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SURFACES OF CONSTANT MEAN CURVATURE IN
MANIFOLDS OF CONSTANT CURVATURE

DAVID A. HOFFMAN

0. Introduction

An immersed surface in a three-dimensional Euclidean space E3 has constant
(scalar) mean curvature if the length of the mean curvature vector H is con-
stant. An arbitrary isometric immersion Mn<=—>Mn+k of Riemannian mani-
folds is said to have constant mean curvature if H is parallel in the normal
bundle of the immersion (for definitions see § 1). This condition is stronger
than the requirement \H\ = constant c. In the case of immersions of surfaces
into manifolds of constant curvature we generalize many known facts and
theorems about surfaces of constant (scalar) mean curvature in E3. The main
theorems of this paper were announced in Hoffman [7], and we refer the reader
there for a more lengthy introduction and statement of results. What follows
is a brief sketch of the principal results.

To a surface of constant mean curvature given in conformal coordinates we
associate an analytic function φ constructed out of the second fundamental form
in the mean curvature direction (Lemma 2.1). This was first done for surfaces
in E3 by Heinz Hopf [8]. Under certain additional assumptions, the same
procedure works for other normal directions. These functions have direct
geometrical meaning which is discussed in § 2. In particular they are used to
prove Theorem 2.2(b): The only genus zero surfaces of constant mean curva-
ture in EA or the standard 4-sρhere S4 are the standard 2-sρheres.

Theorem 3.1 gives a local characterization of constant (nonzero) mean
curvature immersions which have constant Gauss curvature they are shown
to be pieces of 2-spheres or products of 1-spheres, Sλ(r) x S1(ρ), 0 < r < oo,
0 < p < oo. Theorem 4.1 classifies complete surf aces of constant mean curva-
ture in E4 and S\ whose Gauss curvature does not change sign they must be
minimal surfaces, 2-sρheres or S^r) x S^p), 0 < r < o o , 0 < / ? < oo.

In § 5 we use the analytic functions of Lemma 2.1 to construct local ex-

amples of surfaces of constant mean curvature in 4-dimensional manifolds of

constant curvature (Theorem 5.1). In these examples for the case of immersions

into E4 or S\ the surfaces do not lie minimally in hyperspheres of £ 4 or S4
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(Corollary 5.2). Except for products of circles S\r) x S^p), r Φ p, these are
the first known examples of such surfaces.

1. Preliminaries

Let Mn > Mn+k be an isometric immersion of Riemannian manifolds of
dimension n and n + k respectively. If < , ) denotes the metric tensor on
TMn+k, then that of ΓMMs given by i* « , » . We identify Mn with i(Mn) and
TMn with i*(TMn) C TMn+k, deleting reference to i and its induced maps
wherever possible. We consider TMn+k restricted to the base space Mn. A
vector field X on Mn, i.e., a member of Γ(TMn), the space of smooth sections
of TMn, is also a section of TMn+k. Let [ Y denote projection in TMn+k onto
TM. Then the normal bundle NMn is the bundle whose fibre at p is NM% =
{X € TMn+k I [X]τ = 0}. We let [ ]N denote projection onto NMn.

In the following, let X,Y,Ze Γ(TMn). The Riemannian connection F of
M is related to the Riemannian connection V of M (we suppress superscripts
n and rc + /: unless we wish to emphasize dimension) by

(1.1) WxYY = VXY .

Definition. B(X, Y) = ΨZYY. B is called the second fundamental form
of the immersion and is a section of Γ(TM (x) TM, NM), the bundle of bilinear
mappings form TM to NM. Let N e Γ(NM).

Definition. A is a section of Γ(NM (x) TM, TM) defined by

(1.2) <A(N, X), Γ> = -<B{X, Y), N> .

NM inherits a metric from TM and is a Riemannian vector bundle over M.
Its Riemannian connection D is the connection defined on NM by

DΣN = [ F X N F , X e Γ(TM), N e Γ(NM) .

D is easily seen to be compatible with the metric of NM. Putting together the
above decompositions, we have

(1.3) VXY = VXY + B{X, Y) , VXN = DXN + Λ{N, X) .

Given Riemanniann vector bundles Ei9 i = 1, , m + 1, with connections

Dι the bundle ^((g)T=iEi,Em+1)
a= tf of fibre linear maps has a natural

Riemannian structure V defined as follows.
Definition. If B is a section of Jf7, and X e Γ(TM), then F X 5 is the section

of JF given by

( 1 . 4 ) F X B ( , . . . , ) = D ; + 1 ( B ( , ) ) - £ : * ( > • ' ^ • • • ' ) •
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The curvature associated with F, F and D are denoted R, R and R respec-
tively. For example R is given by

(1.5) R(X, Y)N = DXDYN - DYDXN - Dίx^N .

