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ISOMETRIC IMMERSIONS OF MANIFOLDS WITH
PLANE GEODESICS INTO EUCLIDEAN SPACE

SING-LONG HONG

1. The main theorems

The object of this note is to prove the following
Theorem 1. Assume that (a) M is an n-dimensional {n > 2) connected

Riemannian manifold, (b) /: M —• Rn+P is an isometric immersion of M into
an (n + p)-dimensional Euclidean space Rn+P,p > 0, and (c) every geodesic
on M is locally a plane curve, that is, if σ: (a, β) —» M is a geodesic on M, then
for every t e (a, β), there exists an open interval I in {a, β) containing t such
that f°σ{l) lies on a certain plane Et. Then either f(M) is an open subset of an
n-dimensional plane or M is \-pinched, i.e., its sectional curvature K satisfies

\A<K<A

for some positive number A.
If M is also ^-pinched, then we have
Theorem 2. Assume that (a), (b), (c) of Theorem 1 hold, and that M is

^-pinched. Then M has positive constant sectional curvature, if one of the
following conditions also holds:

(1) 1 < P < \n + 2,
(2) n is prime,
(3) there is m e M such that the sectional curvature K of M at m satisfies

\Ar < K < A' for some positive A'.
Let <,> denote the metric tensor in Rn+v. Let Xt, B(Xiy Xt), 2B(Xt, X3) =

2B(Xj,Xi), l<iφj<n, be unit vectors in Rn+P with the following
properties:

( i ) if 1 < i φ j < n, then {X19 . . . , Xn, B{XU Xτ), 2B(Xi, Xj) = 2B(Xj9 Xt)}
is orthonormal;

(ii) for every i φ j , 1 < /,/ < n, (BiX^Xd^iX^X^ = J ;
(iii) <B(XU Xj), B(Xh, Xk)} = 0, for i, j , h differernt and 1 < /, /, h,k<n.
Let c be a fixed positive real number, and m be a fixed point of Rn+P. By

identifying points of Rn+P with their position vectors, the set of all points

p(*i> •••>**) defined by
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— m

+ x\) U
for real x19 , xn with 0 < c(x\ + + x\)m < 2π and φ(0, , 0) = m
is an ^-dimensional compact connected submanifold of Rn+p with respect to
the natural differentiate structure. We shall call it an n-dimensional β-sphere
with radius 1/c with respect to the system {Xi,B(Xi9Xj)}, or, simply, an n-
dimensional β-sphere.

Theorem 3. Let M be an n-dimensional (n > 2) Ω-sphere with radius 1/c
(c > 0). Then M has constant sectional curvature \c2, and geodesies on M are
circles with radius 1/c.

It follows from Theorem 3 that an β-sphere satisfies the assumption (c) of
Theorem 1.

Theorem 4. Assume that (a), (b), (c) of Theorem 1 and that M has posi-
tive constant sectional curvature. Then f(M) is either an open subset of an
n-dimensional sphere or an open subset of an n-dimensional Ω-sphere.

2. Reduction of the assumptions (a), (b), (c) of Theorem 1

Assume that (a), (b), (c), of Theorem 1 hold. In this section we shall con-
sider some purely local properties of M. Let U be an open connected neighbor-
hood of a point moe M on which / is one to one. Since the following is a
local argument, we shall identify x € U with f(x). For any vector fields X, Y, Z
tangent to M, we have the formulas of Gauss and Codazzi:

VXY = DXY + V(X, Y) ,

nor FX(F(Y,Z)) - V(DZY,Z) - V(Y,DZZ)

= noτFγ(V(X,Z)) - V(DYX,Z) - V(X,DYZ) ,

where FX,DX denote the covariant differentiations with respect to the Eucli-
dean connection of Rn+p and the Riemannian connection on M, respectively,
and nor denotes the normal component. V(X, Y) is the normal component of
VXY and symmetric.

Lemma 2.1. Let X, Y be two orthonormal vectors in the tangent space
Tm(M) atmeϋ. Then <F(Z, X), V(X, Y)> = 0.

Proof. It V(X, X) = 0, there is nothing to prove. So we assume V(X, X)
ΦO. Let σ: (-r, r) -> U be a geodesic with σ(0) = m, T(σ(0)) = X, where
T denotes the tangent field of a. By (c) of Theorem 1, we may assume that σ
lies on a plane E. Thus both T and VTT = DrT + V(T, T) = V(T, T) are
parallel to E so that σ(t) = m + a(t)X + b(t)V(X,X) for some differentiate
functions a, b. Therefore FT(V(T,T)) = VTVTT = a"'(f)X + b'"(i)V(X,X).
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Let Z be a vector field tangent to M with Z(m) = Y. Then <F(X, X), V(X, Y)>
= <F(Γ, Γ), F(7\ Z)>(m) = <F(7\ Γ), FΓZ>(m) - <FΓ(F(Γ, Γ)), Y>(m) +
<F(Γ, T), FrZ>(m) = Γ<F(Γ, Γ), Z>(m) = 0, since <F(X, X), Y> = 0 and
<F(Γ,Γ),Z> = 0.

Lemma 2.2. Le/ X, Y be two orthonormal vectors in the tangent space
TJtf) at mzU. Then <F(X, X), V(X, X)> = <V(Y, Y), K(Y, Y)> <md
<F(X, X), F(X, X)} = <F(X, X), V(Y, Y)> + 2<F(Z, Y), F(Z, Y)>.

The proof of this Lemma follows directly from Lemma 2.1.
Lemma 2.3. For απ y two unit vectors X, Y in the tangent space Tm(M)

atmeU, we have <F(X, X), V(X, X)} = <V(Y, Y), V(Y, Y)>.
This Lemma follows immediately from Lemmas 2.1 and 2.2.
By virture of Lemma 2.3 we can define a difϊerentiable function g on U by

(2.1) g(m) = <F(X, X), V(X, Z)> , X : a unit vector in Tm(M).

