## ON THE RADIUS OF THE SMALLEST BALL CONTAINING A COMPACT MANIFOLD OF POSITIVE CURVATURE

JOEL SPRUCK

Theorem. Let $M \subset E^{n}$ be a compact Riemannian manifold of dimension $n-1 \geq 2$ with sectional curvatures $K(\pi) \geq 1 / c^{2}$ for all tangent plane sections $\pi$. Then $M$ is contained in a ball of radius $R<\frac{1}{2} \pi c$ and this bound is best possible.

According to a well-known result of Bonnet, any two points on $M$ can be joined by a minimizing geodesic of length less than or equal to $\pi c$. Hence the crude bound $R<\pi c$ follows. The proof we give of the theorem was inspired by the interesting note of Nitsche [1].

Proof. Let $B$ be the closed ball of smallest radius containing $M$. We choose coordinates so that $B=\left\{x=\left(x_{1}, \cdots, x_{n}\right):|x| \leq R\right\}$. The set of points of $M \cap \partial B$ must "support" $B$, that is, each closed half space $x \cdot v \geq 0$ ( $v$ a constant vector) must contain at least one such point. Let $C=M \cap \partial B$.

If two points of $C$ are antipodal on $\partial B$, their distance apart, $2 R$, must be less than the length of a minimizing geodesic joining these points. Hence by the theorem of Bonnet mentioned above $R<\frac{1}{2} \pi c$.

Now suppose $C$ contains no pair of antipodal points of $\partial B$. Then $C$ contains at least three points. If $P_{1}$ is one such point, a second point $P_{2}$ must lie in the half-space $x \cdot P_{1} \leq 0$. We choose a coordinate system in which these points are

$$
P_{1}=\left(0, \cdots, 0,\left(R^{2}-\alpha^{2}\right)^{1 / 2}, \alpha\right), \quad P_{2}=\left(0, \cdots, 0,-\left(R^{2}-\alpha^{2}\right)^{1 / 2}, \alpha\right)
$$

where $0 \leq \alpha<R / \sqrt{2}$. Still another point $P_{3}=\prime\left(x_{1}, \cdots, x_{n}\right)$ must lie in the half-space $x_{n} \leq 0$. Let $L$ be the perimeter of the triangle determined by $P_{1}, P_{2}, P_{3}$. Then

$$
\begin{aligned}
L=2\left(R^{2}-\alpha^{2}\right)^{1 / 2} & +\left[2 R^{2}-2\left(R^{2}-\alpha^{2}\right)^{1 / 2} x_{n-1}-2 \alpha x_{n}\right]^{1 / 2} \\
& +\left[2 R^{2}+2\left(R^{2}-\alpha^{2}\right)^{1 / 2} x_{n-1}-2 \alpha x_{n}\right]^{1 / 2}
\end{aligned}
$$

For fixed $\alpha$ and $x_{n} \leq 0$, the right hand side is minimized for $x_{n-1}=$ $\pm\left(R^{2}-x_{n}^{2}\right)^{1 / 2}$. Hence

$$
\begin{aligned}
L \geq 2\left(R^{2}-\alpha^{2}\right)^{1 / 2} & +\left[2 R^{2}-2\left(R^{2}-\alpha^{2}\right)^{1 / 2}\left(R^{2}-x_{n}^{2}\right)^{1 / 2}-2 \alpha x_{n}\right]^{1 / 2} \\
& +\left[2 R^{2}+2\left(R^{2}-\alpha^{2}\right)^{1 / 2}\left(R^{2}-x_{n}^{2}\right)^{1 / 2}-2 \alpha x_{n}\right]^{1 / 2}
\end{aligned}
$$

Communicated by L. Nirenberg, December 17, 1971. Research supported in part by N.S.F. Grant GU-2582.

Keeping $\alpha$ fixed the right hand side is minimized when $x_{n}=0$. Hence

$$
L \geq 2\left(R^{2}-\alpha^{2}\right)^{1 / 2}+\left[2 R^{2}-2 R\left(R^{2}-\alpha^{2}\right)^{1 / 2}\right]^{1 / 2}+\left[2 R^{2}+2 R\left(R^{2}-\alpha^{2}\right)^{1 / 2}\right]^{1 / 2}
$$

Finally, the right hand side is minimized when $\alpha=0$. This gives $L \geq 4 R$. Now consider a (minimizing) geodesic triangle on $M$ determined by the points $P_{1}, P_{2}, P_{3}$. According to a theorem of Toponogov [2], the perimeter $P$ of any such triangle satisfies $P \leq 2 \pi c$. Since $P>L$, we have $R<\frac{1}{2} \pi c$. This is the required estimate. The following example shows that this estimate is best possible.

Example. Suppose first $n=3$. Consider the surfaces of revolution of constant Gauss curvature $1 / c^{2}$. The generating curves of these surfaces form a one paramete family of curves starting from a semi-circle of diameter $2 c$ and eventually stretching out to a "needle" of diameter $2 \pi c$. If we "round off the corners" and revolve the modified generating curve, we obtain a sequence of compact surfaces satisfying $K \geq 1 / c^{2}$ with Euclidean diameter tending to $2 \pi c$.

To obtain an example for $n>3$, let $x_{2}=f\left(x_{1}\right)$ describe the modified generating curve described above. Then the hypersurface determined by the relation $x_{n}^{2}+\cdots+x_{2}^{2}=f\left(x_{1}\right)^{2}$ gives the repuired example.

Remark. If $n=2$ and $M$ is a simple plane curve with curvature $\geq 1 / c>0$, then it is easy to show that $M$ is contained in a circle of radius $c$. If $n=3$ and $M$ is an ellipsoid satisfying $K \geq 1 / c^{2}$, then it is easy to check that $M$ is contained in a ball of radius $c$.

Acknowledgement. The author would like to thank E. Calabi for correcting his erroneous idea of what the correct bound should be. The example above ( $n=3$ ) is due to him.

## References

[1] J. C. C. Nitsche, The smallest sphere containing a rectifiable curve, Amer. Math. Monthly 27 (1971) 881-882.
[2] V. A. Toponogov, Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl. 37 (1964) 291-336.

University of New Mexico

