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THE AXIOM OF 2-SPHERES IN KAEHLER GEOMETRY

S. I. GOLDBERG

1. Introduction

Let M be an almost complex manifold of complex dimension > 1. A sub-
space of the tangent space Mm at m e M is called a holomorphic plane if it is
spanned by a tangent vector at m and its transform by the almost complex
structure tensor J of M. A Kaehler manifold satisfies the axiom of holomorphic
planes if for each m e M and holomorphic plane 77 e Mm there is a totally
geodesic submanifold N such that m e N and Nm = Π. This notion was intro-
duced by Yano and Mogi [3] who proved that a manifold with this property
has constant holomorphic curvature.

A Riemannian manifold M of (real) dimension > 3 is said to satisfy the
axiom of 2-spheres if for each m e M and plane 77 6 Mm there exists a 2-di-
mensional umbilical submanifold N with parallel mean curvature vector field
such that mεN and Nm = 77. This notion was introduced by Leung and
Nomizu [2] who proved that a manifold with this property has constant sec-
tional curvature. This suggests the following concept for hermitian manifolds.

Axiom of holomorphic 2-spheres. For each mzM and holomorphic plane
77 e Mm there exists a 2-dimensίonal umbilical submanifold N with parallel
mean curvature vector field such that mzN and Nm = 77. (7/ N is a complex,
i.e., invariant submanifold, it is totally geodesic.)

This yields the following generalization of the theorem of Yano and Mogi.
Theorem. A Kaehler manifold satisfying the axiom of holomorphic 2-

spheres has constant holomorphic curvature.

2. Proof of theorem

A Kaehler manifold (M, < , )) is considered as a Riemannian manifold with

metric < , > admitting a parallel skew-symmetric linear transformation field /

(the almost complex structure). Let 7? denote the curvature tensor. Then, for

any me M and X, Y € Mm,

(i) R(JX,Y)= -R(X,JY) ,

(ii) K(JX,Y) = K(X,JY) ,
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where K(X, Y) is the sectional curvature determined by the plane of X and Y.
The Riemannian connections of M and N will be denoted by F and F, re-

spectively, and the connection in the normal bundle of N in M by F x . The
second fundamental form h is defined by

ΨXY = VXY + h(X, Y) ,

where X and Y are vector fields tangent to N. Associated with any vector field
ξ normal to N there is a linear transformation field Aξ given by

where X is tangent to N. The tensor fields h and Aζ are related by

The mean curvature normal H of N in M is defined by the relation

trace Aζ = 2<f,#>

for all ξ normal to N. H is said to be parallel (in the normal bundle) if VL H
= 0. The surface N is umbilical in M if

i.e., if

< = i trace

where / is the identity transformation. An umbilical submanifold is totally
geodesic if # vanishes.

For any me M, let X, JX and ζ be three orthonormal vectors in Mm, and
let 77 denote the holomorphic plane determined by X. Then there is an um-
bilical surface Λf with parallel mean curvature normal H such that me N and
Nm = 77. Let U be a normal neighborhood of m in N, and for each n 6 [/ let
£n be the normal to N at n parallel (with respect to VL) to ζ along the geodesic
in U from m to n. Along each such geodesic, <£,//> is a constant c, i.e.,
y4e = c7 at every point of U. Thus

VXA, = F«Λ e - 0 , Γif = F}xf = 0

at m. Applying Codazzi's equation

(R(X, Y)ξ)t = (FγAξ)X - (FxAς)Y + AF±ξY - AΓ±ξX ,

valid for any X, Y tangent to N and vector field ξ in the normal direction,
where the subscript t denotes the tangential component, it follows that
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(R(X,JX)ζ)t = 0. In particular, <#(Z, /Z)ζ, Z> = 0, so that by putting
Y' = (JX + 0 / V T and Z' = (/Z - ζ)/VT, and then making use of the
special symmetry properties (i) and (ii) of R, it is easily seen that K(Y'9 JY') =
K(Z\JZ'). Consequently, M has constant holomorphic curvature (see [1, p.
201]).

Note that a 2-dimensional umbilical submanifold of a space of constant
holomorphic curvature has parallel mean curvature vector field. For, if X and
ξ are any vector fields tangent and normal to N, respectively, (R(X, JX)ξ, JX}
= 0, so that <f, Fi#> = -<P±£, H> = 0.
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