive constant sectional curvature, if one of the following conditions also holds:
(1) $1 \leq p<\frac{1}{2} n+2$,
(2) n is prime,
(3) there is $m \in M$ such that the sectional curvature K of M at m satisfies $\frac{1}{4} A^{\prime}<K \leq A^{\prime}$ for some positive A^{\prime}.
Let \langle,$\rangle denote the metric tensor in R^{n+p}$. Let $X_{i}, B\left(X_{i}, X_{i}\right), 2 B\left(X_{i}, X_{j}\right)=$ $2 B\left(X_{j}, X_{i}\right), \quad 1 \leq i \neq j \leq n$, be unit vectors in R^{n+p} with the following properties:
(i) if $1 \leq i \neq j \leq n$, then $\left\{X_{1}, \cdots, X_{n}, B\left(X_{i}, X_{i}\right), 2 B\left(X_{i}, X_{j}\right)=2 B\left(X_{j}, X_{i}\right)\right\}$ is orthonormal;
(ii) for every $i \neq j, 1 \leq i, j \leq n,\left\langle B\left(X_{i}, X_{i}\right), B\left(X_{j}, X_{j}\right)\right\rangle=\frac{1}{2}$;
(iii) $\left\langle B\left(X_{i}, X_{j}\right), B\left(X_{h}, X_{k}\right)\right\rangle=0$, for i, j, h differernt and $1 \leq i, j, h, k \leq n$.

Let c be a fixed positive real number, and m be a fixed point of R^{n+p}. By identifying points of R^{n+p} with their position vectors, the set of all points $\varphi\left(x_{1}, \cdots, x_{n}\right)$ defined by

[^0]\[

$$
\begin{aligned}
\varphi\left(x_{1}, \cdots, x_{n}\right)=m & +\frac{\sin c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}}{c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}} \sum_{i=1}^{n} x_{i} X_{i} \\
& +\frac{1-\cos c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}}{c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)} \sum_{i, j=1}^{n} x_{i} x_{j} B\left(X_{i}, X_{j}\right)
\end{aligned}
$$
\]

for real x_{1}, \cdots, x_{n} with $0<c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}<2 \pi$ and $\varphi(0, \cdots, 0)=m$ is an n-dimensional compact connected submanifold of R^{n+p} with respect to the natural differentiable structure. We shall call it an n-dimensional Ω-sphere with radius $1 / c$ with respect to the system $\left\{X_{i}, B\left(X_{i}, X_{j}\right)\right\}$, or, simply, an n dimensional Ω-sphere.

Theorem 3. Let M be an n-dimensional $(n \geq 2) \Omega$-sphere with radius $1 / c$ $(c>0)$. Then M has constant sectional curvature $\frac{1}{4} c^{2}$, and geodesics on M are circles with radius $1 / c$.

It follows from Theorem 3 that an Ω-sphere satisfies the assumption (c) of Theorem 1.

Theorem 4. Assume that (a), (b), (c) of Theorem 1 and that M has positive constant sectional curvature. Then $f(M)$ is either an open subset of an n-dimensional sphere or an open subset of an n-dimensional Ω-sphere.

2. Reduction of the assumptions (a), (b), (c) of Theorem 1

Assume that (a), (b), (c), of Theorem 1 hold. In this section we shall consider some purely local properties of M. Let U be an open connected neighborhood of a point $m_{0} \in M$ on which f is one to one. Since the following is a local argument, we shall identify $x \in U$ with $f(x)$. For any vector fields X, Y, Z tangent to M, we have the formulas of Gauss and Codazzi:

$$
\begin{gathered}
\nabla_{X} Y=D_{X} Y+V(X, Y) \\
\text { nor } \nabla_{X}(V(Y, Z))-V\left(D_{X} Y, Z\right)-V\left(Y, D_{X} Z\right) \\
=\operatorname{nor} \nabla_{Y}(V(X, Z))-V\left(D_{Y} X, Z\right)-V\left(X, D_{Y} Z\right)
\end{gathered}
$$

where ∇_{X}, D_{X} denote the covariant differentiations with respect to the Euclidean connection of R^{n+p} and the Riemannian connection on M, respectively, and nor denotes the normal component. $V(X, Y)$ is the normal component of $\nabla_{X} Y$ and symmetric.

Lemma 2.1. Let X, Y be two orthonormal vectors in the tangent space $T_{m}(M)$ at $m \in U$. Then $\langle V(X, X), V(X, Y)\rangle=0$.

Proof. If $V(X, X)=0$, there is nothing to prove. So we assume $V(X, X)$ $\neq 0$. Let $\sigma:(-r, r) \rightarrow U$ be a geodesic with $\sigma(0)=m, T(\sigma(0))=X$, where T denotes the tangent field of σ. By (c) of Theorem 1, we may assume that σ lies on a plane E. Thus both T and $\nabla_{T} T=D_{T} T+V(T, T)=V(T, T)$ are parallel to E so that $\sigma(t)=m+a(t) X+b(t) V(X, X)$ for some differentiable functions a, b. Therefore $\nabla_{T}(V(T, T))=\nabla_{T} \nabla_{T} T=a^{\prime \prime \prime}(t) X+b^{\prime \prime \prime}(t) V(X, X)$.

Let Z be a vector field tangent to M with $Z(m)=Y$. Then $\langle V(X, X), V(X, Y)\rangle$ $=\langle V(T, T), V(T, Z)\rangle(m)=\left\langle V(T, T), \nabla_{T} Z\right\rangle(m)=\left\langle\nabla_{T}(V(T, T)), Y\right\rangle(m)+$ $\left\langle V(T, T), \nabla_{T} Z\right\rangle(m)=T\langle V(T, T), Z\rangle(m)=0$, since $\langle V(X, X), Y\rangle=0$ and $\langle V(T, T), Z\rangle=0$.

Lemma 2.2. Let X, Y be two orthonormal vectors in the tangent space $T_{m}(M)$ at $m \in U$. Then $\langle V(X, X), V(X, X)\rangle=\langle V(Y, Y), V(Y, Y)\rangle$ and $\langle V(X, X), V(X, X)\rangle=\langle V(X, X), V(Y, Y)\rangle+2\langle V(X, Y), V(X, Y)\rangle$.

The proof of this Lemma follows directly from Lemma 2.1.
Lemma 2.3. For any two unit vectors X, Y in the tangent space $T_{m}(M)$ at $m \in U$, we have $\langle V(X, X), V(X, X)\rangle=\langle V(Y, Y), V(Y, Y)\rangle$.

This Lemma follows immediately from Lemmas 2.1 and 2.2.
By virture of Lemma 2.3 we can define a differentiable function g on U by

$$
\begin{equation*}
g(m)=\langle V(X, X), V(X, X)\rangle, \quad X: \text { a unit vector in } T_{m}(M) \tag{2.1}
\end{equation*}
$$

Lemma 2.4. The function g defined by (2.1) is constant on U.
Proof. Let $m \in U$ and X_{1}, \cdots, X_{n} be an orthonormal basis of the tangent space $T_{m}(M)$, and $\sigma:(-r, r) \rightarrow M$ be a univalent geodesic on M with $\sigma(0)=m$ and $T(\sigma(0))=X_{1}$ where T denotes the tangent field of σ. Let Y_{1}, \cdots, Y_{n} be parallel fields along σ with $Y_{i}(m)=X_{i}$ for $i=1, \cdots, n$. Then Y_{1}, \cdots, Y_{n} are orthonormal along σ and $Y_{1}=T$.

Let ϕ be the Fermi coordinate map from an open neighborhood A of σ onto an open neighborhood W of the origin of a Euclidean space R^{n}, that is, for $\left(x_{1}, \cdots, x_{n}\right) \in W$ we have

$$
\phi^{-1}\left(x_{1}, \cdots, x_{n}\right)=\operatorname{Exp}_{\sigma\left(x_{1}\right)}\left(\sum_{i=2}^{n} x_{i} Y_{i}\left(\sigma\left(x_{1}\right)\right)\right)
$$

where $\operatorname{Exp}_{\sigma(x)}$ denotes the exponential map at $\sigma(x)$. Let Z_{1}, \cdots, Z_{n} denote the coordinate fields on A with $Z_{i}(\sigma(x))=Y_{i}(\sigma(x))$. Let X, Y denote the restrictions of Z_{1}, Z_{2} to the set of points $\operatorname{Exp}_{\sigma\left(x_{1}\right)}\left(x_{2} Y_{2}\left(\sigma\left(x_{1}\right)\right)\right)$, respectively. Since each x_{2}-curve is a geodesic parameterized by the arc length, $D_{Y} Y=0$ and $\langle Y, Y\rangle=1$. By direct computations we obtain $Y\langle X, Y\rangle=\left\langle D_{Y} X, Y\right\rangle+$ $\left\langle X, D_{Y} Y\right\rangle=\left\langle D_{Y} X, Y\right\rangle=\frac{1}{2} X\langle Y, Y\rangle=0$, since $D_{X} Y=D_{Y} X$ (note that Z_{1}, Z_{2} are coordinate fields). Thus $\langle X, Y\rangle$ is constant along x_{2}-curves, and we have $\langle X, Y\rangle=0$ since $\langle X, Y\rangle=0$ on σ. Hence by Lemma 2.1 we have $\langle V(X, Y), V(Y, Y)\rangle=0$. Since $\left(D_{Y} X\right)(m)=\left(D_{X} Y\right)(m)=\left(D_{T} Y_{2}\right)(m)=0$, Codazzi equation implies that

$$
\left(\operatorname{nor} \nabla_{X} V(Y, Y)\right)(m)=\left(\operatorname{nor} \nabla_{Y} V(X, Y)\right)(m)
$$

so that

$$
\begin{aligned}
\left\langle\nabla_{X} V(Y, Y), V(Y, Y)\right\rangle(m) & =\left\langle\nabla_{Y} V(X, Y), V(Y, Y)\right\rangle(m) \\
& =-\left\langle V(X, Y), \nabla_{Y} V(Y, Y)\right\rangle(m) .
\end{aligned}
$$

If $V\left(X_{2}, X_{2}\right)=0$, then $\left\langle\nabla_{X} V(Y, Y), V(Y, Y)\right\rangle(m)=0$. Suppose that $V\left(X_{2}, X_{2}\right)$ $\neq 0$. Then by (c) of Theorem 1 there exists a positive real number s such that the curve $\operatorname{Exp}_{m} x_{2} X_{2}$, for $x_{2} \in(-s, s)$, lies on a plane, i.e., there are differentiable functions a, b such that $\operatorname{Exp}_{m} x_{2} X_{2}=m+a\left(x_{2}\right) X_{2}+b\left(x_{2}\right) V\left(X_{2}, X_{2}\right)$ for $x_{2} \in(-s, s)$. Thus

$$
\begin{aligned}
\left\langle\nabla_{X} V(Y, Y), V(Y, Y)\right\rangle(m) & =-\left\langle V\left(X_{1}, X_{2}\right),\left(\nabla_{Y} V(Y, Y)(m)\right\rangle\right. \\
& =-\left\langle V\left(X_{1}, X_{2}\right), a^{\prime \prime \prime}(0) X_{2}+b^{\prime \prime \prime}(0) V\left(X_{2}, X_{2}\right)\right\rangle \\
& =0
\end{aligned}
$$

So we always have $X_{1} g=X_{1}\langle V(Y, Y), V(Y, Y)\rangle=2\left\langle\nabla_{X} V(Y, Y), V(Y, Y)\right\rangle(m)$ $=0$. Similiarly, we have $X_{i} g=0$ for $i=2, \cdots, n$. Hence the Jacobian map g_{*} of g is zero at m. Since m is arbitrary, $g_{*}=0$ on U. Thus g is locally constant, and the assertion of the lemma follows from the connectedness of U.