The curvatures are related to B and A by the Gauss and Codazzi-Mainardi
equations

(iii)

( i ) [R(X, Y)ZY = R(X, Y)Z + A(B(Y, Z), X) - A(B(X, Z), Y),

(ii) [Λ(Z, Y)N]N = R(X, Y)N + B(A(N, Y), X) - BUtfV, X), 10,

(iv) [£(*, Y)N]Γ = F X ^(N, Y) - FYA(N, X),

where Z, Y, Z e Γ(ΓM), JV e
Proposition 1.1. Let M—+M be an isometric immersion. For fixed X,

Y € Γ(TM), R(X, Y) leaves TM invariant ̂  VZ e Γ(TM),

FXB(Y, Z) = FYB(X, Z) ^ VN € Γ(ΛίM),

FXA(N, Y) = FF^(N, Z) & R(X, Y) Zβflv« NM invariant.

Proof. The first and third equivalences follow from (1.6) (iii) and (iv).
The second equivalence follows from the fact that the adjoint of R(X, Y) is
—R(X, Y). Hence the first and fourth statements are equivalent. More directly,
the second equivalence follows from the easily verified equality (FXB(Y, Z), ΛΓ>

If M has constant sectional curvature c, then R(X, Y)Z = c((Y, XyX —
(X, Z)Y). In this case, the first and hence all the conditions of Proposition 1.1
are satisfied, and we may rewrite (1.6) as

= R(X, Y)Z + A(B{Y, Z), X) - A(B(X, Z), Y),

(1.7) ii) [R(X, Y)N]N = R(X, Y)N + B(A(N, Y), X) - B(A(N, X), Y),

iii) FXB(Y, Z) = FYB(X, Z), or equivalently

iv)

Let F = [e19 , en+k} be an orthonormal framing of TM defined in a neigh-
borhood of p e M. F is said to be adapted to M if {e19 ••-,£„} frames T M .
Given coordinates (w% , un) on M with coordinate vector fields Ut = 9/3M%
we shall also consider adapted coordinate framings of TM given by
{[/j, , Un} U {eα}, ft+ ί <a <n + k, where {ea} is an orthonormal fram-
ing or NM. In this and what follows ί<i<n, n + ί<a<n + k.

Definition. For an adapted framing of TM,
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(1.8) λ^ ά£ (B^, βj), ea} = -(A(ea, ej, e/> .

Similarly, for an adapted coordinate framing,

(1.9) L'tJ
 ά=<B{Uu ϋj), ea} = -{A{ea, £/,), E/,> .

For fixed a, the matrices (λ"j) and (L"j) are the second fundamental forms in
the ea direction. In the case where ea is parallel in NM, i.e., Dxea = 0,
yX € Γ(TM), equations (1.7) take on decidedly classical appearance:

Proposition 1.2. Let M2<=—>Mn+k(c) be an isometric immersion, where
Mn+k(c) denotes an (n -f k)-manifold of constant curvature c. If {Ul9 , Un}
{J{ea} is a coordinate adapted framing such that one of the ea, say eaQ, is

parallel, then

r = l

and

(i.π) Σ §jrLa

r°Mi - 8ίrL;mi = o
r,l

for all i,j,k = 1, . . . ,n, β = n + 1, ,n + k, where Γ\j are the Christoβel
symbols, and VVJJS = Σ ΓϊjUk.

Proof. For (1.10) use (1.7) (iv) with X = ϋi9 Y = Uj9 N = e.o. The
fact that eaQ is parallel implies

VViA{eaQ, Uj) = VUί{A{eaQ, Uj)) - A(eβo9?UtUj) .

Substitution of (1.9) will complete the proof. Equation (1.11) follows in a
similar fashion from (1.7) (iii) using the fact that eaQ parallel implies
A(ϋi9 Uj)eao = 0.

Remark. (1.10) is a generalization of the classical Codazzi equation for
surfaces.

Definition. For an isometric immersion Mn <=—> Mn + k, the mean curvature

vector field H = Tr B/n. In terms of adapted or coordinate framings,

H= — Σ # A = — Σ 8iJLΐjea , n + l < a < n + k .

n i,a n ij,«

Definition. M =—> M is said to have constant mean curvature if H is
parallel, i.e., if DXH = 0, yX β Γ(TM). Since D is a Riemannian connection,
we must have X | # | 2 = 2(ΌxH,ΐΓ). This equality (all but) proves the follow-
ing observations'.