Lemma 2.4. The function g defined by (2.1) is constant on U.
Proof. Let m e U and X\, , Xn be an orthonormal basis of the tangent

space ΓTO(M), and σ: ( — r, r) —> M be a univalent geodesic on M with σ(0) = m
and 7Xσ(0)) = ^ where Γ denotes the tangent field of σ. Let Y19 , Yw be
parallel fields along σ with Y (̂m) = Xt for i = 1, , n. Then Y19 , Yn

are orthonormal along σ and Yj = T.
Let 0 be the Fermi coordinate map from an open neighborhood A of σ onto

an open neighborhood W of the origin of a Euclidean space Rn, that is, for
(xl9 - - , xn) € JF we have

where Expσ(:c) denotes the exponential map at σ(x). Let Z1? , Zn denote the
coordinate fields on A with Z^σix)) = Y^σW). Let X, Y denote the restric-
tions of Z19 Z2 to the set of points Έxpσ{Xl) {x2Y2(σ(xJ)), respectively. Since
each Xj-curve is a geodesic parameterized by the arc length, DYY = 0 and
<Y, Y> = 1. By direct computations we obtain Y<X, Y> = <DYX, Y> +
<X, DYY) = <DFX, Y> = JX<Y, Y> = 0, since DXY = DFX (note that
Z1 ?Z2 are coordinate fields). Thus (X, Y) is constant along x2-curves, a n d we
have (X, Y> = 0 since (X9 Y) = 0 on σ. Hence by Lemma 2.1 we have
<F(X, Y), V(Y, Y)> = 0. Since (DγX)(m) = (DxY)(m) = (DτY2)(m) = 0,
Codazzi equation implies that

(nor FXV(Y, Y))(m) = (nor FYV(X, Y))(m) ,

so that

, Y), V(Y, Y)>(m) = <FFF(X, Y),
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If F(X2, X2) = 0, then <FXV(Y, Y), V(Y, Y)>(m) = 0. Suppose that F(X2, X2)
Φθ. Then by (c) of Theorem 1 there exists a positive real number s such that
the curve Expm x2X29 for x2 e (—s, s), lies on a plane, i.e., there are different-
iable functions a, b such that Exρm x2X2 — m + a(x2)X2 + b(x2)V(X2,X2) for
x2 e (—s, s). Thus

Y), > < >

= -<F(Z 1 5 Z 2 ), f l ' "(O)Z 2 + Z/"(0)F(X2,X2)>

= 0 .

So we always have*,* = X^V(Y, Y), F(Y, Y)> = 2<FZF(Y, Y), F(Y, Y)>(m)
= 0. Similiarly, we have Z ^ = 0 for i = 2, , n. Hence the Jacobian map
g^ of g is zero at m. Since m is arbitrary, g^ — 0 on C/. Thus g is locally con-
stant, and the assertion of the lemma follows from the connectedness of U.

Lemma 2.5. Suppose that g = c2 on U with c > 0. Let σ: ( — r, r) —> £/
Z?̂  Λ geodesic on U with tangent field T along σ. Suppose that T(σ(0)) = Z is
a unit vector. Then for t e ( —r, r) w^ have

σ(t) = (7(0) + c-1 (sin cί)Z + c"2(l - cos ct)V(Z, Z) .

Proof. From the assumption it follows that T is a unit vector field along
σ. By the definition of g we have <F(Γ, T), F(Γ, T)> = c2. Thus T and V(T, T)
are linearly independent along σ. For ί s ( - r , r ) let Et = {σ(ί) + xΓ(σ (0) +
yF(Γ, T)(σ(t)) € i ^ + p : x, y reals}. Since a is locally a plane curve, Et is locally
constant and is constant on ( — r, r) by the connectedness of ( —r, r), so that

for t € ( — r, r) and some differentiable functions 0, fr. To compute a, b we have

= af(t)Z + b'(t)V(Z9Z) ,

- fl"(ί)Z + b"{t)V{Z9Z) ,

Since T and F(T, Γ) are linearly independent, FTV(T, T) is a linear combina-
tion of T and FCΓ,T). But (PTV(T, T), T> = - <V(T, T), FTT> =
-<F(Γ,Γ),F(Γ,Γ)> = - c 2 and <FΓF(T,T),F(Γ,T)> = $T<y(T9T)9V(T9T)>
= 0. Thus FTV(T, T) = —c2T, and we have the differential equations

am(f) + c2a'(t) = 0, b'"(f) + cΨ(t) = 0 .

Solving these differential equations with the boundary conditions: a(0) = b(0)

= fc'(0) = β"(0) = 0, Λ ;(0) = b"(0) = 1 gives

a(f) = c~ι sin cί , b(t) = c"2(l — cos cί) ,
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which prove Lemma 2.5.
Lemma 2.6. Let X, Y, Z be three orthonormal vectors in the tangent space

Tm(M) atmzU. Then

<V(X, X), V(Y, Z)> + 2<F(X, Y), V(X, Z)> = 0 .

Proof. By Lemma 2.2, for any real θ we have

<V(X, X), V(X, X)} = <V(X, X), V(Y cos θ + Z sin θ, Y cos θ + Z sin 0)>

+ 2<V(X,Y cos 0 + Z sin 0),F(X,Y cos 0 + Z sin 0)> .

Differentiating the above equation with respect to θ at 0 = 0 thus gives the
desired result.

Lemma 2.7. Assume that g — c2 on U with c > 0. Let X, Y be two
orthonormal vectors in the tangent space Tm(M) at m € U with the following
property:

(2.2) <V(X, X), V(Y, Z)> = 0, // X, Y, Z are orthonormal in Tm(M).

Then either V(X, Y) = 0 or (V(X, Y), V(X, Y)> = \c\
Proof. Suppose that V(X,Y) Φ 0. Choose an orthonormal basis Xx, ,Xn

of Tm(M) such that Xλ = X, X2 = Y. Since the exponential map Expm at m
is a local diffeomorphism, there is a positive real number s such that Expm is
a diffeomorphism from

onto an open neighborhood of m. By Lemma 2.5 we have

Expm (ΣU ^ i ) = m + (cr)"1 (sin cr) ΣU Xt^t

+ (cr)"2(l - c o s c r ) n Σ i n = i * Λ > Σ"-i ^ Λ > »

where r = (x\ + ••• + JC2J1/2. Put a = (cr)~ι sin cr, b = (cr)~2(l - cos cr).
Then for / = 1, , n we have

3/3*, =

dxλ ox\ ί=i σ^x α^i ί=i

Choose a positive real number * such that 0 < x2 < s and 1 — cos ex ψ 0.
At *! = * 3 — = xn — 0, x2 = x, we have
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= db/dXi = 0, for i = 1, 3, , Λ ;

da/dx2 = (cos ex)/x — (sin ex)/(ex 2 );

d£>/9x2 = - 2 ( 1 - cosex)/(c 2 x 3 ) + (sin ex)/(ex2);

d2a _ cos ex sin ex . d2b _ 2(1 — c o s ex) sin ex

3xξ x2 ex3 dx\ c2x4

Let Z , = (d/dXi)(JBxpm xX2), i = 1, . • •, #ι, and B = (F 3 / 3 , 1 (9/3x 1 ))(Exp m x * 2 ) .
Then we have

