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ISOMETRIC IMMERSIONS OF MANIFOLDS WITH
PLANE GEODESICS INTO EUCLIDEAN SPACE

SING-LONG HONG

1. The main theorems

The object of this note is to prove the following

Theorem 1. Assume that (a) M is an n-dimensional (n > 2) connected
Riemannian manifold, (b) f: M — R™*? is an isometric immersion of M into
an (n + p)-dimensional Euclidean space R**?,p > 0, and (c) every geodesic
on M is locally a plane curve, that is, if o: (a, B) — M is a geodesic on M, then
for every te (a, ), there exists an open interval I in (a, f) containing t such
that foa(l) lies on a certain plane E,. Then either (M) is an open subset of an
n-dimensional plane or M is L-pinched, i.e., its sectional curvature K satisfies

IA<K<A

for some positive number A.

If M is also }-pinched, then we have

Theorem 2. Assume that (a), (b), (c) of Theorem 1 hold, and that M is
L-pinched. Then M has positive constant sectional curvature, if one of the
following conditions also holds:

D 1<p<in+ 2

(2) n is prime,

(3) there is m ¢ M such that the sectional curvature K of M at m satisfies
14’ < K < A’ for some positive A’.

Let {,)> denote the metric tensor in R"*?. Let X;, B(X;, X,), 2B(X;, X;) =
2B(X;,X:), 1 <i=#j<mn, be unit vectors in R"*? with the following
properties :

(i) f 1 <i#j<n, then{X,, ---,X,, BX;, X)), 2B(X;, X;) =2B(X,, X,)}
is orthonormal;

(ii) forevery i = j, 1 <i,j < n, (B(X;,X,),B(X;, X;)> = %3

(iii) (B(X;, X), B(X4, X,)> =0, for i,j, h differernt and 1 < i,j, h, k < n.

Let ¢ be a fixed positive real number, and m be a fixed point of R"*?. By
identifying points of R"*? with their position vectors, the set of all points
o(x,, « + -, x,) defined by
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for real x,, - -+, x, with 0 < c(x} 4+ -+ + 22)"2 <2z and ¢(0,---,0) = m
is an n-dimensional compact connected submanifold of R**? with respect to
the natural differentiable structure. We shall call it an n-dimensional 2-sphere
with radius 1/c with respect to the system {X;, B(X;, X;)}, or, simply, an n-
dimensional £-sphere.

Theorem 3. Let M be an n-dimensional (n > 2) Q-sphere with radius 1/c
(¢ > 0). Then M has constant sectional curvature 1c?, and geodesics on M are
circles with radius 1/c.

It follows from Theorem 3 that an £-sphere satisfies the assumption (c) of
Theorem 1.

Theorem 4. Assume that (a), (b), (c) of Theorem 1 and that M has posi-
tive constant sectional curvature. Then f(M) is either an open subset of an
n-dimensional sphere or an open subset of an n-dimensional 2-sphere.

2. Reduction of the assumptions (a), (b), (c) of Theorem 1

Assume that (a), (b), (c), of Theorem 1 hold. In this section we shall con-
sider some purely local properties of M. Let U be an open connected neighbor-
hood of a point m, € M on which f is one to one. Since the following is a
local argument, we shall identify x € U with f(x). For any vector fields X, Y, Z
tangent to M, we have the formulas of Gauss and Codazzi:

ny=DXY+ V(X,Y) s
nor Vy(V(Y,2)) — V(DxY,Z) — V(Y,DxZ)
= nor Vy(V(X, 2)) — V(DyX,Z) — V(X,DyZ) ,

where V z, Dy denote the covariant differentiations with respect to the Eucli-
dean connection of R"*? and the Riemannian connection on M, respectively,
and nor denotes the normal component. ¥ (X, Y) is the normal component of
VxY and symmetric.

Lemma 2.1. Let X, Y be two orthonormal vectors in the tangent space
T,M)atmeU. Then {V(X,X),V(X,Y)> = 0.

Proof. If V(X,X) = 0, there is nothing to prove. So we assume V(X, X)
#0. Letg: (—r,r) — U be a geodesic with ¢(0) = m, T(¢(0)) = X, where
T denotes the tangent field of ¢. By (c) of Theorem 1, we may assume that ¢
lies on a plane E. Thus both T and V,T = D,T 4+ V(T,T) = V(T,T) are
parallel to E so that ¢(f) = m + a()X + b))V (X, X) for some differentiable
functions a, b. Therefore V,(V(T,T)) = V.V, T = a”"(OX + b""®OV(X, X).
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Let Z be a vector field tangent to M with Z(m) = Y. Then {V(X, X), V(X, Y))
= (V(T, D), V(T, 2))(m) = VT, T), V1 Zy(m) = F(V(T, T)), Y (m) +
VT, 1),V Zym) =TV, T),Zym) =0, since (V(X,X),Y» =0 and
VT, 1),Zy =0.

Lemma 2.2. Let X, Y be two orthonormal vectors in the tangent space
T,M) at meU. Then {V(X, X), VX, X)> =<V(X,Y),V(,Y)> and
VX, X)), VX, X)) =<VX,X),VY,Y)) + ZXV(X,Y),V(X,Y)).

The proof of this Lemma follows directly from Lemma 2.1.

Lemma 2.3. For any two unit vectors X, Y in the tangent space T,(M)
at me U, we have {V(X,X),V(X,X)> =V(X,Y),V(,Y)).

This Lemma follows immediately from Lemmas 2.1 and 2.2.

By virture of Lemma 2.3 we can define a differentiable function g on U by

2.1) gm) = VX, X), VX, X)), X : a unit vector in T,,(M).

Lemma 2.4. The function g defined by (2.1) is constant on U.

Proof. Letme U and X, - - -, X, be an orthonormal basis of the tangent
space T,,(M), and ¢: (—r, r)— M be a univalent geodesic on M with ¢(0) = m
and T(¢(0)) = X, where T denotes the tangent field of ¢. Let Y, ---, Y, be
parallel fields along ¢ with Y;(m) = X, for i=1,-..,n. Then Y, ..., Y,
are orthonormal along ¢ and Y, = T.