Lemma 2.5. Suppose that $g=c^{2}$ on U with $c>0$. Let $\sigma:(-r, r) \rightarrow U$ be a geodesic on U with tangent field T along σ. Suppose that $T(\sigma(0))=Z$ is a unit vector. Then for $t \in(-r, r)$ we have

$$
\sigma(t)=\sigma(0)+c^{-1}(\sin c t) Z+c^{-2}(1-\cos c t) V(Z, Z)
$$

Proof. From the assumption it follows that T is a unit vector field along σ. By the definition of g we have $\langle V(T, T), V(T, T)\rangle=c^{2}$. Thus T and $V(T, T)$ are linearly independent along σ. For $t \in(-r, r)$ let $E_{t}=\{\sigma(t)+x T(\sigma(t))+$ $y V(T, T)(\sigma(t)) \in R^{n+p}: x, y$ reals $\}$. Since σ is locally a plane curve, E_{t} is locally constant and is constant on $(-r, r)$ by the connectedness of $(-r, r)$, so that

$$
\sigma(t)=\sigma(0)+a(t) Z+b(t) V(Z, Z)
$$

for $t \in(-r, r)$ and some differentiable functions a, b. To compute a, b we have

$$
\begin{aligned}
& T(\sigma(t))=a^{\prime}(t) Z+b^{\prime}(t) V(Z, Z) \\
& V(T, T)(\sigma(t))=\left(\nabla_{T} T\right)(\sigma(t))=a^{\prime \prime}(t) Z+b^{\prime \prime}(t) V(Z, Z) \\
& \left(\nabla_{T} V(T, T)\right)(\sigma(t))=a^{\prime \prime \prime}(t) Z+b^{\prime \prime \prime}(t) V(Z, Z)
\end{aligned}
$$

Since T and $V(T, T)$ are linearly independent, $\nabla_{T} V(T, T)$ is a linear combination of T and $V(T, T)$. But $\left\langle\nabla_{T} V(T, T), T\right\rangle=-\left\langle V(T, T), \nabla_{T} T\right\rangle=$ $-\langle V(T, T), V(T, T)\rangle=-c^{2}$ and $\left\langle V_{T} V(T, T), V(T, T)\right\rangle=\frac{1}{2} T\langle V(T, T), V(T, T)\rangle$ $=0$. Thus $\nabla_{T} V(T, T)=-c^{2} T$, and we have the differential equations

$$
a^{\prime \prime \prime}(t)+c^{2} a^{\prime}(t)=0, \quad b^{\prime \prime \prime}(t)+c^{2} b^{\prime}(t)=0
$$

Solving these differential equations with the boundary conditions : $a(0)=b(0)$ $=b^{\prime}(0)=a^{\prime \prime}(0)=0, a^{\prime}(0)=b^{\prime \prime}(0)=1$ gives

$$
a(t)=c^{-1} \sin c t, \quad b(t)=c^{-2}(1-\cos c t)
$$

which prove Lemma 2.5 .
Lemma 2.6. Let X, Y, Z be three orthonormal vectors in the tangent space $T_{m}(M)$ at $m \in U$. Then

$$
\langle V(X, X), V(Y, Z)\rangle+2\langle V(X, Y), V(X, Z)\rangle=0
$$

Proof. By Lemma 2.2, for any real θ we have

$$
\begin{aligned}
\langle V(X, X), V(X, X)\rangle= & \langle V(X, X), V(Y \cos \theta+Z \sin \theta, Y \cos \theta+Z \sin \theta)\rangle \\
& +2\langle V(X, Y \cos \theta+Z \sin \theta), V(X, Y \cos \theta+Z \sin \theta)\rangle .
\end{aligned}
$$

Differentiating the above equation with respect to θ at $\theta=0$ thus gives the desired result.

Lemma 2.7. Assume that $g=c^{2}$ on U with $c>0$. Let X, Y be two orthonormal vectors in the tangent space $T_{m}(M)$ at $m \in U$ with the following property:

$$
\begin{equation*}
\langle V(X, X), V(Y, Z)\rangle=0, \quad \text { if } X, Y, Z \text { are orthonormal in } T_{m}(M) . \tag{2.2}
\end{equation*}
$$

Then either $V(X, Y)=0$ or $\langle V(X, Y), V(X, Y)\rangle=\frac{1}{4} c^{2}$.
Proof. Suppose that $V(X, Y) \neq 0$. Choose an orthonormal basis X_{1}, \cdots, X_{n} of $T_{m}(M)$ such that $X_{1}=X, X_{2}=Y$. Since the exponential map Exp_{m} at m is a local diffeomorphism, there is a positive real number s such that Exp_{m} is a diffeomorphism from

$$
\left\{\sum_{i=1}^{n} x_{i} X_{i}: x_{1}^{2}+\cdots+x_{n}^{2}<s\right\}
$$

onto an open neighborhood of m. By Lemma 2.5 we have

$$
\begin{aligned}
\operatorname{Exp}_{m}\left(\sum_{i=1}^{n} x_{i} X_{i}\right)= & m+(c r)^{-1}(\sin c r) \sum_{i=1}^{n} x_{i} X_{i} \\
& +(c r)^{-2}(1-\cos c r) V\left(\sum_{i=1}^{n} x_{i} X_{i}, \sum_{j=1}^{n} x_{j} X_{j}\right)
\end{aligned}
$$

where $r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$. Put $a=(c r)^{-1} \sin c r, b=(c r)^{-2}(1-\cos c r)$. Then for $j=1, \cdots, n$ we have

$$
\begin{aligned}
\partial / \partial x_{j}= & \left(\partial a / \partial x_{j}\right) \sum_{i=1}^{n} x_{i} X_{i}+a X_{j}+\left(\partial b / \partial x_{j}\right) \sum_{i, k=1}^{n} x_{i} x_{k} V\left(X_{i}, X_{k}\right) \\
& +2 b \sum_{i=1}^{n} x_{i} V\left(X_{i}, X_{j}\right) \\
\nabla_{\partial / \partial x_{1}} \frac{\partial}{\partial x_{1}}= & \frac{\partial^{2} a}{\partial x_{1}^{2}} \sum_{i=1}^{n} x_{i} X_{i}+2 \frac{\partial a}{\partial x_{1}} X_{1}+4 \frac{\partial b}{\partial x_{1}} \sum_{i=1}^{n} x_{i} V\left(X_{1}, X_{i}\right) \\
& \quad+\frac{\partial^{2} b}{\partial x_{1}^{2}} \sum_{i, k=1}^{n} x_{i} x_{k} V\left(X_{i} X_{k}\right)+2 b V\left(X_{1}, X_{1}\right)
\end{aligned}
$$

Choose a positive real number x such that $0<x^{2}<s$ and $1-\cos c x \neq 0$. At $x_{1}=x_{3}=\cdots=x_{n}=0, x_{2}=x$, we have

$$
\begin{aligned}
\partial a / \partial x_{i} & =\partial b / \partial x_{i}=0, \quad \text { for } \quad i=1,3, \cdots, n \\
\partial a / \partial x_{2} & =(\cos c x) / x-(\sin c x) /\left(c x^{2}\right) ; \\
\partial b / \partial x_{2} & =-2(1-\cos c x) /\left(c^{2} x^{3}\right)+(\sin c x) /\left(c x^{2}\right) \\
\frac{\partial^{2} a}{\partial x_{1}^{2}} & =\frac{\cos c x}{x^{2}}-\frac{\sin c x}{c x^{3}} ; \quad \frac{\partial^{2} b}{\partial x_{1}^{2}}=-\frac{2(1-\cos c x)}{c^{2} x^{4}}+\frac{\sin c x}{c x^{3}} .
\end{aligned}
$$

Let $Z_{i}=\left(\partial / \partial x_{i}\right)\left(\operatorname{Exp}_{m} x X_{2}\right), i=1, \cdots, n$, and $B=\left(\nabla_{\partial / \partial x_{1}}\left(\partial / \partial x_{1}\right)\right)\left(\operatorname{Exp}_{m} x X_{2}\right)$. Then we have

$$
\begin{align*}
Z_{i}= & \frac{\sin c x}{c x} X_{i}+\frac{2(1-\cos c x)}{c^{2} x} V\left(X_{i}, X_{2}\right), \text { for } i=1,3, \cdots, n \tag{2.3}\\
& Z_{2}=(\cos c x) X_{2}+\left(c^{-1} \sin c x\right) V\left(X_{2}, X_{2}\right) \tag{2.4}\\
B= & \left(\frac{\cos c x}{x}-\frac{\sin c x}{c x^{2}}\right) X_{2}+\left(\frac{\sin c x}{c x}-\frac{2(1-\cos c x)}{c^{2} x^{2}}\right) V\left(X_{2}, X_{2}\right) \\
& +\frac{2(1-\cos c x)}{c^{2} x^{2}} V\left(X_{1}, X_{1}\right) . \tag{2.5}
\end{align*}
$$

Recall that for $i, j=1, \cdots, n$ with $i \neq j$ we have $\left\langle V\left(X_{i}, X_{i}\right), V\left(X_{i}, X_{j}\right)\right\rangle=0$ and $c^{2}=\left\langle V\left(X_{i}, X_{i}\right), V\left(X_{i}, X_{i}\right)\right\rangle=\left\langle V\left(X_{1}, X_{1}\right), V\left(X_{2}, X_{2}\right)\right\rangle+2\left\langle V\left(X_{1}, X_{2}\right)\right.$, $\left.V\left(X_{1}, X_{2}\right)\right\rangle$. From (2.2) it follows that $\left\langle V\left(X_{1}, X_{1}\right), V\left(X_{j}, X_{2}\right)\right\rangle=0$, for $j=3, \cdots, n$.