1. i? is parallel =Φ |/Z| is constant.
2. lίH φθ, H is parallel ΦΦ|i¥| is constant and H/\H\ is parallel.



SURFACES OF CONSTANT MEAN CURVATURE 165

3. If codimension k = 1, H is parallel (=} \H\ is constant.
We remark briefly that constant mean curvature may be expressed in terms

of Cartan forms as follows. If {et} U {ea} is an adapted framing with en+1 =
H/\H\ and {ω1} are the dual 1-forms on M, then det = α>*efc + w"ea where
{ω*}, 1 <ί, k < n are the connection forms and ω? = #Λω fc, 1 < i < n, n +
1 < a < n + k. Similarly, dea = —ωk

aek + ωβ

aeβ where {ωβ

a}, n + 1 < a, β <
n + k, are the torsion forms of the immersion. By observation 2 above, H is
parallel (=$ Σ?=i λ^+e is constant and ωβ

n+e = 0, n + 1 < β < n + k.

For closed hypersurfaces Mn in En+1, constant mean curvature is equivalent
to requiring the rc-dimensional "area" of Mn to be stationary with respect to
variations which leave fixed the (n + l)-volume of the part of En+1 enclosed
by Mn. This condition for hypersurfaces can also be stated in a local manner
(see Hopf [8, p. 83]). For immersions with arbitrary codimension in En+lc,
Ruh and Vilms [15] have shown that constant mean curvature is equivalent to
the requirement that the Gauss map into G(n, n + k) be harmonic in the sense
of Eells and Sampson [4].

2. Surfaces with constant mean curvature

We shall now consider a surface M2 isometrically immersed in M2+fe(c), a
(2 + A:)-manifold with constant sectional cuavature c. Without loss of generality
we many assume that the immersion is given locally in conformal coordinates
(u\ u2), so that ds2 = E[(duψ + (du2)2], (i.e., < ϋ i , E/,> = EδtJ). Let z = uι

+ ίu2. To the coordinate framing {U19 U2} there is a naturally associated adapted
framing {ê  = U1/*/E). For a unit normal section ea e Γ{NM)λ.

Definition. φa(z) — (L^ — Lj2) — /Lf2

(or equivalently φa = E(\(λa

n - λa

22) - ttf2) since by (1.9), La

tj = <β(Uu Uj), ea}

Lemma 2.1. Let M2 c — > M2+k(c) be an isometric immersion given locally
in conformal coordinates (w1, u2) with conformal parameter E. Let ea be a unit
section of NM which is parallel.

(a) // E~ι(Llλ + Lj2) = (λn + λ%2) is constant, then ψa is an analytic func-
tion of z. In particular, i) if HφO is parallel and ez = H/\H\, then φz is analy-
tic, ii) // ea satisfies (ea, Hy = 0, then φa is analytic.

(b) // eβ e Γ(NM) is any other unit section and (eβ, ea} = 0, then φa = 0
or ψβ =. fφa where f is a smooth function of z with possible isolated poles.

(c) // ea and eβ are parallel unit sections of NM both of which satisfy the
hypothesis of (a), then one is a (real) constant multiple of the other.

Proof, (a) In conformal coordinates gίj = di3jE. Moreover the Christofϊel
symbols are given by

(2.1) I\ = Λ2

2 = -Γ\2 = iEJE , Γt2 = Π = -rn = \E2\E .
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Equation (1.10) becomes (for / = / = 1, k = 2 and / = k = 1, / = 2, resp.)

( 2 2 ) tf4)2 - tf4)i = έ W π + ί4) >

(L&)i - O4)2 = i^ i t f i + 14)

Since (LJΊ + LQjE is constant by assumption, (2.2) can be rewritten as

'" ^22)}2 — (£"2)2 = 0 ,

{i(! - Ii)K + (l£)2 = 0 .

These are the Cauchy-Riemann equations for φa. Statement (i) follows from
observation 2 of § 1 and the fact that |# | = \E-ι{Un + L\2). Statement (ii) is
true since λί + λa

22 = (tr λa

ί3) = <trB, ea} = <2H, ea} = 0.

(b) In conformal coordinates, equation (1.11) is

(2.4)

If φa Ξ£ 0, then φβ/φa = <pβφa/\φa\
2. But

- Σ U1H2 ~ LaMι = 0 by (2.4) .

Therefore / = φβφa/\φa\
2 is real and smooth and has only isolated poles since

<pa is analytic.
(c) If <pa = φβ = 0, there is nothing to prove. Without loss of generality,

assume φa =£ 0. Then by (b), φβ/φa is real with possible poles. But it is mero-
morphic since ψβ and φa are both analytic. Hence φβ/φa is a (real) constant.