Let ¢ be the Fermi coordinate map from an open neighborhood A4 of ¢ onto
an open neighborhood W of the origin of a Euclidean space R”, that is, for
(x,, + - -, x,) € W we have

¢~1(x1, ) xn) = Equ(a:l) (Z?:zxiyi(o'(xl))) 5

where Exp,,, denotes the exponential map at o(x). Let Z,, - - -, Z, denote the
coordinate fields on 4 with Z,(¢(x)) = Y,(c(x)). Let X, Y denote the restric-
tions of Z,, Z, to the set of points Exp, ., , (x,Y,(a(x,))), respectively. Since
each x,-curve is a geodesic parameterized by the arc length, DY = 0 and
<Y,Yy =1. By direct computations we obtain Y(X,Y) =<(D,X,Y> +
(X,DyY) =<{DyX,Y) =4X{Y,Y) =0, since DyY = DyX (note that
Z,, Z, are coordinate fields). Thus (X, Y is constant along x,-curves, and we
have (X,Y)» = 0 since <X,Y)» = 0 on ¢. Hence by Lemma 2.1 we have
VX,Y),V(Y,Y)) =0. Since (DyX)(m) = (DzY)(m) = (D,Y,)(m) =0,
Codazzi equation implies that

(nor VxV(Y, Y))m) = (nor V', V(X, Y))(m) ,
so that

TV, Y), VY, Y)m) = FyV(X,Y), V(Y, Y)(m)
= VX, V),V V(Y,Y))(m) .
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If V(X,, X,) = 0, then IV (Y,Y), V(Y, Y)>(m) = 0. Suppose that V' (X,, X,)
#0. Then by (c) of Theorem 1 there exists a positive real number s such that
the curve Exp,, x,X,, for x, e (—s, s), lies on a plane, i.e., there are different-
iable functions a, b such that Exp,, x,X, = m + a(x,)X, + b(x,)V(X,, X,) for
x, € (—s,s). Thus

FxV(X,Y), VI, Y))(m = —{V(X,, X)), VyV(Y, Y)(m))
= —V(X,, X,),d”"(0)X, + b0V (X,, X,))
=0.
So we always have X g = X, (V(Y,Y),V(Y,Y)) =2V xV(Y,Y), V(Y,Y))(m)
= 0. Similiarly, we have X;g = 0 for i = 2, - - -, n. Hence the Jacobian map
g8, of g is zero at m. Since m is arbitrary, g, = 0 on U. Thus g is locally con-
stant, and the assertion of the lemma follows from the connectedness of U.
Lemma 2.5. Suppose that g = ¢* on U with ¢ > 0. Let ¢: (—r,r) - U

be a geodesic on U with tangent field T along ¢. Suppose that T(¢(0)) = Z is
a unit vector. Then for t € (—r,r) we have

o) =0(0) + c'(sincet)Z 4+ ¢ (1 — cosce)V(Z,Z) .

Proof. From the assumption it follows that T is a unit vector field along
o. By the definition of g we have <V(T, T), V(T, T)> = ¢*. Thus T and V(T, T)
are linearly independent along ¢. For te (—r,r) let E, = {a(®) + xT(a(?)) +
YV(T,T)e() e R"*?: x,y reals}. Since ¢ is locally a plane curve, E, is locally
constant and is constant on (—r, r) by the connectedness of (—r, r), so that

o) = a(0) + a()Z + b(OV(Z, 2Z)
for t € (—r, r) and some differentiable functions a, b. To compute a, b we have
T(e®) =d®Z + V(OV(Z,2) ,

VT, T)e®) = W T)e®) =a’OZ + b"(OV(Z,2) ,
W V(T, THe®) = a”"(DZ + b OV(Z,Z) .

Since T and V(T, T) are linearly independent, ¥,V (T, T) is a linear combina-
tion of T and V(T,T). But I ,V(T, 1), T)=— VT, D,V T) =
-V (T,0),V(T, 7)) = —c* and I V(T,D),V(T,T)) = $T<V(T,T),V(T,T))
= 0. Thus V. V(T,T) = —c*T, and we have the differential equations

a’@) + ca'(t) = 0, (@ + ') =0.

Solving these differential equations with the boundary conditions: a(0) = b(0)
= b'(0) = a’(0) =0, d'(0) = b""(0) = 1 gives

a(t) = c'sinct , b(t) = c¥(1 — cosct) ,
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which prove Lemma 2.5.

Lemma 2.6. Let X,Y,Z be three orthonormal vectors in the tangent space
T.(M)at meU. Then

VX, X),VY,2) + XVX,Y),VX,Z), =0.
Proof. By Lemma 2.2, for any real § we have

VX, X),V(X,X)> =<V(X,X),V(Ycosf + Zsinf,Y cos§ + Zsing))
+ 2V(X,Y cos 6 + Zsin6),V(X,Y cos@ + Zsin6)) .
Differentiating the above equation with respect to § at # = O thus gives the
desired result.
Lemma 2.7. Assume that g = ¢* on U with ¢ > 0. Let X, Y be two

orthonormal vectors in the tangent space T,(M) at m e U with the following
property:

2.2) VX, X),V(Y,Z2), =0, if X,Y,Z are orthonormal in T, (M).

Then either V(X,Y) =0 or {V(X,Y),V(X,Y)) = .

Proof. Suppose that V(X,Y) # 0. Choose an orthonormal basis X, - - - , X,
of T,(M) such that X, = X, X, = Y. Since the exponential map Exp,, at m
is a local diffeomorphism, there is a positive real number s such that Exp,, is
a diffeomorphism from

rxXgxd 4+ - 12 < s}
onto an open neighborhood of m. By Lemma 2.5 we have
Exp,, Q171 x, X)) = m + (er)~ ! (siner) 17, x, X,
+ (N1 — cos eV (Nt x. Xy, 20, x,X))

where r = (x2 + --- + x2)V2, Put a = (cr)'sincr, b = (cr)~%(1 — cos cr).
Then for j = 1, - - ., n we have
d/ox; = (@a/ox;) Diry x,X; + aX; + (@b [0x;) D17 o1 XXV (X4, X3)
+2b 32, VX, X)),

2 n n
Vo, 2 = T4 3 o x, 1290 x, 4 492 3 2 vx,, x)
ox, ox} i=1 0x, ox, i=1
b

o i; 1xika(XiXk) + 26V (X, X)) -
1 bE=

Choose a positive real number x such that 0 < x* < s and 1 — coscx # 0.
Atx, =x = -.-- =x, =0, x, = x, we have
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dajox; = db/ox; =0, for i=1,3,..-,nm;
da/dx, = (cos ¢x) /x — (sin cx) /(cx?);
ob/ox, = —2(1 — cos cx) /(c®x®) + (sin cx) /(cx);
da _ coscx  sincx | @b _ 21 — COoS €X) n sin cx .