Applying the above relations to the computation of inner products of vectors given by (2.3), (2.4), (2.5), we can easily obtain

$$
\begin{equation*}
\left\langle Z_{1}, Z_{1}\right\rangle=\frac{\sin ^{2} c x}{c^{2} x^{2}}+\frac{4(1-\cos c x)^{2}}{c^{4} x^{2}}\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle B, Z_{j}\right\rangle=0, \quad \text { for } \quad j=1,3, \cdots, n ; \tag{2.6}
\end{equation*}
$$

$$
\begin{align*}
\left\langle B, Z_{2}\right\rangle= & 1 / x-(\sin c x \cdot \cos c x) /\left(c x^{2}\right) \tag{2.7}\\
& -(4(1-\cos c x) \sin c x)\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle /\left(c^{3} x^{2}\right) \\
\langle B, B\rangle= & 1 / x^{2}-(2 \sin c x \cdot \cos c x) /\left(c x^{3}\right)+\left(\sin ^{2} c x\right) /\left(c^{2} x^{4}\right) \\
& +16(1-\cos c x)^{2}\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle /\left(c^{4} x^{4}\right) \tag{2.8}\\
& -8((1-\cos c x) \sin c x)\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle /\left(c^{3} x^{3}\right) ;
\end{align*}
$$

On the other hand, according to the Gauss formula we have $B=\sum_{i=1}^{n} a_{i} Z_{i}+$ $V\left(Z_{1}, Z_{1}\right)$, for some real numbers a_{1}, \cdots, a_{n}. From (2.6), (2.7), (2.10), (2.11)
it follows that $B=\left\langle B, Z_{2}\right\rangle Z_{2}+V\left(Z_{1}, Z_{1}\right)$, so that $\langle B, B\rangle=\left\langle B, Z_{2}\right)^{2}+$ $\left\langle V\left(Z_{1}, Z_{1}\right), V\left(Z_{1}, Z_{1}\right)\right\rangle$. Set $A=Z_{1} /\left\langle Z_{1}, Z_{1}\right\rangle^{1 / 2}$. Since $g=c^{2},\left\langle V\left(Z_{1}, Z_{1}\right)\right.$, $\left.V\left(Z_{1}, Z_{1}\right)\right\rangle=\left\langle Z_{1}, Z_{1}\right\rangle^{2}\langle V(A, A), V(A, A)\rangle=c^{2}\left\langle Z_{1}, Z_{1}\right\rangle^{2}$. Therefore

$$
\begin{equation*}
\langle B, B\rangle=\left\langle B, Z_{2}\right\rangle^{2}+c^{2}\left\langle Z_{1}, Z_{1}\right\rangle^{2} . \tag{2.12}
\end{equation*}
$$

Substituting (2.7), (2.9) in (2.12) and comparing the resulting equation with (2.8) we can easily obtain

$$
\begin{aligned}
16(1- & \cos c x)^{2}\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle /\left(c^{4} x^{4}\right) \\
= & 32(1-\cos c x)^{3}\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle^{2} /\left(c^{6} x^{4}\right) \\
& +8(1-\cos c x)\left(\sin ^{2} c x\right)\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle /\left(c^{4} x^{4}\right)
\end{aligned}
$$

which can be simplified to $4\left\langle V\left(X_{1}, X_{2}\right), V\left(X_{1}, X_{2}\right)\right\rangle=c^{2}$, implying $\langle V(X, Y)$, $V(X, Y)\rangle=\frac{1}{4} c^{2}$.

Lemma 2.8. Suppose that $g=c^{2}$ on U with $c>0$. Then for any two orthonormal vectors X, Y in the tangent space $T_{m}(M)$ at $m \in U$ we have

$$
0 \leq V(X, Y), V(X, Y)\rangle \leq \frac{1}{4} c^{2}
$$

Moreover, if X, Y are orthonormal vectors in $T_{m}(M)$ with $0<\langle V(X, Y), V(X, Y)\rangle$ $\left\langle\frac{1}{4} c^{2}\right.$, then there are unit vectors X_{1}, X_{2} such that X, X_{1}, X_{2} are orthonormal and $V\left(X, X_{1}\right)=0,\left\langle V\left(X, X_{2}\right), V\left(X, X_{2}\right)\right\rangle=\frac{1}{4} c^{2}$.

Proof. Suppose that X, Y are two orthonormal vectors in $T_{m}(M)$ such that $V(X, Y) \neq 0$ and $\langle V(X, Y), V(X, Y)\rangle \neq \frac{1}{4} c^{2}$. Let S denote the set of all unit vectors in $T_{m}(M)$ which are orthogonal to X. With respect to the natural topology on S, the function F defined by

$$
F(Z)=\langle V(X, Z), V(X, Z)\rangle, \quad \text { for } \quad Z \in S
$$

is continuous on S. Since S is compact, F takes a minimum, say at X_{1}, and a maximum, say at X_{2}.

If X, X_{1}, Z are orthonormal, then, for any real $\theta, X_{1} \cos \theta+Z \sin \theta$ is in S. Let $h(\theta)=\left\langle V\left(X, X_{1} \cos \theta+Z \sin \theta\right), V\left(X, X_{1} \cos \theta+Z \sin \theta\right)\right\rangle$. Then h takes a minimum at $\theta=0, h^{\prime}(0)=0$, i.e., $\left\langle V\left(X, X_{1}\right), V(X, Z)\right\rangle=0$. By Lemma 2.6 we have $\left\langle V(X, X), V\left(X_{1}, Z\right)\right\rangle=0$. Consequently, X and X_{1}, and similarly X and X_{2}, have the property (2.2). Since $F\left(X_{2}\right) \geq F(Y)>0$, it follows from Lemma 2.7 that $F\left(X_{2}\right)=\frac{1}{4} c^{2}>F(Y)$. By assumption we have $F(Y)<\frac{1}{4} c^{2}$. This proves the first assertion. Also $F\left(X_{1}\right) \leq F(Y)<\frac{1}{4} c^{2}$. According to Lemma 2.7 we have $V\left(X, X_{1}\right)=0$.

Clearly, X_{1}, X_{2} are linearly independent. Let $X_{3}=X_{2}-\left\langle X_{1}, X_{2}\right\rangle X_{1}$. Then $\left\langle X_{3}, X_{3}\right\rangle \leq 1, X_{3} /\left\langle X_{3}, X_{3}\right\rangle^{1 / 2} \in S$ and $V\left(X, X_{2}\right)=V\left(X, X_{3}\right)$, so that

$$
\begin{aligned}
F\left(X_{2}\right) & =\left\langle V\left(X, X_{3}\right), V\left(X, X_{3}\right)\right\rangle=\left\langle X_{3}, X_{3}\right\rangle F\left(X_{3} /\left\langle X_{3}, X_{3}\right\rangle^{1 / 2}\right) \\
& \leq\left\langle X_{3}, X_{3}\right\rangle F\left(X_{2}\right) \leq F\left(X_{2}\right)
\end{aligned}
$$

Thus $\left\langle X_{3}, X_{3}\right\rangle=1$, and hence $\left\langle X_{1}, X_{2}\right\rangle=0$. This proves Lemma 2.8.

3. Proof of Theorem 1

According to Lemma 2.3 we can define a real function G on M by the second fundamental tensor V as follows: At $m \in M$,
(3.1) $G(m)=\langle V(X, X), V(X, X)\rangle, \quad$ for a unit vector X in $T_{m}(M)$.

By Lemma 2.4, G is locally constant. Since M is connected, G is constant on M. Note that G is nonnegative.

Case 1: $G=c^{2}$ for some constant $c>0$. Let $m \in M$, and X, Y be two orthonormal vectors in the tangent space $T_{m}(M)$. Let $K(X \wedge Y)$ denote the sectional curvature of the plane spanned by X and Y. The Gauss equation implies

$$
\begin{equation*}
K(X \wedge Y)=\langle V(X, X), V(Y, Y)\rangle-\langle V(X, Y), V(X, Y)\rangle \tag{3.2}
\end{equation*}
$$

By Lemma 2.2 we get

$$
\begin{aligned}
K(X \wedge Y) & =\langle V(X, X), V(X, X)\rangle-3\langle V(X, Y), V(X, Y)\rangle \\
& =c^{2}-3\langle V(X, Y), V(X, Y)\rangle
\end{aligned}
$$

According to Lemma 2.8, $\langle V(X, Y), V(X, Y)\rangle \leq \frac{1}{4} c^{2}$. So we have $\frac{1}{4} c^{2} \leq$ $K(X \wedge Y) \leq c^{2}$.

Case 2: $G=0$ on M. Consider f locally. If X is a vector field tangent to M, then $V(X, X)=0$. Hence $f(M)$ is an open subset of an n-plane, since M is connected.

4. Proof of Theorem 2

By assumption there is a positive number A such that the sectional curvature K of M satisfies

$$
\begin{equation*}
0<\frac{1}{4} A \leq K \leq A \tag{4.1}
\end{equation*}
$$

Let G be defined (3.1). Then it follows from Lemma 2.4 that G is constant on M, since M is connected. For $m \in M$ and orthonormal vectors X, Y in $T_{m}(M)$, the sectional curvature $K(X \wedge Y)$ of the plane spanned by X and Y is

$$
\begin{aligned}
K(X \wedge Y) & =\langle V(X, X), V(Y, Y)\rangle-\langle V(X, Y), V(X, Y)\rangle \\
& =\langle V(X, X), V(X, X)\rangle-3\langle V(X, Y), V(X, Y)\rangle \\
& =G-3\langle V(X, Y), V(X, Y)\rangle
\end{aligned}
$$

Thus $K(X \wedge Y)>0, G=c^{2}$ for some positive constant c, and $\langle V(X, Y)$, $V(X, Y)\rangle \leq \frac{1}{4} c^{2}$ according to Lemma 2.8.

For $m \in M$ and unit vector X in $T_{m}(M)$, define

$$
\rho(X)=\left\{Y \in T_{m}(M): V(X, Y)=0\right\}
$$

Then $\rho(X)$ is a vector subspace of $T_{m}(M)$ over the real field R^{1}. For $Y \in \rho(X), X$ and $Y-\langle X, Y\rangle X$ are orthogonal. By Lemma 2.1 we see that $0=$ $\langle V(X, X), V(X, Y-\langle X, Y\rangle X)\rangle=-\langle X, Y\rangle\langle V(X, X), V(X, X)\rangle=-c^{2}\langle X, Y\rangle$, so that Y and X are orthogonal.