Before using Lemma 2.1 to prove a generalization of Hopf's theorem on
closed surfaces of constant mean curvature in E3, we make some remarks about
the functions φa. In this and what follows we assume that H Φ 0 and set en+1

Definition. Mn<=—>Mn+k is pseudo-umbilical at p if (Λ?/1) = λδtj at p.
Mn<=—>Mn+k is totally umbilical if Mn =—>Mn+k is pseudo-umbilical and
λfj = 0, a > n + 1. A point where ψa is real is a point where (L"y) and (λ"j)
are diagonalized. A zero of ψa is a point where the eigenvalues are equal. If
ez = H/\H\, then zeros of ψz are precisely the pseudo-umbilic points of the
immersion. Lemma 2.1 (a) (i) implies that an immersion with constant mean
curvature is either everywhere pseudo-umbilic or has isolated pseudo-umbilic
points. Part (b) implies that, away from pseudo-umbilic points, one can simul-
taneously diagonalize the second fundamental forms in every direction of a
normal framing {e3, - , e2+k). Part (c) says that, under the added assumption
that ea is parallel, (λ"j) is completely determined by (Λ?y).

Theorem 2.2. (a) A closed oriented surface M2 of genus 0 immersed in
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M2+k(c), c > 0, with constant nonzero mean curvature is pseudo-umbilical
and lies minimally in a hypersphere of radius (\H\2 + c)~K

(b) If k = 2, then M2 is a small 2-sphere of radius (\H\2 + c)~K
Proof, (a) In a neighborhood of each p e M2 we consider the immersion

to be given conformally. Let e3 = H/\H\. By Lemma 2.1 (a), φ3 is analytic.
Since φ3 transforms quadratically, the differential Φ3 which in local coordinates
is given by φ3dz2 is well defined.

M2 is a Riemann surface via the local conformal structure and the definition
of z. Since M2 is of genus 0, Φ3 = 0. Hence in local coordinates, ^ Ξ O . By
the remarks preceding this theorem, this means the immersion is pseudo-
umbilical at each point. It is then straightforward to show that M2 lies minimally
in some hypersphere of radius (\H\2 + c)~K In fact, an immersion MWc=—>
Mn+2(c), c > 0, with constant nonzero mean curvature is pseudo-umbilical
^Mn lies minimally in some hypersphere of Mn+2(c). (To make sense of
this in case c > 0 we take as model for Mn+k(c), Sn+k(l/Vc) considered as
a hypersurface in En+k+1. Hyperspheres are then intersections of Sn+k with af-
fine (n + &)-ρlanes in En+k+1.) This result is proved in [6]. The Euclidean case
of the theorem for surfaces occurs in Chen [2] and Ruh [14].

(b) In a neighborhood of each p β M2, let e4 be a smooth unit section of
NM2 such that <e3, e4} = 0. Since \eA\ = 1, Dxe± = ω(X)e for some 1-form ω.
But

0 = X(e3, e4} = < D Λ , e3} + < D Λ , e3} + (Dxe39 eA} = ω(X) .

The second equality follows from the fact that Dxe3 = 0. Hence DxeA = 0,

i.e., e4 is parallel. By Lemma 2.1 (a), <pA is analytic. Repeating the argument

of (a) of this proof shows ψ^ = 0. Since 7?n + λ\2 = 0 (see proof of Lemma 2.1

(a) (ii)) we must have λ\j = 0, 1 < /, / < 2. Hence the immersion is totally

umbilic. It is well known that totally umbilic manifolds are pieces of spheres.

In our case we need only observe that by (a) of this theorem, M2 lies in a 3-

sphere of radius (\H\2 + c)~* in such a way that eA is its unit normal in that

sphere. Because λ\5 — 0, it is totally geodesic and must then be an equatorial

2-sρhere of this 3-sphere.

Remarks. 1. Theorem 2.3 (b) is a natural case of a more general result

about surfaces in M2+k(c) with constant nonzero mean curvature and normal

bundles which admit framings {e3 = H/\H\, e4, , e2+k} such that each of the

ea is parallel. The proof of Theorem 2.2 (b) shows that such a surface of genus

0 must be a standard 2-sphere. (See also Proposition (3.3).)