~ o ’
ox? x? cx® ox? cixt cx®

Let Z, = (3/ox;)(Exp,, xX,),i =1, - - -, n, and B = (V,,,,,(d/0x,))(EXp,, xX,).
Then we have

23) z,= 30Ky, 2L —COS) pix X for i=1,3,-,n;

cx cx
(2.4) Z, = (cos cx)X, + (c7'sin cx)V(X,, X,) ;
B — (cos cx _ sin sz )Xz n ( sincx  2(1 —2020s cx))V(XZ,XZ)
2.5) X cx cx cx
4 2L —cosen) iy )
cix

Recall that for i,j = 1, - - -, n with i # j we have <V(X;, X)), V(X;, X))> =0
and ¢ = (V(X,, X)), V(X;, X)) = VX, X), V(X,, X,)) + 2V (X, X)),
V(X,,X)). From (2.2) it follows that {V(X,,X)),V(X;, X,)) =0, for
j=3,--,n.

Applying the above relations to the computation of inner products of vectors
given by (2.3), (2.4), (2.5), we can easily obtain

(2.6) (B,Z)> =0, for j=1,3,---,n;

{B,Z,y = 1/x — (sin cx-cos cx) [(cx?)

27 —(4(1 — cos cx) sin cx){V (X}, X)), V(X, X)) /(Ex)

{B,B> = 1/x* — (2sin cx-cos cx) /(cx®) + (sin’ cx) /(c*x*)
(2.8) + 16(1 — cos cx)XV(X,, X,), V(X,, X,)> /(c*x")
— 8((1 — cos ¢x) sin cx){V(X,, X,), V(X,, X)) /(%) ;

2 _ 2
Q.9)  <(z,zy=Swex | Ml —cose piy ¥ vix, X)) ;

cix? cx?
(2.10) {Zy,Z,y=1;
(2.11) {Z,,Z;» =0, for j=1,3,---,n.

On the other hand, according to the Gauss formula we have B = },7 , a,Z; +
V(Z,Z), for some real numbers a,, - - -, a,. From (2.6), (2.7), (2.10), (2.11)
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it follows that B = (B, Z,>Z, + V(Z,Z,), so that (B, B) = {B, Z,)* +
V2 Z),V(Z,, Z)). Set A = Z,[{Z,, ZY". Since g = ¢, V(Z,, Z),
V(Z,,Z)> =<Z,,Z)XV(A4,A),V(A, A)) = ¢XZ,, Z,>*. Therefore

(2.12) (B,B> = (B, Z,>* + XZ, Z)>" .

Substituting (2.7), (2.9) in (2.12) and comparing the resulting equation with
(2.8) we can easily obtain

16(1 — cos cx)XV(X,, X)), V(X,, X,)) /(c'x")
= 32(1 — cos cx))(V (X}, X,), V(X,, X,)>*/(c’)*)
+ 8(1 — cos ex)(sin® cx)<{V(X,, X,), V(X,, Xz)>/(c4x4) ,

which can be simplified to 4<V (X}, X,), V(X,, X,)> = ¢, implying <V(X,Y),
V(X,Y)) = ic.

Lemma 2.8. Suppose that g = ¢ on U with ¢ > Q. Then for any two
orthonormal vectors X, Y in the tangent space T,,(M) at m ¢ U we have

0<TVX,Y), VX, Y)) < ic*.

Moreover, if X,Y are orthonormal vectors inT (M) with0<(V(X,Y),V(X,Y))
{ic?, then there are unit vectors X,, X, such that X, X,, X, are orthonormal
and V(X, X)) =0, {V(X, X)), V(X, X,)) = ic’.

Proof. Suppose that X, Y are two orthonormal vectors in T, (M) such that
V(X,Y)# 0and <V(X,Y),V(X,Y)> #+ ic® Let S denote the set of all unit
vectors in T, (M) which are orthogonal to X. With respect to the natural
topology on S, the function F defined by

FZ2)=VX,2),V(X,Z)y, for ZeS

is continuous on S. Since S is compact, F takes a minimum, say at X, and a
maximum, say at X,.

If X, X,, Z are orthonormal, then, for any real 4, X, cos§ + Zsing isin S.
Let h(0) = <V(X, X,cos 0 + Zsin6), V(X, X,cos@ + Zsin6)). Then & takes
a minimum at § = 0, #/(0) =0, i.e., (V(X, X)), V(X,Z)> = 0. By Lemma
2.6 we have (V' (X, X), V(X,, Z)> = 0. Consequently, X and X,, and similarly
X and X,, have the property (2.2). Since F(X,) > F(Y) > 0, it follows from
Lemma 2.7 that F(X,) = g¢* > F(Y). By assumption we have F(Y) < 1.
This proves the first assertion. Also F(X) < F(Y) < ic?. According to
Lemma 2.7 we have V(X, X)) = 0.

Clearly, X,, X, are linearly independent. Let X, = X, — (X}, X,>X,. Then
X3 Xy < 1, X,/{X;5, X,)"* € S and V(X, X,) = V(X, X,), so that

F(Xz) = <V(X, X3), V(X5 X3)> = <X3> X3>F(X3/<X3’ X3>1/Z)
< Xy, XpF(X,) < F(X,) .
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Thus {X,, X;» = 1, and hence (X, X,> = 0. This proves Lemma 2.8.

3. Proof of Theorem 1

According to Lemma 2.3 we can define a real function G on M by the
second fundamental tensor V as follows: At me M,

3.1) Gm) =<V(X, X),V(X, X)), for a unit vector X in T,,(M) .

By Lemma 2.4, G is locally constant. Since M is connected, G is constant on
M. Note that G is nonnegative.

Case 1: G = ¢ for some constant ¢ > 0. Let me M, and X,Y be two
orthonormal vectors in the tangent space T,(M). Let K(X A Y) denote the
sectional curvature of the plane spanned by X and Y. The Gauss equation
implies

32 KXANY)=JX,X),VY,Y) - <VX,Y),VX,Y).
By Lemma 2.2 we get

KXAY) =<JFX,X), VX, X)) —3KV(X,Y),V(X,Y)
=c¢ -3VX,Y),VX,Y)).
According to Lemma 2.8, <V(X, Y),V(X, Y)> < ic®. So we have ic? <
KX ANY) <
Case 2: G = 0 on M. Consider f locally. If X is a vector field tangent to

M, then V(X, X) = 0. Hence f(M) is an open subset of an n-plane, since M
is connected.