(2.3) Zt = s i n c * Z , + 2 ( 1 ~ C Q S CT) V(Xi9 X2), for i = 1, 3, - . , n
ex e2x

(2.4) Z2 = (cos ex)Z2 + (e"1 sin cx)V{X2, X2)

D _ / cos ex sin ex \-^ / sin ex 2(1 — cos ex) \y/γ y \

\ x ex2 / V ex e 2x 2 /

2(lcoscx)

C2X2

Recall that for /, / = 1, . , n with / Φ j we have <V(XU AΓ<), V(Xi9 Xj)> = 0
and e2 = < F ( Z i ? X,\ V(XU Z,)> - < F ( Z 1 9 Z x ) , F ( Z 2 , Z 2 )> + 2 < F ( Z 1 ? Z 2 ) ,
K(ΛTlfΛr2)>. F r o m (2.2) it follows that < n ^ i , Z i ) , V(Xj9XJ> = 0, for
/ = 3, . . . , « .

Applying the above relations to the computation of inner products of vectors
given by (2.3), (2.4), (2.5), we can easily obtain

(2.6) < f l , Z j > = 0 , for / = l , 3 , . . . , n

< 5 , Z 2 > = 1/jc — (sin ex-cos ex)/(ex2)

- ( 4 ( 1 - cos ex) sin cx)<V(X19 Z 2 ) , V(Xl9 Z 2 )>/(c 3 x 2 )

< β , 5 > = 1/x2 - (2 sin ex cos ex)/(ex3) + (sin2 ex)/(e2x4)

(2.8) + 16(1 - cos e x ) 2 < F ( Z 1 5 Z 2 ) , V(X19 * 2 )>/(e 4 x 4 )

- 8((1 - cos ex) sin cx)<V(X19 X2), V(X19 X 2)>/(e 3x 3)

(2.9) <Z 1 ? Z,> ^ ^ 4 ( l c o s e x ) 2

<Z1? Z,> ^ ^ +
e 2 x 2 e 4 x 2

(2.10) <Z2,Z2} = 1

(2.11) < Z 2 , Z , > = 0, for / = 1,3, . . . , Λ .

On the other hand, according to the Gauss formula we have B = £]?=i fl^i +
^ Z i ) , for some real numbers a19 -- ,an. F r o m (2.6), (2.7), (2.10), (2.11)
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it follows that B = <fl, Z2}Z2 + ViZ,,Z,), so that (B, B} = <£, Z2)
2 +

(ViZ,, Z,), ViZ,, Z,)}. Set A^ZJζZvZ^'*. Since g = c2, <F(Z1? Z,),
Z,)) = <Zι,Zιy<yiΛ,A),ViΛ,Λ)y = c\Z,,Zy. Therefore

(2.12) <B, £> = <B, Z2y + c\Zx, Zλy .

Substituting (2.7), (2.9) in (2.12) and comparing the resulting equation with
(2.8) we can easily obtain

16(1 - cos c

= 32(1 -

+ 8(1 - cos cx)iύtf cxKViX,, X2), ViX,, X2)y Iic

which can be simplified to A(ViX,,X2), V(X19XJ> = c\ implying <V(X, Y),

Lemma 2.8. Suppose that g = c2 on U with c > 0. Γ/ze/t /or any two
orthonormal vectors X, Y in the tangent space TmiM) at m 6 U we have

0 < ViX, Y), ViX, Y)> < ic2 .

Moreover, if X, Y are orthonormal vectors in Γm(M) with 0< <V(X, Y), V(X, Y)>
<(^c2, ί/z^n /Aerβ αr^ wn/ί v^c/or s X 1 5 X2 such that X, X19 X2 are orthonormal

and ViX,Xλ) = 0, <ViX,X2), ViX,X2)} = \c\
Proof. Suppose that X, Y are two orthonormal vectors in TmiM) such that

ViX, Y)ΦO and <V(X, Y), ViX, Y)> Φ \c\ Let S denote the set of all unit
vectors in Γm(M) which are orthogonal to X. With respect to the natural
topology on S, the function F defined by

FiZ) = ( V i X , Z ) , V i X , Z ) > , f o r Z z S

is continuous on S. Since S is compact, F takes a minimum, say at Xx, and a
maximum, say at X2.

If X, Z1 5 Z are orthonormal, then, for any real θ, X1 cos θ + Z sin θ is in S.
Let A(0) = (ViX, Xλ cos 0 + Z sin 0), F(Z, Z x cos 0 + Z sin 0)>. Then Λ takes
a minimum at 0 = 0, Λ7(0) = 0, i.e., <F(Z,Z1), 7(Z,Z)> = 0. By Lemma
2.6 we have <V{X, X), ViX,, Z)> = 0. Consequently, X and Z 1 ? and similarly
X and X>, have the property (2.2). Since FiX2) > F(Y) > 0, it follows from
Lemma 2.7 that F(Z2) = \& > F(Y). By assumption we have F(Y) < \c\
This proves the first assertion. Also FiX,) < F(Y) < \c2. According to
Lemma 2.7 we have ViX,X,) = 0.

Clearly, Z 1 5 Z 2 are linearly independent. Let X3 = X2 — (X19X2yxim Then
<Z3, Z3> < 1, Z3/<*3, ^3>1/2 e 5 and ViX, X2) = ViX, Z3), so that

FiX2) = (ViX,Xz), ViX,X3)) =
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Thus <JΓ3, JΓ3> = 1, and hence <X19X2y = 0. This proves Lemma 2.8.

3. Proof of Theorem 1

According to Lemma 2.3 we can define a real function G on M by the
second fundamental tensor V as follows: At m e M,

(3.1) G(m) = <F(X, X), V(X, X)} , for a unit vector X in Tm(M) .

By Lemma 2.4, G is locally constant. Since M is connected, G is constant on
M. Note that G is nonnegative.