Let $\alpha(X)=R^{1} X \oplus \rho(X)$. Let $\alpha(X)^{\perp}$ denote the orthogonal complement of $\alpha(X)$ in $T_{m}(M)$, and $S(X)$ the set of all unit vectors in $\alpha(X)^{\perp}$. Then we have the following lemmas:

Lemma 4.1. If $Y \in S(X)$, then $\langle V(X, Y), V(X, Y)\rangle=\frac{1}{4} c^{2}$ and $\langle V(X, X)$, $V(Y, Y)\rangle=\frac{1}{2} c^{2}$. Moreover, if Y, Z are two orthonormal vectors in $S(X)$, then $\langle V(X, Y), V(X, Z)\rangle=0$.

Proof. Since V is bilinear, the real function F on $S(X)$ defined by

$$
F(W)=\langle V(X, W), V(X, W)\rangle, \quad \text { for } \quad W \in S(X),
$$

is continuous on the compact set $S(X)$ with respect to the natural topology of $S(X)$. So F takes a minimum at some $T \in S(X)$. Moreover, X, T have the property (2.2). In fact, let X, T, W be three orthonormal vectors in $T_{m}(M)$. We consider the three posibilities:

Case 1: $W \in S(X)$. Then T and W are orthonormal vectors in $S(X)$. Thus the real function

$$
h(\theta)=\langle V(X, T \cos \theta+W \sin \theta), V(X, T \cos \theta+W \sin \theta)\rangle
$$

of real variable θ takes a minimum at $\theta=0$, so that $h^{\prime}(0)=0$, that is, $\langle V(X, T), V(X, W)\rangle=0$. According to Lemma 2.6, we have $\langle V(X, X)$, $V(T, W)\rangle=0$.

Case 2: $W \in \rho(X)$. Then $V(X, W)=0$. By Lemma 2.6 we have $\langle V(X, X), V(T, W)\rangle=0$.

Case 3: $W=a_{1} W_{1}+a_{2} W_{2}$, where W_{1}, W_{2} are unit vectors in $\alpha(X), \alpha(X)^{\perp}$ respectively and a_{1}, a_{2} are real numbers. Since X, W are orthonormal, $W_{1} \in \rho(X)$. By Cases 1 and 2 we have $\left\langle V(X, X), V\left(T, W_{i}\right)\right\rangle=0$, for $i=1,2$. Hence $\langle V(X, X), V(T, W)\rangle=a_{1}\left\langle V(X, X), V\left(T, W_{1}\right)\right\rangle+a_{2}\left\langle V(X, X), V\left(T, W_{2}\right)\right\rangle$ $=0$.

According to Lemma 2.7, either $V(X, T)=0$ or $\langle V(X, T), V(X, T)\rangle=$ $\frac{1}{4} c^{2}$. Since $T \in S(X) \subset \alpha(X)^{\perp},\langle V(X, T), V(X, T)\rangle=\frac{1}{4} c^{2}$. Therefore for $Y \in S(X)$ we have $\langle V(X, Y), V(X, Y)\rangle \geq\langle V(X, T), V(X, T)\rangle=\frac{1}{4} c^{2}$. By Lemma 2.8, we get $\langle V(X, Y), V(X, Y)\rangle=\frac{1}{4} c^{2}$. So from Lemma 2.2 follows $\langle V(X, X), V(Y, Y)\rangle=\frac{1}{2} c^{2}$.

Now, if Y, Z are two orthonormal vectors in $S(X)$, then, by the first part of this Lemma, $\langle V X,(Y+Z) / \sqrt{2}), \quad V(X,(Y+Z) / \sqrt{2})\rangle=\frac{1}{4} c^{2}$,
$\langle V(X, Y), V(X, Y)\rangle=\langle V(X, Z), V(X, Z)\rangle=\frac{1}{4} c^{2}$. So we have $\langle V(X, Y)$, $V(X, Z)\rangle=0$.

Lemma 4.2. If W is a unit vector in $\alpha(X)$, then $V(X, X)=V(W, W)$.
Proof. Let $W=a X+b Y$, where Y is a unit vector in $\rho(X)$, and a, b are real numbers. Then $a^{2}+b^{2}=1$ and $V(X, Y)=0$. By Lemma 2.2 we have $\langle V(X, X), V(X, X)\rangle=\langle V(X, X), V(Y, Y)\rangle=\langle V(Y, Y), V(Y, Y)\rangle$, so that $V(X, X)=V(Y, Y)$, and $V(W, W)=a^{2} V(X, X)+b^{2} V(Y, Y)=V(X, X)$.
Lemma 4.3. If $Y \in S(X)$, then $\alpha(Y) \subset \alpha(X)^{\perp}$.
Proof. Let $a Z+b W$ be a unit vector in $\alpha(Y)$, where Z, W are unit vectors in $\alpha(X), \alpha(X)^{\perp}$ respectively, and a, b are real numbers. Then, by Lemma 4.2, we get $V(Y, Y)=V(a Z+b W, a Z+b W)$ and $V(X, X)=V(Z, Z)$. According to Lemma 4.1, we have

$$
\begin{aligned}
\frac{1}{2} c^{2}= & \langle V(X, X), V(Y, Y)\rangle=\langle V(X, X), V(a Z+b W, a Z+b W)\rangle \\
= & a^{2}\langle V(X, X), V(X, X)\rangle+2 a b\langle V(X, X), V(Z, W)\rangle \\
& +b^{2}\langle V(X, X), V(W, W)\rangle \\
= & a^{2} c^{2}+2 a b\langle V(Z, Z), V(Z, W)\rangle+\frac{1}{2} b^{2} c^{2}=a^{2} c^{2}+\frac{1}{2} b^{2} c^{2} .
\end{aligned}
$$

The last equation follows from Lemma 2.1. Since $a^{2}+b^{2}=1, a=0$. Thus we see that $\alpha(Y) \subset \alpha(X)^{\perp}$.

According to Lemma 4.3 we can decompose $T_{m}(M)$ into a direct sum

$$
\begin{equation*}
T_{m}(M)=\alpha\left(X_{1}\right) \oplus \cdots \oplus \alpha\left(X_{k}\right) \tag{4.2}
\end{equation*}
$$

for some unit vectors X_{1}, \cdots, X_{k} in $T_{m}(M)$ such that $\alpha\left(X_{i}\right) \subset \alpha\left(X_{j}\right)^{\perp}$ for $1 \leq i \neq j \leq k$.

For each unit vector $X \in T_{m}(M)$, let $\beta(X)$ denote the dimension of the vector subspace $\alpha(X)$. Let $H(m)$ denote the mean curvature vector on M at m, that is, if e_{1}, \cdots, e_{n} form an orthonormal basis of $T_{m}(M)$, then $H(m)=\left(V\left(e_{1}, e_{1}\right)\right.$ $\left.+\cdots+V\left(e_{n}, e_{n}\right)\right) / n$. The mean curvature vector $H(m)$ is independent of the choice of the basis of $T_{m}(M)$. We choose an orthonormal basis Y_{1}, \cdots, Y_{n} of $T_{m}(M)$ such that $Y_{1}=X, Y_{i} \in \alpha(X)$ for $i \leq \beta(X)$, and $Y_{j} \in \alpha(X)^{\perp}$ for $j>\beta(X)$. Then, by Lemma 4.2, $V\left(Y_{i}, Y_{i}\right)=V(X, X)$ for $i \leq \beta(X)$. According to Lemma 4.1, $\left\langle V(X, X), V\left(Y_{i}, Y_{i}\right)\right\rangle=\frac{1}{2} c^{2}$ for $i>\beta(X)$. Hence

$$
\begin{aligned}
n\langle V(X, X), H(m)\rangle & =\left\langle V(X, X), \sum_{i=1}^{n} V\left(Y_{i}, Y_{i}\right)\right\rangle \\
& =\beta(X) \cdot c^{2}+\frac{1}{2}(n-\beta(X)) c^{2}=\frac{1}{2} n c^{2}+\frac{1}{2} \beta(X) \cdot c^{2} .
\end{aligned}
$$

Let S denote the set of all unit vectors in $T_{m}(M)$ with respect to the natural topology. Since $n \geq 2, S$ is connected. However, the function $\langle V(X, X), H(m)\rangle$ of $X \in S$ is continuous on S. So the integral function $\beta(X)$ is constant on S, and we can define a real function B on M by

$$
B(m)=\beta(X), \quad \text { for } m \in M \text { and a unit vector } X \text { in } T_{m}(M)
$$

Then $B(m)$ satisfies the relation

$$
n\langle V(X, X), H(m)\rangle=\frac{1}{2} n c^{2}+\frac{1}{2} B(m) c^{2},
$$

where X is a unit vector in $T_{m}(M)$. Since both V and H are differentiable, B is continuous on M . The connectedness of M implies that the integral function B is constant on M. Let a denote this constant.

Case 1: $\quad a=1$. Then for any $m \in M$ and any unit vector X in $T_{m}(M)$, we have $\rho(X)=0$. Thus, if X, Y are orthonormal in $T_{m}(M)$, then $Y \in S(X) \subset$ $\alpha(X)^{\perp}$. By Lemma 4.1, $\langle V(X, X), V(Y, Y)\rangle=\frac{1}{2} c^{2},\langle V(X, Y), V(X, Y)\rangle=$ $\frac{1}{4} c^{2}$, so that $K(X \wedge Y)=\frac{1}{4} c^{2}$, which implies that M has positive constant curvature $\frac{1}{4} c^{2}$.

Case 2: $a=n$. Then $Y \in \rho(X)$ for any $m \in M$ and two orthonormal vectors X, Y in $T_{m}(M)$. Thus $V(X, Y)=0$. By Lemma 4.2, we also have $V(X, X)=V(Y, Y)$. Hence the sectional curvature $K(X \wedge Y)=c^{2}$, and the sectional curvature of M is c^{2}.

Case 3: $1<a<n$. Let $m \in M$, and $T_{m}(M)=\alpha\left(X_{1}\right) \oplus \cdots \oplus \alpha\left(X_{k}\right)$ be a decomposition of $T_{m}(M)$ into a direct sum as (4.2). Then each $\alpha\left(X_{i}\right)$, for $i=1, \cdots, k$, has dimension a, so that $n=a k$, which implies that n is not prime and $k \geq 2$. Since $a \geq 2$, we can choose a unit vector $Y \in \rho\left(X_{1}\right)$. Moreover, X_{1}, Y are orthonormal, and $V\left(X_{1}, X_{1}\right)=V(Y, Y)$ by Lemma 4.2. Hence the sectional curvature $K\left(X_{1} \wedge Y\right)=c^{2}$. On the other hand, X_{1} and X_{2} are orthonormal, and $X_{2} \in S\left(X_{1}\right)$. It follows from Lemma 4.1 that $K\left(X_{1} \wedge X_{2}\right)=$ ${ }_{4}^{1} c^{2}$, which together with $K\left(X_{1} \wedge X\right)=c^{2}$, implies that case (3) in Theorem 2 can not happen, since there is no half-open interval ($\left.\frac{1}{4} x, x\right]$ which contains the closed interval $\left[\frac{1}{4} c^{2}, c^{2}\right]$.