4. Proof of Theorem 2

By assumption there is a positive number A4 such that the sectional curvature
K of M satisfies

4.1 0<i4<K<LA.

Let G be defined (3.1). Then it follows from Lemma 2.4 that G is constant on
M, since M is connected. For m ¢ M and orthonormal vectors X, Y in T,,(M),
the sectional curvature K(X A Y) of the plane spanned by X and Y is
KXANY) =X, X),V(Y,Y)) — VX, 1, VX,Y))
=X, X), VX, X)) — KV(X,Y),V(X,Y))

Thus K(X A Y) > 0,G = ¢ for some positive constant ¢, and <{V(X,Y),
V(X,Y)) < ic? according to Lemma 2.8.
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For m ¢ M and unit vector X in T,(M), define
oX)={YeT,M):V(X,Y) =0}.

Then p(X) is a vector subspace of T,,(M) over the real field R'. For Y ¢ p(X),X
and Y — (X,Y)X are orthogonal. By Lemma 2.1 we see that 0=
V(X,X),V(X,Y — <X, Y X)) = —{X,Y)V(X,X),V(X,X)) = —cXX,Y),
so that Y and X are orthogonal.

Let a(X) = R'X ® p(X). Let a(X)* denote the orthogonal complement of
a(X) in T,(M), and S(X) the set of all unit vectors in e(X)*. Then we have
the following lemmas:

Lemma 4.1. If Y ¢ S(X), then {V(X,Y),V(X,Y)) = ic* and <V(X, X),
V(Y,Y)> = ic®. Moreover, if Y, Z are two orthonormal vectors in S(X),
then {V(X,Y),V(X,2)) =0.

Proof. Since V is bilinear, the real function F on S(X) defined by

F(W) = (V(X, W), V(X, W), for W eSX),

is continuous on the compact set S(X) with respect to the natural topology of
S(X). So F takes a minimum at some T e S(X). Moreover, X, T have the
property (2.2). In fact, let X, T, W be three orthonormal vectors in T,,(M).
We consider the three posibilities :

Case 1: W e S(X). Then T and W are orthonormal vectors in S(X). Thus
the real function

h@) = V(X,Tcosd + Wsind), V(X,T cosd + Wsinf))

of real variable § takes a minimum at § = 0, so that A’(0) = 0, that is,
VX, T),V(X,W)) =0. According to Lemma 2.6, we have {V(X,X),
v(r,w), =0.

Case2: WepX). Then V(X,W)=0. By Lemma 2.6 we have
TVX,X),V(T, W)y =0.

Case 3: W = aW, + a,W,, where W,, W, are unit vectors in a(X), a(X)*
respectively and a,,a, are real numbers. Since X,W are orthonormal,
W, € p(X). By Cases 1 and 2 we have <V(X, X),V(T,W)> =0, fori =1,2.
Hence (V(X,X), V(T,W)) = a,(V(X,X), V(T,W)) + aV(X,X), V(T,W,)>
= 0.

According to Lemma 2.7, either V(X,T) =0 or <V(X,T),V(X,T)) =
1c?. Since TeS(X) C a(X)L, V(X,T), V(X, T)) = 4c*. Therefore for
Y eS(X) we have (V(X,Y),V(X,Y))> VX, T),VX,T)) = L. By
Lemma 2.8, we get (V(X,Y),V(X,Y)) = ic%. So from Lemma 2.2 follows
VX, X),V(Y,Y)) = §c.

Now, if Y, Z are two orthonormal vectors in S(X), then, by the first part
of this Lemma, VX, + 2)/¥/2), VX, (Y + 2)/v/2)) = ic,
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VX, Y),VX,Y)) =<V(X,2),V(X,Z)) = ic*. So we have V(X,Y),
V(X,2)) =0.

Lemma 4.2. If W is a unit vector in a(X), then V(X,X) = V(W,W).
Proof. Let W = aX + bY, where Y is a unit vector in p(X), and a, b are
real numbers. Then a* 4+ b* = 1 and V(X,Y) = 0. By Lemma 2.2 we have
VX, X), VX, X)) =<VX,X),V¥,Y) =<V({¥,Y), VY, Y)>, so that
VX,X) =VX,Y),and VIW,W) = a?V(X, X) + bV(Y,Y) = V(X, X).

Lemma 4.3. If Y e S(X), then a(Y) C a(X)+.

Proof. Let aZ + bW be a unit vector in a(Y), where Z, W are unit vectors
in a(X), a(X)+ respectively, and a, b are real numbers. Then, by Lemma 4.2,
we get V(Y,Y) = V(aZ + bW,aZ + bW) and V(X, X) = V(Z,Z). Accord-
ing to Lemma 4.1, we have

I =VX,X),VY,Y)) =<VX,X),V(Z + bW,aZ + bW))
= ad<V(X,X), VX, X)) + 2abV(X, X), V(Z, W))
+ VX, X), VW, W))
= a’c® + 2ab{V(Z,2),V(Z,W)) + +b’c* = a’c* + L1b’c* .
The last equation follows from Lemma 2.1. Since a* + b* = 1,a = 0. Thus

we see that a(Y) C a(X)L.
According to Lemma 4.3 we can decompose T,(M) into a direct sum

4.2) T,(M) =a(X,)®D - D alXy)
for some unit vectors X, ---, X, in T,(M) such that a(X,) C a(X,)* for
I1<i#j<k

For each unit vector X ¢ T,,(M), let B(X) denote the dimension of the vector
subspace a(X). Let H(m) denote the mean curvature vector on M at m, that
is, if e;, - - -, e, form an orthonormal basis of T,,(M), then H(m) = (V (e, e,)
+ --- + V(e,, e,))/n. The mean curvature vector H(m) is independent of
the choice of the basis of T,,(M). We choose an orthonormal basis Y, ---, Y,
of T,(M) such that Y, = X, Y, e a(X) for i < B(X), and Y, e a(X)* for
j > B(X). Then, by Lemma 4.2, V(Y;,Y,) = V(X, X) for i < B(X). Accord-
ing to Lemma 4.1, <V(X, X),V(Y,, Y,)) = 4c* for i > B(X). Hence

n(V(X,X),Hm)) = <V(X,X), 7. VY, Y))
= pX)-c* + 4(n — B(X))c* = §nc® 4+ $B(X)-c* .
Let S denote the set of all unit vectors in T,,(M) with respect to the natural
topology. Since n > 2, S is connected. However, the function (V' (X, X), H(m)>

of X ¢ S is continuous on S. So the integral function B(X) is constant on S,
and we can define a real function B on M by

B(m) = p(X), for m e M and a unit vector X in T,,(M).
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Then B(m) satisfies the relation
nV(X, X), Hm)) = inc* 4+ {B(m)c* ,

where X is a unit vector in 7',(M). Since both ¥V and H are differentiable, B
is continuous on M. The connectedness of M implies that the integral function
B is constant on M. Let a denote this constant.