Case 1: G = c2 for some constant c > 0. Let ra € M, and Z, Y be two
orthonormal vectors in the tangent space Tm(M). Let K(X Λ Y) denote the
sectional curvature of the plane spanned by X and Y. The Gauss equation
implies

, Y), V(X,

, Y),

(3.2) K(X

By Lemma 2.

JSΓCX-

Λϊ) =

2 we get

Λ Y) =

—

<V(X, λ

<V(X, J

c2 - 3<

0, V(Y, Y)> -

O,F(JΓ,J0> -
F(Z, Y), F(Z,

According to Lemma 2.8, <K(JT, Y), K(JT, Y)> < ic2. So we have ^c2 <
K(X Λ Y) < c2.

Case 2: G = 0 on M. Consider / locally. If X is a vector field tangent to
M, then F(JΓ, X) = 0. Hence /(M) is an open subset of an rc-plane, since M
is connected.

4. Proof of Theorem 2

By assumption there is a positive number A such that the sectional curvature
K of M satisfies

(4.1) 0< \A <K<A .

Let G be defined (3.1). Then it follows from Lemma 2.4 that G is constant on
M, since M is connected. For mzM and orthonormal vectors X, Y in Γm(M),
the sectional curvature X(JΓ Λ Y) of the plane spanned by X and Y is

Y) = <V(X, X), F(Y, Y)> - <V(X, Y),

= <F(Z, JO, F(Z, J0> - 3<F(Z, Y),

= G - 3<F(Z, Y),

Thus K(Z Λ Y) > 0, G = c2 for some positive constant c, and <F(Z, Y),
^5 Y)> < i^2 according to Lemma 2.8.
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For meM and unit vector X in Tm(M), define

p(X) = {Y € Tm(M): F(Z, Y) = 0} .

Then p(X) is a vector subspace of Tm(M) over the real field JR1. For Y β <
and Y — (X,YyX are orthogonal. By Lemma 2.1 we see that 0 =
<F(Z,X),F(X, Y - <x, Y>*)> = -<x, γy(v(x,x), v(x,x)y = -c\x, γ>,
so that Y and X are orthogonal.

Let tf(X) = RιX Θ |θ(Z). Let a(X)L denote the orthogonal complement of
a(X) in Γm(M), and S(X) the set of all unit vectors in a{X)L. Then we have
the following lemmas:

Lemma 4.1. If Y e S(X), then <F(X, Y), F(X, Y)> = ic2 am/ <F(X, Z),
V(Y, Y)> = ^c2. Moreover, if Y, Z are two orthonormal vectors in S(X),
then <V(X, Y), V(X, Z)> = 0.

Proof. Since V is bilinear, the real function F on S(X) defined by

F(JV) = <V(X,W),V(X,W)>, for W e 5(Z),

is continuous on the compact set S(X) with respect to the natural topology of
S(X). So F takes a minimum at some TzS(X). Moreover, X, T have the
property (2.2). In fact, let X, T, W be three orthonormal vectors in Tm(M).
We consider the three posibilities:

Case 1: W € S(X). Then Γ and W are orthonormal vectors in S(X). Thus
the real function

h(θ) = <F(Z, Tcos 0 + JF sinθ), V(X, Tcosθ + W sin0)>

of real variable θ takes a minimum at 0 = 0, so that ^(O) = 0, that is,
(V(X, Γ), V(X, W)} = 0. According to Lemma 2.6, we have (V(X,X),

v(τ, w)y = o.
Cα«?2: ΨepCΛO. Then F(Z, P̂ ) = 0. By Lemma 2.6 we have

Case 3: JF = ^ ^ + a2W2, where W19 W2 are unit vectors in a(X), a{X)L

respectively and a19 a2 are real numbers. Since X, W are orthonormal,
W1 € p(X). By Cases 1 and 2 we have <V(X, X), V(T, W€)> = 0, for / = 1, 2.
Hence <V(X,X), V(T, W)} = ^<F(Z,Z), V(T, WJ> + a2<V(X,X), V(T, W2)}
= 0.

According to Lemma 2.7, either V(X, T) = 0 or <F(Z, Γ), F(Z, T)> =
ic2. Since Γ e S(Z) c ^(Z)^, <F(Z, Γ), F(Z, Γ)> = ^c2. Therefore for
YeS(X) we have <F(Z, Y), F(Z, Y)> > <F(Z, Γ), F(Z, Γ)> - ic2. By
Lemma 2.8, we get <F(Z, Y), 7(Z, Y)> = ic2. So from Lemma 2.2 follows

Now, if Y,Z are two orthonormal vectors in S(X), then, by the first part
of this Lemma, <FZ, (Y + Z)/^T), F(Z, (Y + Z)//2")> = ic2,
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, Y), F(Z, Y)> = <F(Z,Z),F(Z,Z)> = \c\ So we have <V(X,Y),
V(X,Z)> = 0.

Lemma 4.2. // W is a unit vector in a(X), then V(X, X) = V(W, W).
Proof. Let W = aX + bY, where Y is a unit vector in p{X)9 and a, b are
real numbers. Then a2 + b2 = 1 and V(X, Y) = 0. By Lemma 2.2 we have
<F(X, X), F(Z,X)> = <F(Z,X), V(Y, Y)> - <F(Y, 10, K(l% 10>, so that
F(Z,Z) = V(Y, Y), and F(W, 00 = α2F(X,X) + ί)2F(Y, Y) = F(X,Z).

Lemma 4.3. If Y e S(X), then a(Y) c αffl 1 .
Proof. Let αZ + foJF be a unit vector in a(Y), where Z, PF are unit vectors

in a(X), aiX)^ respectively, and a, b are real numbers. Then, by Lemma 4.2,
we get V(Y, Y) = V(aZ + bW,aZ + bW) and V(X9X) = V(Z,Z). Accord-
ing to Lemma 4.1, we have

ic2 = <V(X, X), V(Y, Y)> = <V(X, X), V(aZ + bW, aZ + bW)}

= a\V(X, X), V(X, X)} + 2ab(V(X, X), V(Z, W)}

+ b\V(X,X),V(W,W)>

= a2c2 + 2ab<V(Z,Z), V(Z, W)> + \b2c2 = a2c2 + ψ& .

The last equation follows from Lemma 2.1. Since a2 + b2 = 1, a = 0. Thus
we see that a(Y) C a(X)x.