Let e_{1}, \cdots, e_{n} be an orthonormal basis of $T_{m}(M)$ such that $X_{1}=e_{1}$ and $e_{r, a+1}, \cdots, e_{r, 2 a}$ form an orthonormal basis of $\alpha\left(X_{r+1}\right)$ for $r=0, \cdots, k-1$. Suppose that there are real numbers $b_{1}, b_{2}, a_{i}, i=a+1, \cdots, n$, such that

$$
\begin{equation*}
\sum_{i=a+1}^{n} a_{i} V\left(X_{1}, e_{i}\right)+b_{1} V\left(X_{1}, X_{1}\right)+b_{2} V\left(X_{2}, X_{2}\right)=0 . \tag{4.3}
\end{equation*}
$$

Taking the inner product of (4.3) with $V\left(X_{1}, X_{1}\right)$ we get $b_{1}+\frac{1}{2} b_{2}=0$ by Lemmas 2.1 and 4.1. According to Lemma 4.2, $V\left(X_{2}, X_{2}\right)=V\left(e_{i}, e_{i}\right)$ for $a+1 \leq i \leq 2 a$. Hence $\left\langle V\left(X_{1}, e_{i}\right), V\left(X_{2}, X_{2}\right)\right\rangle=\left\langle V\left(X_{1}, e_{i}\right), V\left(e_{i}, e_{i}\right)\right\rangle=0$ for $a+1 \leq i \leq 2 a$. For $i \geq 2 a+1, e_{i} \in S\left(X_{2}\right)$. Also, $X_{1} \in S\left(X_{2}\right)$, and by Lemmas 4.1 and 2.6 we have $\left\langle V\left(X_{1}, e_{i}\right), V\left(X_{2}, X_{2}\right)\right\rangle=0$ for $i \geq 2 a+1$. Taking the inner product of $V\left(X_{2}, X_{2}\right)$ with (4.3) gives $\frac{1}{2} b_{1}+b_{2}=0$. Thus we have $b_{1}+\frac{1}{2} b_{2}=0$ and $\frac{1}{2} b_{1}+b_{2}=0$, so that $b_{1}=b_{2}=0$.

For $a+1 \leq i, e_{i} \in S\left(X_{1}\right)$. By Lemma 4.1, $\left\langle V\left(X_{1}, e_{i}\right), V\left(X_{1}, e_{j}\right)\right\rangle=0$ for $a+1 \leq i \neq j \leq n$. Thus $V\left(X_{1}, e_{a_{+1}}\right), \cdots, V\left(X_{1}, e_{n}\right)$ are orthogonal and are nonzero normal vectors according to Lemma 4.1, so that $V\left(X_{1}, e_{a+1}\right), \cdots$, $V\left(X_{1}, e_{n}\right)$ are linearly independent. Hence $a_{i}=0$ for $i=a+1, \cdots, n$.

The above argument shows that $V\left(X_{1}, e_{a+1}\right), \cdots, V\left(X_{1}, e_{n}\right), V\left(X_{1}, X_{1}\right)$, $V\left(X_{2}, X_{2}\right)$ are linearly independent. They are normal vectors, and $p \geq n-a$ +2 . Now $n=a k$ and $k \geq 2$, so that $a \leq \frac{1}{2} n$, which implies $p \geq \frac{1}{2} n+2$. Consequently under the assumptions of Theorem 2 case (3) can not happen thus proving Theorem 2.

5. Some properties of vector subspaces of R^{n+p}

Consider R^{n+p} as an $(n+p)$-dimensional real vector space. Let d be a positive real number, and $X_{i}, L\left(X_{i}, X_{j}\right)=L\left(X_{j}, X_{i}\right), i, j=1, \cdots, n$ be vectors in R^{n+p} with the following properties:
(I) if $1 \leq i \neq j \leq n$ then $\left\{X_{1}, \cdots, X_{n}, d^{-1} L\left(X_{i}, X_{i}\right), 2 d^{-1} L\left(X_{i}, X_{j}\right)=\right.$ $\left.2 d^{-1} L\left(X_{j}, X_{i}\right)\right\}$ is orthonormal;
(II) for $1 \leq i \neq j \leq n,\left\langle L\left(X_{i}, X_{i}\right), L\left(X_{j}, X_{j}\right)\right\rangle=\frac{1}{2} d^{2}$;
(III) for $1 \leq i, j, h, k \leq n$ and different $i, j, h, L\left(X_{i}, X_{j}\right)$ and $L\left(X_{h}, X_{k}\right)$ are orthogonal.

Let E denote the n-dimensional subspace generated by X_{1}, \cdots, X_{n}. Extend the system $\left\{L\left(X_{i}, X_{j}\right)\right\}$ to the unique bilinear map $L: E \times E \rightarrow R^{n+p}$

$$
L\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} X_{j}\right)=\sum_{i, j=1}^{n} a_{i} b_{j} L\left(X_{i}, X_{j}\right),
$$

for real a_{i}, b_{j}. Then L is symmetric.
Lemma 5.1. Let X, Y be two orthonormal vectors in E. Then

$$
\begin{aligned}
& \langle L(X, X), L(X, X)\rangle=d^{2}, \quad\langle L(X, X), L(Y, Y)\rangle=0 \\
& \langle L(X, X), L(Y, Y)\rangle=\frac{1}{2} d^{2}, \quad\langle L(X, Y), L(X, Y)\rangle=\frac{1}{4} d^{2} .
\end{aligned}
$$

Proof. Let $X=\sum_{i=1}^{n} a_{i} X_{i}, Y=\sum_{i=1}^{n} b_{i} X_{i}$. Then $\sum_{i=1}^{n} a_{i}^{2}=1, \sum_{i=1}^{n} b_{i}^{2}=1$, $\sum_{i=1}^{n} a_{i} b_{i}=0$. We compute:

$$
\begin{aligned}
\langle L(X, Y), L(X, Y)\rangle= & \sum_{i, j, h, k=1}^{n} a_{i} b_{j} a_{h} b_{k}\left\langle L\left(X_{i}, X_{j}\right), L\left(X_{h}, X_{k}\right)\right\rangle \\
= & d^{2} \sum_{i=1}^{n}\left(a_{i} b_{i}\right)^{2}+\frac{1}{2} d^{2} \sum_{i \neq h} a_{i} b_{i} a_{h} b_{h} \\
& +\frac{1}{4} d^{2} \sum_{i \neq j}\left(a_{i} b_{j}\right)^{2}+\frac{1}{4} d^{2} \sum_{i \neq j} a_{i} b_{j} a_{j} b_{i} \\
= & \frac{3}{4} d^{2}\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}+\frac{1}{4} d^{2} \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}=\frac{1}{4} d^{2} .
\end{aligned}
$$

By a similiar computation, we can obtain the other three equations.
Lemma 5.2. Let X, Y, Z be three orthonormal vectors in E. Then $\langle L(X, X), L(Y, Z)\rangle=\langle L(X, Y), L(X, Z)\rangle=0$.

This lemma follows from Lemma 5.1.
Lemma 5.3. If X, Y, Z, W are orthonormal in E, then $\langle L(X, Y)$, $L(Z, W)\rangle=0$.

Proof. By Lemma 5.2, $\langle L(X, Y), L((Z+W) / \sqrt{2},(Z+W) / \sqrt{2})\rangle=0$, which implies $\langle L(X, Y), L(Z, W)\rangle=0 \quad$ since $\langle L(X, Y), L(Z, Z)\rangle=$ $\langle L(X, Y), L(W, W)\rangle=0$.

From Lemmas 5.1, 5.2, 5.3 we obtain
Proposition 5.1. Let e_{1}, \cdots, e_{n} be an orthonormal basis of E. Then
(I) for $1 \leq i \neq j \leq n,\left\{e_{1}, \cdots, e_{n}, d^{-1} L\left(e_{i}, e_{i}\right), 2 d^{-1} L\left(e_{i}, e_{j}\right)=2 d^{-1} L\left(e_{j}, e_{i}\right)\right\}$ is orthonormal;
(II) for $1 \leq i \neq j \leq n,\left\langle L\left(e_{i}, e_{i}\right), L\left(e_{j}, e_{j}\right)\right\rangle=\frac{1}{2} d^{2}$;
(III) for $1 \leq i, j, h, k \leq n$ and different $i, j, h, L\left(e_{i}, e_{j}\right)$ and $L\left(e_{h}, e_{k}\right)$ are orthogonal.

Proposition 5.2. Let e_{1}, \cdots, e_{n} be an orthonormal basis of E. Then $\left\{e_{1}, \cdots, e_{n}\right\} \cup\left\{L\left(e_{i}, e_{j}\right): 1 \leq i \leq j \leq n\right\}$ is a linearly independent system.

Proof. Suppose

$$
\sum_{i=1}^{n} a_{i} e_{i}+\sum_{1 \leq i \leq j \leq n}^{n} a_{i j} L\left(e_{i} e_{j}\right)=0
$$

with real $a_{i}, a_{i j}$. From (I) of Proposition 5.1 we see that all a_{i} must be zero. Moreover, if we take the inner product of $L\left(e_{h}, e_{k}\right), h<k$, with the above equation, then we get $a_{h k}=0$, so that $\sum_{i=1}^{n} a_{i i} L\left(e_{i}, e_{i}\right)=0$. Taking the inner product of $L\left(e_{h}, e_{h}\right)$ with the above equation yields

$$
\sum_{i=1}^{n} a_{i i}=-a_{h h}, \quad \text { for } h=1, \cdots, n
$$

which imply $a_{i i}=0$ for $i=1, \cdots, n$. Hence we complete the proof.

6. Proof of Theorem 3

We identify points in R^{n+p} with their position vectors, and use ||| to denote the norm.
Let M be an n-dimensional $(n \geq 2) \Omega$-sphere with radius $1 / c(c>0)$ with respect to the system $\left\{X_{i}, B\left(X_{i}, X_{j}\right)\right\}$. Let E^{n} denote the n-dimensional subspace generated by X_{1}, \cdots, X_{n}. Define a bilinear map $L: E^{n} \times E^{n} \rightarrow R^{n+p}$ by

$$
L\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} X_{j}\right)=\sum_{i, j=1}^{n} a_{i} b_{j} B\left(X_{i}, X_{j}\right),
$$

for real a_{i}, b_{j}. Then $L\left(X_{i}, X_{j}\right)=B\left(X_{i}, X_{j}\right)$ and L is symmetric. It follows from the definition of Ω-sphere that there is a fixed point $m_{0} \in R^{n+p}$ such that M is the set of all points $A(X)$:

$$
\begin{aligned}
& A(X)=m_{0}+\frac{\sin c\|X\|}{c\|X\|} X+\frac{1-\cos c\|X\|}{c\|X\|^{2}} L(X, X), \\
& \\
& A(X)=m_{0}, \quad \text { if } 0<c\|X\|<2 \pi, X \in E^{n},
\end{aligned}
$$

Let V denote the second fundamental tensor of M. At first we prove the following lemma.