Case 1: a = 1. Then for any m € M and any unit vector X in T,(M), we
have p(X) = 0. Thus, if X,Y are orthonormal in T, (M), then Y ¢ S(X) C
a(X)t. By Lemma 4.1, (V (X, X),V(Y,Y)) = ic*, VX, Y),V(X,Y)) =
1c?, so that K(X A Y) = ic?, which implies that M has positive constant
curvature ic%.

Case2: a=mn. Then Y e p(X) for any me M and two orthonormal
vectors X, Y in T,(M). Thus V(X,Y) = 0. By Lemma 4.2, we also have
V(X,X) = V(Y,Y). Hence the sectional curvature K(X A Y) = ¢?, and the
sectional curvature of M is c?.

Case3: 1<a<n letmeM,and T,(M) = a(X))D:-- Pa(X,) be a
decomposition of T,(M) into a direct sum as (4.2). Then each a(X,), for
i=1,-...,k, has dimension a, so that n = ak, which implies that » is not
prime and k£ > 2. Since a > 2, we can choose a unit vector Y e p(X,). More-
over, X, Y are orthonormal, and V (X}, X;) = V(Y,Y) by Lemma 4.2. Hence
the sectional curvature K(X; A Y) = ¢®.. On the other hand, X, and X, are
orthonormal, and X, e S(X,). It follows from Lemma 4.1 that K(X; N\ X,) =
1¢?, which together with K(X; A X) = ¢*, implies that case (3) in Theorem 2
can not happen, since there is no half-open interval (3x,x] which contains
the closed interval [1c?, ¢?].

Let e, ---,e, be an orthonormal basis of T,(M) such that X, = ¢, and
€, 0+1> * * *» €y 5, fOorm an orthonormal basis of a(X,,,) for r =0, ...k — 1.
Suppose that there are real numbers b,, b,,a;,i = a + 1, - - -, n, such that
4.3) SraaaV(X,e) + bV(X, X) + bV(X,, X,)=0.

Taking the inner product of (4.3) with V(X,, X,) we get b, + b, = O by
Lemmas 2.1 and 4.1. According to Lemma 4.2, V(X,, X,) = V(e;, e;) for
a+ 1<i<2a Hence V(X,,e),V(X,, X)) =V(X,,e),Vie,e)) =0
for a+1<i<2a Fori>2a+1, e eSX,). Also, X, e S(X,), and by
Lemmas 4.1 and 2.6 we have <(V(X,,e,),V(X,,X,)> =0 for i > 2a + 1.
Taking the inner product of V(X,, X,) with (4.3) gives 1b, + b, = 0. Thus
we have b, + 1b, = 0 and }b, + b, = 0, so that b, = b, = 0.

Fora + 1 <i, e; € S(X,). By Lemma 4.1, {V(X,,¢), V(X,,e;)> = 0 for
a+1<i#j<n Thus V(X e, -, V(X,e,) are orthogonal and are
nonzero normal vectors according to Lemma 4.1, so that V(X e;,),: -,
V(X,,e,) are linearly independent. Hence a;, = Ofori=a 4+ 1, ---,n.
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The above argument shows that V(X,,e,.), - -, V(X,,e,), V(X,, XD,
V(X,, X,) are linearly independent. They are normal vectors, and p > n — a
+ 2. Now n = ak and k > 2, so that a < in, which implies p > in + 2.
Consequently under the assumptions of Theorem 2 case (3) can not happen
thus proving Theorem 2.

S. Some properties of vector subspaces of R™*?

Consider R"*? as an (n + p)-dimensional real vector space. Let d be a
positive real number, and X, L(X,, X;) = L(X;, X)), i,j=1,---,n be
vectors in R"*? with the following properties :

(I) if 1<i#j<n then {X,,---,X,,d"'L(X;,X,;),2d"'L(X;, X;) =
2d'I(X;, X} is orthonormal;

(I1) forl1 <i+#j<n LX;, X)), L(X,, X)) = id

() for 1 <i,j,h,k < n and different i, j, h, L(X;, X,) and L(X,, X)
are orthogonal.

Let E denote the n-dimensional subspace generated by X, - - -, X,,. Extend
the system {L(X;, X,)} to the unique bilinear map L: E X E — R"*?

L(} 7 a; Xy, Z?:l ijj) = ZZj:l ab; L(X;, X)) ,

for real a;, b;. Then L is symmetric.
Lemma 5.1. Let X, Y be two orthonormal vectors in E. Then
L&, X),LX, X))y =d, (LX,X),LY,Y))=0,
LX, X)), L(Y,Y)) = id’, AIX,Y),L(X,Y)) = id* .

Proof. LetX=>r,a,X;,Y=7",bX,;. Then } 2 ,ai=1, };7,bi=1,
>, a;b; = 0. We compute:

@7y h,k=1

LX), LX) = 51 abiab(LXs, X)), LX,, X

=d? (a;b))* + %dz Z a;b;a,b,
i=1 i#*h
+ §d* 3 (a:by)* + 1d® 3 a;bja;b;
j i#j

=

-

= %dz(é aibi>2 + %da lﬁ:l a% ‘él bz = %d2 .

By a similiar computation, we can obtain the other three equations.

Lemma 5.2. Let X, Y, Z be three orthonormal vectors in E. Then
X, X), L(Y,2)) =<L(X,Y),L(X,2)) = 0.

This lemma follows from Lemma 5.1.

Lemma 5.3. If X, Y, Z, W are orthonormal in E, then {L(X,Y),
L(Z, W)y = 0.
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Proof. ByLemma 5.2, {L(X,Y),LUZ + W)/ 2,(Z + W)|V/2)> =0,
which implies <{L(X,Y), L(Z, W)> = 0 since <({L(X,Y), L(Z, Z)> =
L(X,Y),L(W,W)> = 0.