According to Lemma 4.3 we can decompose Tm(M) into a direct sum

(4.2) Tm{M) = a{Xx) Θ Θ α(* 4 )

for some unit vectors X19 , Xk in Tm{M) such that αCJQ C a{Xά)
L for

1 < i ^ / < k.
For each unit vector X e Tm(M), let β(X) denote the dimension of the vector

subspace a{X). Let H(m) denote the mean curvature vector on M at m, that
is, if e19 - -, en form an orthonormal basis of Tm(M), then H(m) = (V(eu eλ)
_j_ . . . _l_ V(en,en))/n. The mean curvature vector Him) is independent of
the choice of the basis of Γm(M). We choose an orthonormal basis Y19 , Yn

of Tm{M) such that Yx = X, Ytz a{X) for / < β(X), and Yά € a(Xy for
/ > β(X). Then, by Lemma 4.2, V(Yi9 Y<) = F(Z,Z) for i < β(X). Accord-
ing to Lemma 4.1, <F(Z,Z), 7(Yi, Y,)> = ^c2 for / > β(X). Hence

Let 51 denote the set of all unit vectors in Tm(M) with respect to the natural
topology. Since n > 2, S is connected. However, the function (V(X, X), H(ηφ
of X e S is continuous on S. So the integral function β(X) is constant on S,
and we can define a real function B on M by

B(m) = j8(J0, tor m^M and a unit vector Z in Tm(M).
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Then B(m) satisfies the relation

n(V(X, X), H(m)} = \nc2 + \B(m)c2 ,

where X is a unit vector in Tm(M). Since both V and # are difϊerentiable, B
is continuous on M. The connectedness of M implies that the integral function
B is constant on M. Let a denote this constant.

Case 1: a — 1. Then for any m e M and any unit vector X in Tm(M), we
have p(X) = 0. Thus, if X, Y are orthonormal in Γm(M), then Y e SQO c
a(Xy. By Lemma 4.1, <V(X,X), V(Y, Y)> = ^c2, <F(X, Y), F(X, Y)> =
\c2, so that K(X Λ Y) ==• \c2, which implies that M has positive constant
curvature \c2.

Case 2 : a — n. Then Y € />(Z) for any raeM and two orthonormal
vectors X, Y in Tm(M). Thus F(X, Y) = 0. By Lemma 4.2, we also have
V(X,X) = V(Y, Y). Hence the sectional curvature K(X Λ Y) = c2, and the
sectional curvature of M is c2.

Case 3 : 1 < a < n. Let m € M, and ΓTO(M) = α ^ ) Θ Θ a(Xk) be a
decomposition of Tm(M) into a direct sum as (4.2). Then each a(Xi), for
/ = 1, , k, has dimension α, so that n = α&, which implies that π is not
prime and k > 2. Since α > 2, we can choose α unit vector Y 6 /oC^). More-
over, Xί9 Y are orthonormal, and V(X19 XJ = F(Y, Y) by Lemma 4.2. Hence
the sectional curvature K(XX /\Y)—c2. On the other hand, Xx and X2 are
orthonormal, and X2 e ̂ (Zj). It follows from Lemma 4.1 that K(XX Λ X2) =
\c2, which together with K{XX Λ X) — c2, implies that case (3) in Theorem 2
can not happen, since there is no half-open interval (\x, x] which contains
the closed interval [\c2, c2].

Let e19 , en be an orthonormal basis of Γm(M) such that Xλ = ex and
^r,α+u * 9 er,2a form an orthonormal basis of a(Xr+1) for r = 0, , A: — 1.
Suppose that there are real numbers b19 b2, at, i = α + 1, , n, such that

(4.3) ΣU+i atViXv ed + bxV(Xu X,) + b2V(X2, X2) = 0 .

Taking the inner product of (4.3) with V(XUX^ we get bλ + \b2 = 0 by
Lemmas 2.1 and 4.1. According to Lemma 4.2, V(X2,X2) = Vie^e^ for
α + 1 < i < 2a. Hence <V(Xί9 et)9 V(X29 X2)} - <F(Z 1 ? β4), F f e , e4)> = 0
for a + 1 < / < 2α. For i>2a+ 1, e* β S(Z2). Also, Xλ e S(X2), and by
Lemmas 4.1 and 2.6 we have <y(X1,et),V(X2,X2)y = 0 for i > 2α + 1.
Taking the inner product of V(X2,X2) with (4.3) gives \bx + b2 = 0. Thus
we have &! + |ί?2 = 0 and J i i + b2 = 0, so that bι — b2 — 0.

For α + 1 < i, ^ e 5(ZX). By Lemma 4.1, <y(Xl9 et)9 V(Xl9 es)} = 0 for
a + 1 < / Φ \ < n. Thus V(Xλ, ea+1)9 , V(XX, en) are orthogonal and are
nonzero normal vectors according to Lemma 4.1, so that V(Xλ, ea+1), ,

15 en) are linearly independent. Hence at = 0 for i = α + 1, , n.
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The above argument shows that V(Xl9 ea+1), •, V(X19 en), V(Xl9X^)9

V(X29 X2) are linearly independent. They are normal vectors, and p > n — a
+ 2. Now n — ak and k > 2, so that a < \n, which implies p > \n + 2.
Consequently under the assumptions of Theorem 2 case (3) can not happen
thus proving Theorem 2.

5. Some properties of vector subspaces of Rn+P

Consider Rn+p as an (n + p)-dimensional real vector space. Let d be a
p o s i t i v e r e a l n u m b e r , a n d X i 9 L ( X i 9 X j ) = L ( X j , X t ) , i , j = 1 , - , n b e
vectors m Rn+P with the following properties:

( I ) if 1 < iΦ j < n then {X19 . ., Xn9 d'ιL{Xi9 *«), 2d~ιL{Xu XΛ) =
2d~λL{X^X^\ is orthonormal;

(II) for 1 < i φ j < n, (L{Xi9 Xt), L(Xj9 Xj)} = \d*
(III) for 1 < UUKk < n and different i, /, Λ, L(Xi9Xj) and L(Xh9Xk)

are orthogonal.
Let E denote the ^-dimensional subspace generated by X19 , Xn. Extend

the system {L(Xi9 Xj)} to the unique bilinear map L: E x E —> Rn+P

for real au by Then L is symmetric.
Lemma 5.1. Let X, Y be two orthonormal vectors in E. Then

, X), UX, X)> = d\ <L(X, X), L(Y, Y)> = 0 ,

, X), L(Γ, Y)> = \d\ (UX, Y), L(X, Y)> = \

Proof. L e t Z = ΣU^Xi, Y= Σ " - i * Λ T h e n Σ?-i«ϊ= L Σ"-i*ί =
?=iβiftί = ° We compute:

, Y),

+ ¥2 Σ ajbfihbh
iφh

bj)2 + \d2 Σ atbj
ij

By a similiar computation, we can obtain the other three equations.
Lemma 5.2. Let X9 Y, Z be three orthonormal vectors in E. Then

<L{X, X), L(Y, Z)> = <L(Z, Y), L(X, Z)> = 0.
This lemma follows from Lemma 5.1.
Lemma 5.3. // X9 Y9 Z, W are orthonormal in E, then <L(Z, Y),

L(Z, W)> = 0.
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Proof. By Lemma 5.2, <L(X, Y), L((Z + W)/V~2, (Z + WO/VT)> = 0,
which implies <L(X9 Y), L(Z, W)> = 0 since <L(X, Y), L(Z, Z)> =

From Lemmas 5.1, 5.2, 5.3 we obtain
Proposition 5.1. Let e19 , en be an orthonormal basis of E. Then
( I ) for 1 < i=£ / < n, {e19 ••-,*», drxUβi9 et)9 2drlL{ei9 ej = 2d~ιL(ej, et)}

is orthonormal
(II) forl<iφ}< n, (L(ei9 ej9 L(ej9 ^)> = \#
(III) for 1 < i,j,h,k < n and different i, j , h9L(euej) and L(eh,ek) are

orthogonal.
Proposition 5.2. Let e19 , en be an orthonormal basis of E. Then

{e15 ,e n ) U {L{euβj): I < ί < j < n) is a linearly independent system.
Proof. Suppose

with real a^aiS. From (I) of Proposition 5.1 we see that all at must be zero.
Moreover, if we take the inner product of L(eh9 ek)9 h < k, with the above
equation, then we get ahk = 0, so that £?=i a^Lie^ eτ) = 0. Taking the inner
product of L(eh9 eh) with the above equation yields

Σΐ=i au = —ahh, for A = 1, , n,

which imply au = 0 for / = 1, , n. Hence we complete the proof,

6. Proof of Theorem 3

We identify points in Rn+P with their position vectors, and use || || to denote
the norm.

Let M be an n-dimensional (n > 2) β-sphere with radius ί/c (c > 0) with
respect to the system {Xi9B{XuXj)}. Let En denote the n-dimensional sub-
space generated by Xl9 , Xn. Define a bilinear map L: En x En —> Rn+P by

for real at9 b3. Then L(Xi9Xj) = B(Xi9Xj) and L is symmetric. It follows
from the definition of β-sphere that there is a fixed point moeRn+p such that
M is the set of all points Λ{X):

A{X) = m0 + s i n c » Z " z + l - c o s c ] | Z | [ ( }

if 0 < c | | Z | | < 2π,XζEn

A(X) = m0, if X = 0 .
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Let V denote the second fundamental tensor of M. At first we prove the
following lemma.

Lemma 6.1. Let X e En with 0 < c \\X\\ < 2π. Then there is an ortho-
normal basis e19 , en of the tangent space TMΣ){M) at A(X) with the follow-
ing properties:

(Ό if l<iφj<n, then {2C-
1V(ei,ej) = 2c-ψ(ej,eί),c-ψ(ei,eί)} is

orthonormal and ζV(eu e^, V(ej, e ; )> = \c2

(2) for 1 < i, j , h,k < n and different i, j , h, V(ei9 e3) and V(eh, ek) are
orthogonal.

Proof. Let Yx = XI\\X\\. Choose Y2, , Yn such that Y19.. ,Yn form an
orthonormal basis of En. Then, for Y = J^i=1ytYi and 0<c\\Y\\< 2π, we have

γ 1 - cos c [
^WΓ S c \ \ Y f &ιyί

Consider (yl9 , yn) as coordinates of M. For i, j = 1, , n, d

J_(Am) = (_
dy< \c

j

2(1 - c o s c l | FID
Fι7Ti2

c | |Y | | 2

9 i h) i

/_9_ s i n c | i y | l \ y

\9 | |y | | / J

a

i

2(l-cosc|iy|l) }

c||y||2

Calculating the last two equations by chain rule at yx = \\X\\, y2

}̂ w = 0, we get
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JL(A(X)) = ̂ ^ l Y i + 2(l-cosc||^|l)
dy c\\X\\ c\\X\\

~{A{X)) = (cos c HAΠI)̂  + (sin c \\X\\)UYχ, Yd

^ (Λ(*)) = -c(sinc 11*11)7, + c(cos c || *||)L(7,, 7,);
dy1

d

/2sinc| |Z| | 2(1 - cose |
V 11*11 - cΓm

ί = 2, , n

sinc||Z||

JxT
/sine | |* | | 2(1-cose 11*11) \ .

v~iι^r " nxf—nYu l}

Let e4 = . According to Proposition 5.1 we have:

( I ) if 1 < iψ j<n, then {Ylf •••,Yn,L{YU Yd, 2L(Yt, Y,) - 21.(7,, 7 t )}
is orthonormal and <L(7 ί ; 74), L(7 ί 5 7^)> = \

(II) for 1 < i,/,h,k <n and different i, j , h, L(7 t, 7^) and L(7 f t, 7fc) are
orthogonal and therefore

β, = (cose I IZID^ +

et = (cos ic | | * | | )7 t + 2(sin Jc H * ! ! ^ ^ , 7,), i = 2, , n .

Using Gauss formula we compute:

F(e1 ; e i) = -c(sinc 11*11)7! + c(cosc | |*| |)L(7!, 7.) ,

Vie,, et) = -ic(sin \c ||*||)7< + c(cos Jc 11*11)^7!, 7() , i = 2, , n,

F ( β , , β,) = c L ( 7 i 5 7 , ) , 2<tiΦj£n,

V(e{,et) = - | c(s inc | | * | | )7 , - |c( l - cos c 11*11)147,, 7,) + cL(Yu 7,),

i = 2, , n .

It is easy to verify that eλ, • , en form the required basis of TMX)(M).
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Proposition 6.1. For meM and an orthonormal basis e19 , en of Γ m ( M ) ,

we have:

( I ) if 1 < i Φ j < n9 then {e19 --,en, c~lV(eu et), 2c~lV(eu βj) =

2c~ιV(eό, e^} is orthonormal and (V(eu ^ ) , V(ej9 e^f) — \c2

(II) for 1 < /, /, h,k < n and different i, /, h, V(ei9 e, ) and V(eh, ek) are
orthogonal.