Lemma 6.1. Let $X \in E^{n}$ with $0<c\|X\|<2 \pi$. Then there is an orthonormal basis e_{1}, \cdots, e_{n} of the tangent space $T_{A(X)}(M)$ at $A(X)$ with the following properties:
(1) if $1 \leq i \neq j \leq n$, then $\left\{2 c^{-1} V\left(e_{i}, e_{j}\right)=2 c^{-1} V\left(e_{j}, e_{i}\right), c^{-1} V\left(e_{i}, e_{i}\right)\right\}$ is orthonormal and $\left\langle V\left(e_{i}, e_{i}\right), V\left(e_{j}, e_{j}\right)\right\rangle=\frac{1}{2} c^{2}$;
(2) for $1 \leq i, j, h, k \leq n$ and different $i, j, h, V\left(e_{i}, e_{j}\right)$ and $V\left(e_{h}, e_{k}\right)$ are orthogonal.

Proof. Let $Y_{1}=X /\|X\|$. Choose Y_{2}, \cdots, Y_{n} such that Y_{1}, \cdots, Y_{n} form an orthonormal basis of E^{n}. Then, for $Y=\sum_{i=1}^{n} y_{i} Y_{i}$ and $0<c\|Y\|<2 \pi$, we have

$$
A(Y)=m_{0}+\frac{\sin c\|X\|}{c\|Y\|} \sum_{i=1}^{n} y_{i} Y_{i}+\frac{1-\cos c\|Y\|}{c\|Y\|^{2}} \sum_{i, j=1}^{n} y_{i} y_{j} L\left(Y_{i}, Y_{j}\right) .
$$

Consider $\left(y_{1}, \cdots, y_{n}\right)$ as coordinates of M. For $i, j=1, \cdots, n, \partial\|Y\| / \partial y_{j}=$ $y_{j} /\|\boldsymbol{Y}\|$,

$$
\begin{aligned}
& \frac{\partial}{\partial y_{j}}(A(Y))=\left(\frac{\partial}{\partial y_{j}} \frac{\sin c\|Y\|}{c\|Y\|}\right) \sum_{n=1}^{n} y_{h} Y_{h}+\frac{\sin c\|Y\|^{\prime}}{c\|Y\|} Y_{j} \\
& +\left(\frac{\partial}{\partial y_{j}} \frac{1-\cos c\|Y\|}{c\|Y\|^{2}}\right)_{h, k=1}^{n} y_{h} y_{k} L\left(Y_{h}, Y_{k}\right) \\
& +\frac{2(1-\cos c\|\boldsymbol{Y}\|)}{c\|\boldsymbol{Y}\|^{2}} \sum_{n=1}^{n} y_{h} L\left(Y_{j}, Y_{h}\right), \\
& \nabla_{\partial / \partial y_{i}} \frac{\partial}{\partial y_{j}}(A(Y))=\left(\frac{\partial^{2}}{\partial y_{i} \partial y_{j}} \frac{\sin c\|Y\|}{c\|Y\|}\right) \sum_{h=1}^{n} y_{h} Y_{h} \\
& +\left(\frac{\partial}{\partial y_{i}} \frac{\sin c\|Y\|}{c\|Y\|}\right) Y_{j}+\left(\frac{\partial}{\partial y_{j}} \frac{\sin c\|Y\|}{c\|Y\|}\right) Y_{i} \\
& +\left(\frac{\partial^{2}}{\partial y_{i} \partial y_{j}} \frac{1-\cos c\|Y\|}{c\|Y\|^{2}}\right)_{h, k=1}^{n} y_{h} y_{k} L\left(Y_{h}, Y_{k}\right) \\
& +2\left(\frac{\partial}{\partial y_{j}} \frac{1-\cos c\|Y\|}{c\|Y\|^{2}}\right) \sum_{n=1}^{n} y_{h} L\left(Y_{i}, Y_{h}\right) \\
& +2\left(\frac{\partial}{\partial y_{i}} \frac{1-\cos c\|\boldsymbol{Y}\|}{c\|\boldsymbol{Y}\|^{2}}\right) \sum_{n=1}^{n} y_{h} L\left(Y_{j}, Y_{h}\right) \\
& +\frac{2(1-\cos c\|Y\|)}{c\|Y\|^{2}} L\left(Y_{i}, Y_{j}\right) \text {. }
\end{aligned}
$$

Calculating the last two equations by chain rule at $y_{1}=\|X\|, y_{2}=\cdots=$ $y_{n}=0$, we get

$$
\begin{aligned}
& \frac{\partial}{\partial y_{i}}(A(X))=\frac{\sin c\|X\|}{c\|X\|} Y_{i}+\frac{2(1-\cos c\|X\|)}{c\|X\|} L\left(Y_{1}, Y_{i}\right), \quad i=2, \cdots, n ; \\
& \frac{\partial}{\partial y_{1}}(A(X))=(\cos c\|X\|) Y_{1}+(\sin c\|X\|) L\left(Y_{1}, Y_{1}\right) ; \\
& \nabla_{\partial / \partial y_{1}} \frac{\partial}{\partial y_{1}}(A(X))=-c(\sin c\|X\|) Y_{1}+c(\cos c\|X\|) L\left(Y_{1}, Y_{1}\right) ; \\
& \nabla_{\partial / \partial y_{1}} \frac{\partial}{\partial y_{i}}(A(X))=\left(\frac{\cos c\|X\|}{\|X\|}-\frac{\sin c\|X\|}{c\|X\|^{2}}\right) Y_{i} \\
&+\left(\frac{2 \sin c\|X\|}{\|X\|}-\frac{2(1-\cos c\|X\|)}{c\|X\|^{2}}\right) L\left(Y_{1}, Y_{i}\right), \\
& \nabla_{\partial / \partial y_{j}} \frac{\partial}{\partial y_{j}}(A(X))= \frac{2(1-\cos c\|X\|)}{c\|X\|^{2}} L\left(Y_{i}, Y_{j}\right), \quad 2 \leq i \neq j \leq n ; \\
& \nabla_{\partial / \partial y_{i}} \frac{\partial}{\partial y_{i}}(A(X))=\left(\frac{\cos c\|X\|}{\|X\|}-\frac{\sin c\|X\|}{c\|X\|^{2}}\right) Y_{1} \\
&+\left(\frac{\sin c\|X\|}{\|X\|}-\frac{2(1-\cos c\|X\|)}{c\|X\|^{2}}\right) L\left(Y_{1}, Y_{1}\right) \\
&+\frac{2(1-\cos c\|X\|)}{c\|X\|^{2}} L\left(Y_{i}, Y_{i}\right), \quad \text { for } i=2, \cdots, n .
\end{aligned}
$$

Let $e_{i}=\frac{\partial}{\partial y_{i}}(A(X)) /\left\|\frac{\partial}{\partial y_{i}}(A(X))\right\|$. According to Proposition 5.1 we have:
(I) if $1 \leq i \neq j \leq n$, then $\left\{Y_{1}, \cdots, Y_{n}, L\left(Y_{i}, Y_{i}\right), 2 L\left(Y_{i}, Y_{j}\right)=2 L\left(Y_{j}, Y_{i}\right)\right\}$ is orthonormal and $\left\langle L\left(Y_{i}, Y_{i}\right), L\left(Y_{j}, Y_{j}\right)\right\rangle=\frac{1}{2}$;
(II) for $1 \leq i, j, h, k \leq n$ and different $i, j, h, L\left(Y_{i}, Y_{j}\right)$ and $L\left(Y_{h}, Y_{k}\right)$ are orthogonal ; and therefore

$$
\begin{aligned}
& e_{1}=(\cos c\|X\|) Y_{1}+(\sin c\|X\|) L\left(Y_{1}, Y_{1}\right), \\
& e_{i}=\left(\cos \frac{1}{2} c\|X\|\right) Y_{i}+2\left(\sin \frac{1}{2} c\|X\|\right) L\left(Y_{1}, Y_{i}\right), \quad i=2, \cdots, n .
\end{aligned}
$$

Using Gauss formula we compute:

$$
\begin{aligned}
& V\left(e_{1}, e_{1}\right)=-c(\sin c\|X\|) Y_{1}+c(\cos c\|X\|) L\left(Y_{1}, Y_{1}\right), \\
& V\left(e_{1}, e_{i}\right)=-\frac{1}{2} c\left(\sin \frac{1}{2} c\|X\|\right) Y_{i}+c\left(\cos \frac{1}{2} c\|X\|\right) L\left(Y_{1}, Y_{i}\right), \quad i=2, \cdots, n, \\
& V\left(e_{1}, e_{j}\right)=c L\left(Y_{i}, Y_{j}\right), \quad 2 \leq i \neq j \leq n, \\
& V\left(e_{i}, e_{i}\right)=-\frac{1}{2} c(\sin c\|X\|) Y_{1}-\frac{1}{2} c(1-\cos c\|X\|) L\left(Y_{1}, Y_{1}\right)+c L\left(Y_{i}, Y_{i}\right), \\
& i=2, \cdots, n .
\end{aligned}
$$

It is easy to verify that e_{1}, \cdots, e_{n} form the required basis of $T_{A(X)}(M)$.

Proposition 6.1. For $m \in M$ and an orthonormal basis e_{1}, \cdots, e_{n} of $T_{m}(M)$, we have:
(I) if $1 \leq i \neq j \leq n$, then $\left\{e_{1}, \cdots, e_{n}, c^{-1} V\left(e_{i}, e_{i}\right), 2 c^{-1} V\left(e_{i}, e_{j}\right)=\right.$ $\left.2 c^{-1} V\left(e_{j}, e_{i}\right)\right\}$ is orthonormal and $\left\langle V\left(e_{i}, e_{i}\right), V\left(e_{j}, e_{j}\right)\right\rangle=\frac{1}{2} c^{2}$;
(II) for $1 \leq i, j, h, k \leq n$ and different $i, j, h, V\left(e_{i}, e_{j}\right)$ and $V\left(e_{h}, e_{k}\right)$ are orthogonal.

Proof. If $m \neq m_{0}$, then the assertion follows from Lemma 6.1 and Proposition 5.1. If $m=m_{0}$, then the assertion follows from the case for $m \neq m_{0}$ and the continuity of the second fundamental tensor V.