From Lemmas 5.1, 5.2, 5.3 we obtain

Proposition 5.1. Let e, - - -, e, be an orthonormal basis of E. Then

(I) for1<i#j<n,{e,---,en,d'Lie;e;),2d  L(e;, ;) =2d™"'Liey, e,)}
is orthonormal ;

(II) for 1 <i+# ] <n, <L(ei9 ei)’ L(ej5 ej)> = %dzy

D) for 1 < i,j,h,k < n and different i, j, h,L(e;, e;) and L(e,, ;) are
orthogonal.

Proposition 5.2. Let e, ---,e, be an orthonormal basis of E. Then
{en - e} U{L(es,e): 1 < i < j< n}is alinearly independent system.

Proof. Suppose

i ae; + Nicicien dijl(ee;) =0

with real a;, a;;. From (I) of Proposition 5.1 we see that all a; must be zero.
Moreover, if we take the inner product of L(e,,e,), h < k, with the above
equation, then we get a,, = 0, so that >}, a;;L(e;, e;) = 0. Taking the inner
product of L(e,, e,) with the above equation yields

Z?:l Ay = —App, for h = 13 cee,H,

which imply a;; = O for i = 1, - - -, n. Hence we complete the proof,

6. Proof of Theorem 3

We identify points in R**? with their position vectors, and use || || to denote
the norm.

Let M be an n-dimensional (n > 2) 2-sphere with radius 1/c (¢ > 0) with
respect to the system {X;, B(X;, X;)}. Let E* denote the n-dimensional sub-
space generated by X, - - -, X,,. Define a bilinear map L: E” X E” — R**? by

L(Y7, a: X5, 25 b;X;) = Z?,j=1 ab;B(X;, X,) ,
for real a;, b;. Then L(X;, X;) = B(X;, X;) and L is symmetric. It follows

from the definition of Q-sphere that there is a fixed point m, ¢ R**? such that
M is the set of all points A(X):

i X| 1 —cosc|X]|
AX) = m, + S0 Xl g 4 LX,X) ,
c|X| ¢l X’
f0<c|X| <2z, XecE",
AX) = my, ifX=0.
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Let V denote the second fundamental tensor of M. At first we prove the
following lemma.

Lemma 6.1. Let X ¢ E* with 0 < c||X|| < 2z. Then there is an ortho-
normal basis e, - - -, e, of the tangent space T , x,(M) at A(X) with the follow-
ing properties :

D if 1<i#j<n, then {2c7V(e;, e;) = 2¢7 'V (e;, e.),c Ve, e;)} is
orthonormal and {V(e;, e;), V(e;, e;)> = $c*;

2) for 1 <i,j,h,k < n and different i, j, h, V(e;, e;) and V(e,,e;) are
orthogonal.

Proof. LetY,=X/||X]|. Choose Y,,---,Y,suchthatY,--.,Y, form an
orthonormal basis of E™. Then, forY = >;7_,y,Y, and 0 <¢| Y || < 2z, we have

i X|| & 1 —coscl|Y|
AY) — . SREIX 1y 1= cosc Y]]
W =m+ =y 220 —yp

1

;: yiij(Yi7 Yj) .

Consider (y,, - - -,¥,) as coordinates of M. For i,j=1,---,n,d||Y|/dy; =
yillYl,

0 (9 sinc| Y|\ & sinc || Y]
2 (AY) = (22 =hn WY, + —— 1= 1Y
ay, A <ayj 1Y ) Enta+ Y|

a1 — cosc||Y||> z
+ (———— Il (Y, Y
a, cIYTR h%i[)’/)’k (Y, Yy

N 2(1 — cOSCZ‘”YH) i v (Y, Y.,
c|Y]

h

2 H n
Va/m-ai—(A(Y)) = ( ¢ sinc “Y”) 3 .Y,
J

aydy, clY] /i
(i S_ifLHY_“)Yj + (i M)Y
oy Y]] oy, clY]

i 1—cosc||Y||> n LY.y
(ayiayf Y e Yo

d 1— cosc[lYH) i
-+ 2<—— - —— -1 L(Y;,Y,)
, olxp )T

0 1 —cosc||[Y]\ 2
+ 2(3})@ W hZJl’th(Yj, Yh)

2(1 — cosc||Y|])L Y. Y
+ C“Y“z ( (2] j) .

Calculating the last two equations by chain rule at y, = | X|, y,= -+ =
. = 0, we get
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) sinc || X|| 2(1 — cosc || X]) ,
AX) =12y, + == =2 -2V J(Y,, Y, i=2,---,n;
3y, cllX]| c|X]| '

%(A(X)) = (cosc||X|)Y, + (sinc | X|DL(Y,, Y,);

me,%(A(X)) — —c(sinc||X|DY, + clcos ¢ | X|DL(Y,, Y));
1

0 __(cosc|X| _ sincl|X]|
oy, A _< 1| cliX|p )Yi

2sinc | X|| 2(1 — cosc || XD
+ —_
( X cllX|p

)L(Yl, Y),

i::2,-~~,n',

b 2(1 — cosc || X]) . )
V — A X = L Yi, Y E) 2 S S s
a/ay,ayj( ( )) c ||X“2 ( j) L# ] B
0 cosc| X| sinc|]X”>
4 AX)) = ( - Y
wengy, A IX| clxp /-
<sm cllX| _ 2(1 — cos c2 [P q])] )L(Yl, Y)
X1 cl| Xl
2(1 — cosc || X]) .
+ L(Yi, Yi)’ fOI‘l:2,--~,n .
cllX|?
Lete;, = aa A(X)) / H aa A(X)) H According to Proposition 5.1 we have :
Vi Vi

(D ifl<i#j<n, then{Y,,--.,Y,,L(Y,;,Y,),2L(Y;, Y,;) =2L(Y;, Y),)}
is orthonormal and <L(Y,,Y,), L(Y,;,, Y ))> = };

(I) for 1 < i,j,h, k < n and different i, j, h, L(Y;,Y;) and L(Y,, Y,) are
orthogonal ; and therefore

e, = (cosc|| X|DY, + Ginc || X|DL(Y,, Y) ,
e; = (cos $c || X|NY; + 2(sin ic | X|DL(Y,, Y,), i=2,--+,n.

Using Gauss formula we compute :
Vie,, e) = —c(sinc || X|)Y, + c{cosc | X|DL(Y,, Y) ,
Vie,e) = —%c(sin{c || X|DY; + c(cos ¢ | X|DL(Y,, Y ) , i=2,.---,m,
Vie,e;) =cL(Y;,Y)), 2<i#+j<n,
Vie;, e;) = —3c(sinc || X|)Y, — 4c(1 — cosc || X|DL(Y,,Y) + cL(Y;, Y ),

i=2,---,n.