Proof. It m Φ m0, then the assertion follows from Lemma 6.1 and Pro-
position 5.1. If m = m0, then the assertion follows from the case for m Φ m0

and the continuity of the second fundamental tensor V.
Proposition 6.2. M has constant curvature \c2.
Proof. Let mzM. For any two orthonormal vectors Y, Z in the tangent

space Tm(M), we can extend them to an orthonormal basis of Γm(M), so that
by Proposition 6.1? (V(Y, Y), V(Z,Z)} = | c 2 and <V(Y,Z), V(Y,Z)} = \c2.
Thus the sectional curvature of the plane spanned by Y, Z is \c2.

Let a: {a, b) —> M be a geodesic on M with unit tangent field T. For e e (a, b),
choose an open interval / in (a, b) containing e such that the restriction a = a \I
of a to / is univalent.

For any unit vector Y orthogonal to T(σ(e)) in the tangent space Tσ ( e )(M),
we can extend T, Y to a parallel base Y19 , Yn along σ with Y^σit)) =
T(σ(t)) for ί € / and Y2(<r(e)) = Y, that is, DΓY, = 0 and Y1? , Yn are
linear independent along σ, where D denotes the Riemannian connection of
M. Since T(σ(e)) and Y are orthonormal, T and Y2 are orthonormal.

Let φ denote the Fermi coordinate map from an open neighborhood of σ(I)
onto an open subset W of a Euclidean space Rn, that is, for (x19 ,xn) eW,

φ~\xl9 .-.9xn) = ExpσiXl) ΣU XiYMxJ) ,

where Expσ( :c) denotes the exponential map at σ(x). Let ZlfZ2 denote the
restrictions of the coordinate fields d/dx19 d/dx2 to the set of points
Exp f f ( ; r i ) x2Y2(σ(x1))9 respectively. Then ZMO) = T(σ(t))9 Z2(σ(ίί) = Y2(^(0),
and DZlZ2 = D Z 2 Z! along σ. Since each x2-curve is a geodesic parametrized
by the arc length, DZ2Z2 — 0 and <Z2, Z2> = 1. Also we have Dz%(Zl9 Z2> =
<DZ£19Z2> + <Z19DZ2Z2} = <DZ lZ 2,Z 2> = ^Z^Z29Z2y = O. Thus ^ Z ^
is constant along x2-curves. Since ζZl9Z2y — 0 on σ, we have (ZX,Z^ = 0,
and therefore ^^Zi/HZiH and Z2 are orthonormal and W(σ(0) = T(σ(t)).
By Proposition 6.1, <V(W, W), V(W, W)> = c2, <V{W, W), F(Z 2, Z2)> - | c 2 ,
<K(W, W)V(W,Z2)> = 0, <K(Ψ,Z 2), V(W,Z2)> = ic 2 .

Now

Since </>z2^? ^ > = i Z 2 < ^ , ^ > = 0 and φz^{a{e)) = (DZlZ2)(σ(e)) =
(DτZ2)(σ(e)) = 0, we have (DZ2W)(σ(e)) = 0 and (DwZ2)(σ(e)) = 0. D^2Z2

= 0, (DwW)(σ(e)) - (DτT)(σ(e)) = 0. Thus the Codazzi equation gives
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(ΐioτFwV(Z2,Z2))(σ(e)) = (nor FZiV(W, Z2))(<7<») ,

(nor FZ,V(W, W))(σ(e)) = (nor FWV(Z2, W))(σ(e)) ,

from which follows

<(FΓF(Γ,

= <VWV(W, W), V(Z2, Z2)}(σ(e)) = -<V(W, W), FWV(Z2, Z2)>(σ(e))

= -<V(W, W), FZ,V(W, Z2)>(σ(e)) = <FZίV(W, W), V(W, Z2))(σ(e))

- <VWV{W, Z2), V(W, Z2)}(σ(e)) = %(W<V(W, Z2), V(W, Z2)))(σ(e)) = 0 .

Similiarly,

<ψTV{T, T))(σ(e)), V(T(σ(e)), Y)> = 0 ,

, T), FτZ2}(,σ(e))

= -<V(T, T), F(Γ,Z2)>(σ(e)) = 0 .

Let e1 = T(σ(e)) and e2, • ,en be an orthonormal basis of Γσ(β)(Λί). Then the
above argument shows that <(FΓF(Γ, T))(σ(e)), V(eu ej) = 0 and
<(FΓF(Γ, Γ)) We)), F(e4, βi)> = 0 for i = 2, , «, and <(FrF(Γ, Γ))Wβ)),
K((βt + e j)//T, (et + βί)//2")> = 0 for 2 < i ^ / < n so that <(FΓF(Γ, Γ))

βy)> = 0. Now we have <(FrF(Γ, T))(σ{e)), Vie,, β,)> =
, Γ), F(T, 70»(σ(β)) = 0. Thus

(6.1) <(FΓF(7\ Γ))Wβ)), F(e i5 β j)> = 0, for i, j = 1, , n .

Also we have

(6.2) <(FrF(Γ, T))(σ(e)), e{> = 0, for i = 2, • • •, n .

Since <(VTV{T, T))(σ(e)), e,} = - <F(Γ, T), FτT>(σ(.e)) = -<V(T, T),
V(T, T)}(σ(e)) = -c\ we have

(6.3) <(FΓF(Γ, D)Wβ)), β,> = - c 2 .

On the other hand, since M is a subset of the Euclidean space {m0 +

for /, / = 1, ,«, are vectors in the vector subspace generated by Xy, • ,Xn

and B(Xh,Xk) for h,k = 1, ,n. The dimension of this vector space is
\n{n + 3) by Proposition 5.2. Thus it follows from Propositions 6.1 and 5.2
that {«„ • , e n ] U {Viet, e j ) : ί < i < j < n) is a base, s o that (FTV(T, T))
(σ(e)) is a linear combination of eu ,en and V(et,e}), 1 <i<j<n. By (6.1),
(6.2), (6.3), we get
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(FTV(T, T))(σ(e)) = -c2eγ = -c2T(σ(e)) .

Since e is arbitrary, VTVTT = FTV(T, T) = -c2T on a, i.e.,

d3a(t) c2da(t) = Q

df dt

whose solution is an arc of a circle with radius 1/c since we have the boundary
conditions:

( ^ , ~f) = <V(T, T), F(T, Γ)> - -c 2 .