Proposition 6.2. M has constant curvature $\frac{1}{4} c^{2}$.
Proof. Let $m \in M$. For any two orthonormal vectors Y, Z in the tangent space $T_{m}(M)$, we can extend them to an orthonormal basis of $T_{m}(M)$, so that by Proposition 6.1, $\langle V(Y, Y), V(Z, Z)\rangle=\frac{1}{2} c^{2}$ and $\langle V(Y, Z), V(Y, Z)\rangle=\frac{1}{4} c^{2}$. Thus the sectional curvature of the plane spanned by Y, Z is $\frac{1}{4} c^{2}$.

Let $\alpha:(a, b) \rightarrow M$ be a geodesic on M with unit tangent field T. For $e \in(a, b)$, choose an open interval I in (a, b) containing e such that the restriction $\sigma=\alpha \uparrow I$ of α to I is univalent.

For any unit vector Y orthogonal to $T(\sigma(e))$ in the tangent space $T_{\sigma(e)}(M)$, we can extend T, Y to a parallel base Y_{1}, \cdots, Y_{n} along σ with $Y_{1}(\sigma(t))=$ $T(\sigma(t))$ for $t \in I$ and $Y_{2}(\sigma(e))=Y$, that is, $D_{T} Y_{i}=0$ and Y_{1}, \cdots, Y_{n} are linear independent along σ, where D denotes the Riemannian connection of M. Since $T(\sigma(e))$ and Y are orthonormal, T and Y_{2} are orthonormal.

Let ϕ denote the Fermi coordinate map from an open neighborhood of $\sigma(I)$ onto an open subset W of a Euclidean space R^{n}, that is, for $\left(x_{1}, \cdots, x_{n}\right) \in W$,

$$
\phi^{-1}\left(x_{1}, \cdots, x_{n}\right)=\operatorname{Exp}_{\sigma\left(x_{1}\right)} \sum_{i=1}^{n} x_{i} Y_{i}\left(\sigma\left(x_{1}\right)\right),
$$

where $\operatorname{Exp}_{\sigma(x)}$ denotes the exponential map at $\sigma(x)$. Let Z_{1}, Z_{2} denote the restrictions of the coordinate fields $\partial / \partial x_{1}, \partial / \partial x_{2}$ to the set of points $\operatorname{Exp}_{\sigma\left(x_{1}\right)} x_{2} Y_{2}\left(\sigma\left(x_{1}\right)\right)$, respectively. Then $Z_{1}(\sigma(t))=T(\sigma(t)), Z_{2}(\sigma(t))=Y_{2}(\sigma(t))$, and $D_{Z_{1}} Z_{2}=D_{Z_{2}} Z_{1}$ along σ. Since each x_{2}-curve is a geodesic parametrized by the arc length, $D_{Z_{2}} Z_{2}=0$ and $\left\langle Z_{2}, Z_{2}\right\rangle=1$. Also we have $D_{Z_{2}}\left\langle Z_{1}, Z_{2}\right\rangle=$ $\left\langle D_{Z_{2}} Z_{1}, Z_{2}\right\rangle+\left\langle Z_{1}, D_{Z_{2}} Z_{2}\right\rangle=\left\langle D_{Z_{1}} Z_{2}, Z_{2}\right\rangle=\frac{1}{2} Z_{1}\left\langle Z_{2}, Z_{2}\right\rangle=0$. Thus $\left\langle Z_{1}, Z_{2}\right\rangle$ is constant along x_{2}-curves. Since $\left\langle Z_{1}, Z_{2}\right\rangle=0$ on σ, we have $\left\langle Z_{1}, Z_{2}\right\rangle=0$, and therefore $W \equiv Z_{1} /\left\|Z_{1}\right\|$ and Z_{2} are orthonormal and $W(\sigma(t))=T(\sigma(t))$. By Proposition 6.1, $\langle V(W, W), V(W, W)\rangle=c^{2},\left\langle V(W, W), V\left(Z_{2}, Z_{2}\right)\right\rangle=\frac{1}{2} c^{2}$, $\left\langle V(W, W) V\left(W, Z_{2}\right)\right\rangle=0,\left\langle V\left(W, Z_{2}\right), V\left(W, Z_{2}\right)\right\rangle=\frac{1}{4} c^{2}$.

Now

$$
D_{Z_{2}} Z_{1}=\left(Z_{2}\left(\left\|Z_{1}\right\|\right) W+\left\|Z_{1}\right\| D_{Z_{2}} W, \quad D_{Z_{1}} Z_{2}=\left\|Z_{1}\right\| D_{W} Z_{2}\right.
$$

Since $\left\langle D_{Z_{2}} W, W\right\rangle=\frac{1}{2} Z_{2}\langle W, W\rangle=0$ and $\left(D_{Z_{2}} Z_{1}\right)(\sigma(e))=\left(D_{Z_{1}} Z_{2}\right)(\sigma(e))=$ $\left(D_{T} Z_{2}\right)(\sigma(e))=0$, we have $\left(D_{Z_{2}} W\right)(\sigma(e))=0$ and $\left(D_{W} Z_{2}\right)(\sigma(e))=0 . D_{Z_{2}} Z_{2}$ $=0,\left(D_{W} W\right)(\sigma(e))=\left(D_{T} T\right)(\sigma(e))=0$. Thus the Codazzi equation gives

$$
\begin{aligned}
& \left(\operatorname{nor} \nabla_{W} V\left(Z_{2}, Z_{2}\right)\right)(\sigma(e))=\left(\operatorname{nor} \nabla_{Z_{2}} V\left(W, Z_{2}\right)\right)(\sigma(e)), \\
& \left(\operatorname{nor} \nabla_{Z_{2}} V(W, W)\right)(\sigma(e))=\left(\operatorname{nor} \nabla_{W} V\left(Z_{2}, W\right)\right)(\sigma(e)),
\end{aligned}
$$

from which follows

$$
\begin{aligned}
& \left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), V(Y, Y)\right\rangle \\
= & \left\langle\nabla_{W} V(W, W), V\left(Z_{2}, Z_{2}\right)\right\rangle(\sigma(e))=-\left\langle V(W, W), \nabla_{W} V\left(Z_{2}, Z_{2}\right)\right\rangle(\sigma(e)) \\
= & -\left\langle V(W, W), \nabla_{Z_{2}} V\left(W, Z_{2}\right)\right\rangle(\sigma(e))=\left\langle\nabla_{Z_{2}} V(W, W), V\left(W, Z_{2}\right)\right)(\sigma(e)) \\
= & \left\langle\nabla_{W} V\left(W, Z_{2}\right), V\left(W, Z_{2}\right)\right\rangle(\sigma(e))=\frac{1}{2}\left(W\left\langle V\left(W, Z_{2}\right), V\left(W, Z_{2}\right)\right\rangle\right)(\sigma(e))=0 .
\end{aligned}
$$

Similiarly,

$$
\begin{aligned}
&\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), V(T(\sigma(e)), Y)\right\rangle=0, \\
&\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), Y\right\rangle=-\left\langle V(T, T), \nabla_{T} Z_{2}\right\rangle(\sigma(e)) \\
&=-\left\langle V(T, T), V\left(T, Z_{2}\right)\right\rangle(\sigma(e))=0 .
\end{aligned}
$$

Let $e_{1}=T(\sigma(e))$ and e_{2}, \cdots, e_{n} be an orthonormal basis of $T_{\sigma(e)}(M)$. Then the above argument shows that $\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), V\left(e_{1}, e_{i}\right)\right\rangle=0$ and $\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), V\left(e_{i}, e_{i}\right)\right\rangle=0$ for $i=2, \cdots, n$, and $\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e))\right.$, $\left.V\left(\left(e_{i}+e_{j}\right) / \sqrt{2},\left(e_{i}+e_{j}\right) / \sqrt{2}\right)\right\rangle=0$ for $2 \leq i \neq j \leq n$ so that $\left\langle\left(V_{T} V(T, T)\right)\right.$ $\left.(\sigma(e)), V\left(e_{i}, e_{j}\right)\right\rangle=0$. Now we have $\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), V\left(e_{1}, e_{1}\right)\right\rangle=$ $\frac{1}{2}(T\langle V(T, T), V(T, T)\rangle)(\sigma(e))=0$. Thus

$$
\begin{equation*}
\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), V\left(e_{i}, e_{j}\right)\right\rangle=0, \quad \text { for } i, j=1, \cdots, n . \tag{6.1}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), e_{i}\right\rangle=0, \quad \text { for } i=2, \cdots, n \tag{6.2}
\end{equation*}
$$

Since $\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), e_{1}\right\rangle=-\left\langle V(T, T), \nabla_{T} T\right\rangle(\sigma(e))=-\langle V(T, T)$, $V(T, T)\rangle(\sigma(e))=-c^{2}$, we have

$$
\begin{equation*}
\left\langle\left(\nabla_{T} V(T, T)\right)(\sigma(e)), e_{1}\right\rangle=-c^{2} \tag{6.3}
\end{equation*}
$$

On the other hand, since M is a subset of the Euclidean space $\left\{m_{0}+\right.$ $\sum_{i=1}^{n} x_{i} X_{i}+\sum_{i, j=1}^{n} x_{i j} B\left(X_{i}, X_{j}\right): x_{i}, x_{i j}$ are real\}, $\left(\nabla_{T} V(T, T)\right)(\sigma(e)), e_{i}, V\left(e_{i}, e_{j}\right)$, for $i, j=1, \cdots, n$, are vectors in the vector subspace generated by X_{1}, \cdots, X_{n} and $B\left(X_{h}, X_{k}\right)$ for $h, k=1, \cdots, n$. The dimension of this vector space is $\frac{1}{2} n(n+3)$ by Proposition 5.2. Thus it follows from Propositions 6.1 and 5.2 that $\left\{e_{1}, \cdots, e_{n}\right\} \cup\left\{V\left(e_{i}, e_{j}\right): 1 \leq i \leq j \leq n\right\}$ is a base, so that $\left(\nabla_{T} V(T, T)\right)$ $(\sigma(e))$ is a linear combination of e_{1}, \cdots, e_{n} and $V\left(e_{i}, e_{j}\right), 1 \leq i \leq j \leq n$. By (6.1), (6.2), (6.3), we get

$$
\left(\nabla_{T} V(T, T)\right)(\sigma(e))=-c^{2} e_{1}=-c^{2} T(\sigma(e))
$$

Since e is arbitrary, $\nabla_{T} \nabla_{T} T=\nabla_{T} V(T, T)=-c^{2} T$ on α, i.e.,

$$
\frac{d^{3} \alpha(t)}{d t^{3}}+c^{2} \frac{d \alpha(t)}{d t}=0
$$

whose solution is an arc of a circle with radius $1 / c$ since we have the boundary conditions:

$$
\begin{aligned}
& \left\langle\frac{d \alpha}{d t}, \frac{d \alpha}{d t}\right\rangle=\langle T, T\rangle=1, \quad\left\langle\frac{d^{2} \alpha}{d t^{2}}, \frac{d \alpha}{d t}\right\rangle=\langle V(T, T), T\rangle=0 \\
& \left\langle\frac{d^{2} \alpha}{d t^{2}}, \frac{d^{2} \alpha}{d t^{2}}\right\rangle=\langle V(T, T), V(T, T)\rangle=-c^{2}
\end{aligned}
$$

This proves Theorem 3 due to the compactness of M.