It is easy to verify that e, - - -, e, form the required basis of T, x,(M).
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Proposition 6.1. For m € M and an orthonormal basis e,, - - -, e, of T,,(M),
we have :
(D) if 1<i+j<n, then {e, ---, e, c'Vie,e),2c7 V(e e;) =

2¢~'V(e;, e,)} is orthonormal and {V(e;, e;), V(e;, ;)> = ic?;

(D) for 1 <1i,j,h,k < n and different i, j, h, V(e; e;) and V(e,,e;) are
orthogonal.

Proof. If m # m,, then the assertion follows from Lemma 6.1 and Pro-
position 5.1. If m = m,, then the assertion follows from the case for m % m,
and the continuity of the second fundamental tensor V.

Proposition 6.2. M has constant curvature Lc.

Proof. Let me M. For any two orthonormal vectors Y, Z in the tangent
space T,,(M), we can extend them to an orthonormal basis of T,,(M), so that
by Proposition 6.1, <V(Y,Y),V(Z,Z)) = ic* and <V(Y,Z2),V(Y,Z)) = ic’.
Thus the sectional curvature of the plane spanned by Y, Z is 1c%.

Let a: (a, b) — M be a geodesic on M with unit tangent field 7. For e ¢ (a, b),
choose an open interval I in (a, b) containing e such that the restriction ¢ = a1
of « to I is univalent.

For any unit vector Y orthogonal to T(g(e)) in the tangent space T, .,(M),
we can extend 7, Y to a parallel base Y, --., Y, along ¢ with Y, (a(t)) =
T(a(2)) for tel and Y,(o(e)) = Y, that is, D,Y, =0 and Y, ---,Y, are
linear independent along ¢, where D denotes the Riemannian connection of
M. Since T(s(e)) and Y are orthonormal, T and Y, are orthonormal.

Let ¢ denote the Fermi coordinate map from an open neighborhood of ¢(I)
onto an open subset W of a Euclidean space R", that is, for (x;, - - -, x,) € W,

¢_1(x1, ey, xn) = Expa(zl) ZZL=1 xiYi(a(x1)) ,

where Exp,., denotes the exponential map at o(x). Let Z,, Z, denote the
restrictions of the coordinate fields d/dx,, d/dx, to the set of points
EXD, zp, %,Y,(0(x,)), tespectively. Then Z,(o(1) = T(a(9), Z,(a()) = Yy(a (1),
and D, Z, = D,,Z, along ¢. Since each x,-curve is a geodesic parametrized
by the arc length, D,,Z, = 0 and {Z,, Z,> = 1. Also we have D, {Z,,Z,) =
(D2, 2, Zyy + {Z,,Dy, 2,y =Dy 2Z,, 2,y = }Z{Z,,Z,y = 0. Thus {Z,, Z,)
is constant along x,-curves. Since <{Z,, Z,> = 0 on ¢, we have {(Z,,Z,) = 0,
and therefore W=Z,/||Z,|| and Z, are orthonormal and W(o(2)) = T(a(2)).
By Proposition 6.1, <V(W, W), V(W,W)) = ¢, {V(IW,W),V(Z,, Z,)) = 3¢,
VW, VW, Z)y =0, VW, Z), VW, Z)y = k¢
Now

Dz Z, = (Z|Z,DW + |Z|| Dz, W, Dz Z, = ||Z| DwZ, -

Since (D, W,W> = 1Z W, W) =0 and (Dz,Z)(a(e)) = (D;,Z)(a(e)) =
(D1yZ,)(a(e)) = 0, we have (D, ,W)(a(e)) = 0 and (DyZ,)(a(e)) =0. D, Z,
=0, (DyW)(a(e)) = (D7T)(a(e)) = 0. Thus the Codazzi equation gives
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(nor V' V(Z,, Z,))(a(e)) = (nor V ;. V(W, Z,))(a(e)) ,
(nor V ,,V(W, W))a(e)) = (nor VyV(Z,, W))(a(e)) ,

from which follows

W V(T, D)ale)), VY, Y))
= TwVW, W), V(Z,, Z))(a(e)) = — VW, W),V V(Z,, Z)))(ale))
= —VW, W),V VW, Z))a(e)) = Fz,VW, W), V(W, Z))(ale))
= VwV(W,Z), VW, Z))a(e) = $(WVW, Z,), V(IW, Z,)))(a(€)) =0 .

Similiarly,
W V(T, T)a(e), V(T(a(e), Y)) =0,

WV, D)ae),Y) = —<V(T,T),V1Z,)(a(e))
= —<V(T, 1), V(T, Z,))a(e)) = 0.

Let e, = T(a(e)) ande,, - - -, e, be an orthonormal basis of T, ,,(M). Then the
above argument shows that J(V,V(T, T))(a(e)), V(e, e)> = 0 and
WL V(T, T))(ale), Ve, e)y =0fori=2,---,n, and (T V(T, T))a(e)),
V(le; + e/ 2, (e; + eﬂ/ﬁ)} =0for2 <i=#j<nsothat{(V,V(T,T))
(¢(e), V(e e)> =0. Now we have < V(T, T))a(e), Vie,e)) =
HTW(T,T),V(T, T)))o(e)) = 0. Thus

6.1) LW V(T,T))ale), Ve, e)) =0, fori,j=1,---,n.
Also we have
6.2) LW V(T, T))ale), ey =0, fori=2,---,n.

Since <, V(T, T)(a(e), ey = — V(T, T), V1T (ale)) = —<V(T, T),
V(T, T))(a(e)) = —c?, we have

(6.3) VT, D))(ale), ey = —c .

On the other hand, since M is a subset of the Euclidean space {m, +
T x Xy + N7 %B(X, X5) 1 x5, x5 are real}, 7 V(T, T))(o(e)), e;,V (e e)),
for i,j = 1, - - -, n, are vectors in the vector subspace generated by X, - - -, X,
and B(X,,X,) for h,k =1, ...,n. The dimension of this vector space is
$n(n + 3) by Proposition 5.2. Thus it follows from Propositions 6.1 and 5.2
that {e;, - -+, e,} U {V(es, e): 1 <i <j< n}isabase, so that (V,V(T,T))
(a(e)) is a linear combination of ey, - - - ,e, and V(e e;), 1 <i<j<n. By (6.1),
(6.2), (6.3), we get
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W V(T, 1))(a(e)) = —c’e, = —c*T(ale)) .
Since e is arbitrary, V.V ;T =V .V(T,T) = —c*T on «, i.e.,

d*a(t) n Czda(t) _
ar dt

)

whose solution is an arc of a circle with radius 1/c since we have the boundary
conditions :

da da d’a¢ da

da daN _ op oy , XN v, T), Ty =0,
dt dt> < % dr dt> N » T

2 2

‘jit‘f, ‘fh‘j> — VT, D), V(T, T)> = —c* .