This proves Theorem 3 due to the compactness of M.

7. Proof of Theorem 4

Let K denote the positive constant sectional curvature of M, and f# the Jacobian
map of the isometry /. Define a real function G on M as (3.1), i.e., G(m) =
(V(X, X), V(X, X)y for m e M and a unit vector X in the tangent space
Tm(M). By Lemma 2.4, we see that G = c2 for some nonnegative number c.
For any two orthonormal vectors X, Y in Tm(M) we get £ = (V(X, X),
V(Y, Y)> - <F(Z, Y), FO", Y)> by the Gauss equation, and

(7.1) 3<F(Z, Y), V(X, Y)> = <F(Z, Z) , F ( Z , Z)> - K = c2 - K

by Lemma 2.2, so that (V(X, Y), F ( Z , Y)> is constant on Tm(M). Thus from
Lemma 2.8 either V(X, Y) - 0 or <F(Z, Y), V(X, Y)> = ic 2 . For otherwise,
there are orthonormal vectors X, Xu X2 in Tm(M) such that c2 — K =
3<F(Z,Z 1 ), V(X,XJ> Φ 3<F(Z,Z 2 ), V(X,X2)} = c2 - K, which is impos-
sible. Therefore either c2 = K or c2 = AK and c > 0.

At first, we consider the case c2 = K.
Proposition 7.1. Suppose c2 = K > 0. 77zeπ /(M) zs arc operc ΛWZ?̂ / of an

n-dimensional sphere.
Proof. Let meM, and e1? , en be an orthonormal basis of Tm{M). It

follows from (7.1) that V(ei9ej) = 0 for 1 < i Φ j < n. Consequently by
Lemma 2.2 we have V(ei9 et) = V(e19 eλ) ior / = 1, , n. This implies f(M)
is an open subset of an ^-dimensional sphere.

Now we consider the case c2 = AK. Let m e M, and e19 , en be an ortho-
normal basis of Tm(M). Then we have

(7.2) (V(ei9 ej), V(ei9 ^)> = \c2 for 1 < / φ j < n

by (7.1),
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(7.3) <V(ei9 e<), V(ej9 e ,)> = \& ίoτ\<iφ)<n

by Lemma 2.2, and

(7.4) <Ffe, et)9 Vie,, e,)> = 0 for 1 < i ψ ) < n

by Lemma 2.2. If 1 < /,/, h < n and i, /, h are different, then by (7.1) we
have (V{eu (βj + eh)/VT), V(ei9(es + *Λ)/VT)> = \c\ Applying (7.2),
(7.3) to the expansion of this equation yields

(7.5) <y{eu ej), Vie,, eh)y = 0, for different ί, /, h.

It then follows from Lemma 2.6 that

(7.6) <V(ei9 eύ, V{eό, ej) = 0, for different i, /, A.

If 1 < /,/,h,k < n and i, j,h,k are different, then we have <F((^ + e3)j
VT, (βΛ + ek)lf2\ Vde, + ej)/VΎ, (eh + ek)/f2)> = \c\ By Lemma
2.2, we se that

), V((eh + ek)/V~2, (eh + eΛ

Applying (7.3), (7.6) to the expansion of the last equation thus gives

(7.7) <V(ei9 ej)9 V(eh9 ek)} = 0, for different i, /, h, k.

Since / is an isometry, (7.2), , (7.7) imply:

(7.8) if 1 < i ^ / < n9 then {f̂ ,̂ . . . , /#βn, c~lV(eu et)9 2c~ιV(ei9 e,)

= 2c-ιV(ej9et)} is orthonormal and <Ffe,^) , V(ej9ej)y = Jc2

(7.9) for 1 < /,/,h,k < n and different /,/,A, F(e<,e^) and F(eΛ,ek) are

orthogonal.

So we can define an β-sphere, say Sm, through /(m) with radius 1/c with
respect to the system {f^e^c^Vie^ej)}. For X € Γm(M), let | |Z | | denote its
length. It follows from the definition of β-sphere that Sm is the set of all points
A(X),c\\X\\ < 2π, defined by

A(X) = f(m) + » " " * I I Ή I ; v + x - ^ M | ^ n F ( z z ) f o r χ € Γ ( M )

c||Z|| c2||X||2

with 0 < c | |Z | | < 2ττ, ,4(0) = f(m). Thus 5m is independent of the choice of
the basis e19 , en9 so that for each p e M we can define an n-dimensional
β-sphere Sp.

On the other hand, there is a real number 0 < cr < 2π such that the ex-
ponential map ExpTO at m maps
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U = {xγeλ + . + xnen: ( * » + . . . + χ\) < r2}

diffeomorphically onto an open neighborhood of m, and /oExpm is one to one
on U. By Lemma 2.5 we thus have

Hence /(ExρTO £/) is an open subset of Sm. This proves the local theorem, since
Expm U is an open neighborhood of m.

Let p e Expm £/. Then f(p)eSm. Let F x denote the second fundamental
tensor of Sm. If Y15 ••-, YTO form an orthonormal basis of TP(M), then
/^Yi, •• ,/#YΛ form an orthonormal basis of Tfm(Sm). Moreover, since
Expm U is isometric to an open subset of Sm, we see that V(Yi, Yj) —
V\(S*Yiif*Yj) f°Γ hi = 1> ?̂ 5 so that Sp is the β-sphere through f(p)
with radius l/c with respect to the system {/^Y^c'^C/^Y^/^Yj)}.

Since 5 m is compact and connected, every point q eSm can be jointed to f(p)
by a geodesic (cf. [1, Theorem 15, Chapter 10]). By Theorem 3, Sm satisfies
the assumptions of Theorem 1, in which / is the inclusion map. We use the
exponential map at f(p) to parametrize Sm. According to Lemma 2.5, we see
that the β-sphere through f(p) with radius l/c with respect to the system
{UYuC-ψtf+YuUYj)} is just Sm. Consequently, Sp = Sm. That is, Sm is a
locally constant β-sphere. Since M is connected, all Sm are the same, say S.
Then /(M) is an open subset of S.

Reference

[ 1 ] N. J. Hicks, Notes on differential geometry, Math. Studies No. 10, Van Nostrand,
Princeton, 1965.

UNIVERSITY OF GOTTINGEN