7. Proof of Theorem 4

Let K denote the positive constant sectional curvature of M, and f_{*} the Jacobian map of the isometry f. Define a real function G on M as (3.1), i.e., $G(m)=$ $\langle V(X, X), V(X, X)\rangle$ for $m \in M$ and a unit vector X in the tangent space $T_{m}(M)$. By Lemma 2.4, we see that $G=c^{2}$ for some nonnegative number c. For any two orthonormal vectors X, Y in $T_{m}(M)$ we get $K=\langle V(X, X)$, $V(Y, Y)\rangle-\langle V(X, Y), V(X, Y)\rangle$ by the Gauss equation, and

$$
\begin{equation*}
3\langle V(X, Y), V(X, Y)\rangle=\langle V(X, X), V(X, X)\rangle-K=c^{2}-K \tag{7.1}
\end{equation*}
$$

by Lemma 2.2 , so that $\langle V(X, Y), V(X, Y)\rangle$ is constant on $T_{m}(M)$. Thus from Lemma 2.8 either $V(X, Y)=0$ or $\langle V(X, Y), V(X, Y)\rangle=\frac{1}{4} c^{2}$. For otherwise, there are orthonormal vectors X, X_{1}, X_{2} in $T_{m}(M)$ such that $c^{2}-K=$ $3\left\langle V\left(X, X_{1}\right), V\left(X, X_{1}\right)\right\rangle \neq 3\left\langle V\left(X, X_{2}\right), V\left(X, X_{2}\right)\right\rangle=c^{2}-K$, which is impossible. Therefore either $c^{2}=K$ or $c^{2}=4 K$ and $c>0$.

At first, we consider the case $c^{2}=K$.
Proposition 7.1. Suppose $c^{2}=K>0$. Then $f(M)$ is an open subset of an n-dimensional sphere.

Proof. Let $m \in M$, and e_{1}, \cdots, e_{n} be an orthonormal basis of $T_{m}(M)$. It follows from (7.1) that $V\left(e_{i}, e_{j}\right)=0$ for $1 \leq i \neq j \leq n$. Consequently by Lemma 2.2 we have $V\left(e_{i}, e_{i}\right)=V\left(e_{1}, e_{1}\right)$ ior $i=1, \cdots, n$. This implies $f(M)$ is an open subset of an n-dimensional sphere.

Now we consider the case $c^{2}=4 K$. Let $m \in M$, and e_{1}, \cdots, e_{n} be an orthonormal basis of $T_{m}(M)$. Then we have

$$
\begin{equation*}
\left\langle V\left(e_{i}, e_{j}\right), V\left(e_{i}, e_{j}\right)\right\rangle=\frac{1}{4} c^{2} \quad \text { for } 1 \leq i \neq j \leq n \tag{7.2}
\end{equation*}
$$

by (7.1),

$$
\begin{equation*}
\left\langle V\left(e_{i}, e_{i}\right), V\left(e_{j}, e_{j}\right)\right\rangle=\frac{1}{2} c^{2} \quad \text { for } 1 \leq i \neq j \leq n \tag{7.3}
\end{equation*}
$$

by Lemma 2.2, and

$$
\begin{equation*}
\left\langle V\left(e_{i}, e_{i}\right), V\left(e_{i}, e_{j}\right)\right\rangle=0 \quad \text { for } 1 \leq i \neq j \leq n \tag{7.4}
\end{equation*}
$$

by Lemma 2.2. If $1 \leq i, j, h \leq n$ and i, j, h are different, then by (7.1) we have $\left\langle V\left(e_{i},\left(e_{j}+e_{h}\right) / \sqrt{2}\right), V\left(e_{i},\left(e_{j}+e_{h}\right) / \sqrt{2}\right)\right\rangle=\frac{1}{4} c^{2}$. Applying (7.2), (7.3) to the expansion of this equation yields

$$
\begin{equation*}
\left\langle V\left(e_{i}, e_{j}\right), V\left(e_{i}, e_{h}\right)\right\rangle=0, \quad \text { for different } i, j, h . \tag{7.5}
\end{equation*}
$$

It then follows from Lemma 2.6 that

$$
\begin{equation*}
\left\langle V\left(e_{i}, e_{i}\right), V\left(e_{j}, e_{h}\right)\right\rangle=0, \quad \text { for different } i, j, h \tag{7.6}
\end{equation*}
$$

If $1 \leq i, j, h, k \leq n$ and i, j, h, k are different, then we have $\left\langle V\left(\left(e_{i}+e_{j}\right) /\right.\right.$ $\left.\left.\sqrt{2},\left(e_{h}+e_{k}\right) / \sqrt{2}\right), V\left(\left(e_{i}+e_{j}\right) / \sqrt{2},\left(e_{h}+e_{k}\right) / \sqrt{2}\right)\right\rangle=\frac{1}{4} c^{2}$. By Lemma 2.2, we se that

$$
\left.\left\langle V\left(\left(e_{i}+e_{j}\right) / \sqrt{2},\left(e_{i}+e_{j}\right) / \sqrt{2}\right), V\left(\left(e_{h}+e_{k}\right) / \sqrt{2},\left(e_{h}+e_{k}\right) / \sqrt{2}\right)\right)\right\rangle=\frac{1}{2} c^{2} .
$$

Applying (7.3), (7.6) to the expansion of the last equation thus gives

$$
\begin{equation*}
\left\langle V\left(e_{i}, e_{j}\right), V\left(e_{h}, e_{k}\right)\right\rangle=0, \quad \text { for different } i, j, h, k \tag{7.7}
\end{equation*}
$$

Since f is an isometry, (7.2), \cdots, (7.7) imply:

$$
\begin{align*}
& \text { if } 1 \leq i \neq j \leq n \text {, then }\left\{f_{*} e_{1}, \cdots, f_{*} e_{n}, c^{-1} V\left(e_{i}, e_{i}\right), 2 c^{-1} V\left(e_{i}, e_{j}\right)\right. \tag{7.8}\\
& \left.=2 c^{-1} V\left(e_{j}, e_{i}\right)\right\} \text { is orthonormal and }\left\langle V\left(e_{i}, e_{i}\right), V\left(e_{j}, e_{j}\right)\right\rangle=\frac{1}{2} c^{2} \tag{7.9}
\end{align*}
$$

for $1 \leq i, j, h, k \leq n$ and different $i, j, h, V\left(e_{i}, e_{j}\right)$ and $V\left(e_{h}, e_{k}\right)$ are orthogonal.

So we can define an Ω-sphere, say S_{m}, through $f(m)$ with radius $1 / c$ with respect to the system $\left\{f_{*} e_{i}, c^{-1} V\left(e_{i}, e_{j}\right)\right\}$. For $X \in T_{m}(M)$, let $\|X\|$ denote its length. It follows from the definition of Ω-sphere that S_{m} is the set of all points $A(X), c\|X\|<2 \pi$, defined by
$A(X)=f(m)+\frac{\sin c\|X\|_{f^{\prime}} X+\frac{1-\cos c\|X\|}{c\|X\|} V(X, X), \quad \text { for } X \in T_{m}(M), ~\left(c^{2}\|X\|^{2}\right.}{}$
with $0<c\|X\|<2 \pi, A(0)=f(m)$. Thus S_{m} is independent of the choice of the basis e_{1}, \cdots, e_{n}, so that for each $p \in M$ we can define an n-dimensional Ω-sphere S_{p}.

On the other hand, there is a real number $0<c r<2 \pi$ such that the exponential map Exp_{m} at m maps

$$
U=\left\{x_{1} e_{1}+\cdots+x_{n} e_{n}:\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)<r^{2}\right\}
$$

diffeomorphically onto an open neighborhood of m, and $f \circ \operatorname{Exp}_{m}$ is one to one on U. By Lemma 2.5 we thus have

$$
\begin{aligned}
f \circ \operatorname{Exp}_{m} \sum_{i=1}^{n} x_{i} e_{i}= & f(m)+\frac{\sin c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}}{c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}} \sum_{i=1}^{n} x_{i} f_{*} e_{i} \\
& +\frac{1-\cos c\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}}{c^{2}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)} \sum_{i, j=1}^{n} x_{i} x_{j} V\left(e_{i}, e_{j}\right) .
\end{aligned}
$$

Hence $f\left(\operatorname{Exp}_{m} U\right)$ is an open subset of S_{m}. This proves the local theorem, since $\operatorname{Exp}_{m} U$ is an open neighborhood of m.

Let $p \in \operatorname{Exp}_{m} U$. Then $f(p) \in S_{m}$. Let V_{1} denote the second fundamental tensor of S_{m}. If Y_{1}, \cdots, Y_{n} form an orthonormal basis of $T_{p}(M)$, then $f_{*} Y_{1}, \cdots, f_{*} Y_{n}$ form an orthonormal basis of $T_{f(p)}\left(S_{m}\right)$. Moreover, since $\operatorname{Exp}_{m} U$ is isometric to an open subset of S_{m}, we see that $V\left(Y_{i}, Y_{j}\right)=$ $V_{1}\left(f_{*} Y_{i}, f_{*} Y_{j}\right)$ for $i, j=1, \cdots, n$, so that S_{p} is the Ω-sphere through $f(p)$ with radius $1 / c$ with respect to the system $\left\{f_{*} Y_{i}, c^{-1} V_{1}\left(f_{*} Y_{i}, f_{*} Y_{j}\right)\right\}$.

Since S_{m} is compact and connected, every point $q \in S_{m}$ can be jointed to $f(p)$ by a geodesic (cf. [1, Theorem 15, Chapter 10]). By Theorem 3, S_{m} satisfies the assumptions of Theorem 1 , in which f is the inclusion map. We use the exponential map at $f(p)$ to parametrize S_{m}. According to Lemma 2.5, we see that the Ω-sphere through $f(p)$ with radius $1 / c$ with respect to the system $\left\{f_{*} Y_{i}, c^{-1} V_{1}\left(f_{*} Y_{i}, f_{*} Y_{j}\right)\right\}$ is just S_{m}. Consequently, $S_{p}=S_{m}$. That is, S_{m} is a locally constant Ω-sphere. Since M is connected, all S_{m} are the same, say S. Then $f(M)$ is an open subset of S.

Reference

[1] N. J. Hicks, Notes on differential geometry, Math. Studies No. 10, Van Nostrand, Princeton, 1965.

[^0]: Received January 7, 1972.