This proves Theorem 3 due to the compactness of M.

7. Proof of Theorem 4

Let K denote the positive constant sectional curvature of M, and f,, the Jacobian
map of the isometry f. Define a real function G on M as (3.1), i.e., G(m) =
(X, X), VX, X)) for meM and a unit vector X in the tangent space
T.,.(M). By Lemma 2.4, we see that G = ¢? for some nonnegative number c.
For any two orthonormal vectors X,Y in T,(M) we get K = {V(X, X),
VY,Y)) —<V(X,Y), V(X,Y)> by the Gauss equation, and

(7.1) VX, Y),V(X,Y)) =<V(X,X), VX, X)) —K=c"—K

by Lemma 2.2, so that (V(X,Y), V(X, Y)) is constant on T,,(M). Thus from
Lemma 2.8 either V(X, Y) = 0 or <V(X,Y), V(X,Y)> = 1c%. For otherwise,
there are orthonormal vectors X, X,, X, in T,(M) such that ¢ — K =
VX, X), VX, X)) + VX, X,), V(X,X,)> = ¢ — K, which is impos-
sible. Therefore either ¢* = K or ¢ = 4K and ¢ > 0.

At first, we consider the case ¢> = K.

Proposition 7.1. Suppose ¢* = K > 0. Then f(M) is an open subset of an
n-dimensional sphere.

Proof. letmeM, ande,, ---,e, be an orthonormal basis of T,(M). It
follows from (7.1) that V(e;,e;) = 0 for 1 < i+ j < n. Consequently by
Lemma 2.2 we have V(e;,e;) = V(e,,e,) ior i = 1, - .-, n. This implies f(M)
is an open subset of an n-dimensional sphere.

Now we consider the case ¢? = 4K. Let me M, and e, - - -, e, be an ortho-
normal basis of T,(M). Then we have
(7.2) Ve e;p), Ve, ey = ic forl<i#j<n

by (7.1),
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(7.3) Ve, e), Viej,e)y = i forl<i#j<n
by Lemma 2.2, and
(7.4) Ve e, Vie,e)) =0 forl<i#j<n

by Lemma 2.2. If 1 <i,j,h < r and i, j, h are different, then by (7.1) we
have (V(e;, (e; + en) /v 2), Vies, (e; + €,) /4 2)> = ic*. Applying (7.2),
(7.3) to the expansion of this equation yields

(7.5) Ve e, Vie,e,)y =0, for different i, j, A.
It then follows from Lemma 2.6 that
(7.6) Ve e, Vies,en)y =0, for different i, j, h.

If1 <i,j,h,k <nandi,j,h,k are different, then we have <V((e; +ep/
V2,(en+e)/vV2), V(e + e)/vV2, (e, + e)/v2)) = tc®. By Lemma
2.2, we se that

Vei+ed|V2,(e+e)vV2), Ve, +ed/vV2,(e,+e)v/2))=13c.
Applying (7.3), (7.6) to the expansion of the last equation thus gives
a.7 Ve ey), Viey, ey =0, for different i, j, h, k.
Since f is an isometry, (7.2), - - -, (7.7) imply:
(78) if 1 S i +* ] S n, then {f*ela e 5f*en5 C_IV(ei, ei)’ 2C-IV(eia ej)
= 2¢™'V(ey, €,)} is orthonormal and {V(e;, e;), V(e;, e,)> = 3c* ;
(7.9) for 1 <1i,j,h, k < n and different i, j, h, V(e;, e;) and V(e,, e;) are
orthogonal.

So we can define an 2-sphere, say S,, through f(m) with radius 1/c with
respect to the system {f.e;, c™'V{(e;, e)}. For X e T,(M), let || X|| denote its
length. It follows from the definition of 2-sphere that S, is the set of all points
A(X),c||X]| < 2, defined by

i X| 1 —coscl|X]|
AX) = f(m) + SmelXly x4 V(X,X), for X eT,(M)
cllx| ¥ clX|P

with 0 < ¢ || X|| < 2=z, A(0) = f(m). Thus S, is independent of the choice of
the basis e, - - -, e,, so that for each p e M we can define an n-dimensional
f2-sphere S,.

On the other hand, there is a real number 0 < c¢r < 2z such that the ex-
ponential map Exp,, at m maps
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U={xe + -+ + x8,: a1 + -+ +x7) <71}

diffeomorphically onto an open neighborhood of m, and foExp,, is one to one
on U. By Lemma 2.5 we thus have

. n _ sinc(x? 4 --- + 222 & '
foBxpn 3 wies = flm) + SoFE T e
1 — cos c(xf RN %) RA.
CZ(X? A Xz) Z;:ﬂxzx V(ez, ej)

Hence f(Exp,, U) is an open subset of S,,. This proves the local theorem, since
Exp,, U is an open neighborhood of m.

Let p e Exp,, U. Then f(p) € S,,. Let V, denote the second fundamental
tensor of S,. If Y, ..., Y, form an orthonormal basis of T,(M), then
f«Yy, +++, fuY, form an orthonormal basis of T, ,,(S,). Moreover, since
Exp,, U is isometric to an open subset of §,, we see that V(Y;, Y;) =
V(£ Y4, . Y;) for i,j=1,---,n, so that S, is the Q-sphere through f(p)
with radius 1/c with respect to the system {f,Y,;, c™'V,(f,.Y;, f. Y D}.

~Since S, is compact and connected, every point g € S, can be jointed to f(p)
by a geodesic (cf. [1, Theorem 15, Chapter 10]). By Theorem 3, S,, satisfies
the assumptions of Theorem 1, in which f is the inclusion map. We use the
exponential map at f(p) to parametrize S,,. According to Lemma 2.5, we see
that the £-sphere through f(p) with radius 1/c with respect to the system
{fo Y, ¢V (f Y1, £ Y )} is just S,. Consequently, S, = S,. That is, S,, is a
locally constant Q-sphere. Since M is connected, all S,, are the same, say S.
Then f(M) is an open subset of S.
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