2. Minimal surfaces (more generally manifolds) in Euclidean spheres give

examples of surfaces (submanifolds) with constant mean curvature in Euclidean

space. The examples of Lawson [12] of compact minimal surfaces in S3 of

every genus are also examples of surfaces of constant nonzero mean curvature

in E\ Thus there are compact surfaces of constant mean curvature of every

genus in E\



168 DAVID A. HOFFMAN

3. It is important to know that minimal surfaces in hyperspheres are not
the only examples of surfaces of constant mean curvature. In § 5 we prove the
existence of a large class of surfaces in E* and Si which have constant mean
curvature but do not lie minimally in hyperspheres.

3. Surfaces with constant mean curvature and

constant Gauss curvature

In this section we classify immersions M 2 c=—>M\c), c > 0, which have
constant nonzero mean curvature H and constant Gauss curvature K. For
c > 0 we take as a model for M\c) the hypersurface

By a standard product immersion of S^p) X S^r) in E* we mean the product of
of two Euclidean plane circles (of radii p and r respectively), p may take on the
value + oo, so this includes right circular cylinders. By a standard product im-
mersion in M\c) we mean an immersion M2<=—>M\c) ~ S 4 ( l / W ) c E6

which lies in some affine 4-plane Π c E5 and as such is a standard product
immersion in the Euclidean sense. In particular, standard product immersions
into 4-spheres lie in great 3-spheres if Π passes through the origin, and in small
3-sρheres otherwise.

Theorem 3.1. Let M2 <=—>M\c) be an isometric immersion with constant
nonzero mean curvature and constant Gauss curvature K. Then K = 0 or K =
\Hf + c. If c > 0, then M2 is a piece of a product of circles (K = 0) or a piece
of a 2-sphere (K = \H\2 + c).

Proof. The theorem follows from Propositions 3.3 and 3.4.
Lemma 3.2. Let M2 c=—> M2+k(c) be a conformal immersion with confor-

mal parameter E. Let K' = K — c be the relative curvature of the immersion,
and {e3, , e2+k} an orthonormal framing of NM2. Then

(3.1) E\\H\2 - K>) = s V l 2 =%

// \H\2 - Kf φ 0, then

( 3 ' 2 ) K 4V(\H\2 - KV '

Proof. (3.1) follows from the Gauss equation (1.7) (i) and the definition of

K:

K = E'\R(UU U2)U2, £/,> .

Equation (3.2) follows from (3.1) and the intrinsic equation for K:
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K= - IE-1 A log E .

Proposition 3.3. Let M2 =—> M2+k(c) be a conformal immersion with con-
stant nonzero mean curvature and K = constant. Suppose further that {e3 =
Hj\H\9ei9 -,e2+k} is an orthonormal framing of NM2 such that each ea is
parallel. Then either K = \H\2 + c or K = 0. If K = \H\2 + c and c > 0,
then M2 is immersed as a piece of a standard 2-sphere.

In particular, if M2 c=—> M\c), c > 0, has constant nonzero mean curvature
and K = constant, then either K = \H\2 + c and M2 is a piece of a sphere or
K = 0.

Proof. If Kφ \H\2 + c, then \H\2 -K'Ξ£0 and by (3.1) η = Σ \ψaf Φ 0.
Thus at least one <pa, say <paQ, is nonzero. By Lemma 2.1 (a) and (c), <pa = ka<pao

where ka is a real constant. Hence η — (Σ«^α)|p«ol2 Therefore logη is har-
monic since <paQ is analytic. But (3.2) implies K = 0. If K = \H\2 + c, then by
(3.2) η = 0 and consequently each <pa = 0. Therefore the immersion is totally
umbilic and hence a piece of a 2-sρhere. q.e.d.

The special case M2c=—>M*(c), c > 0, follows from the above and the
proof of Theorem 2.2 (b) where we have shown that if eA is a unit normal
section such that <e3, e4) = 0, then eA is parallel.

Proposition 3.4. Let M2 c=—>M\c), c > 0, have constant nonzero mean
curvature, and assume K = 0. Then M2 is a standard product immersion of
S\r) x S\p), where \H\2 = p~2 + r~2.

Proof. Since ^ Ξ 0 , M2 is isometric to the plane, and we may choose con-
formal coordinates locally on M2 with E = 1. As usual, let {e3 = H/\H\9 e4}
be a normal framing.

Case A: φ3 = 0. Then the immersion is pseudo-umbilical, and by the proof
of Theorem 2.3 (a), M2 lies minimally in some 3-sphere of radius 1/\H\. By a
result of Lawson [12] a minimal surface in S*(r) with K = 0 must be a piece
of the Clifford torus Sl(^T/2) x Sι(JTjl) in S\r). Hence the immersion is a
standard product immersion. One can also obtain this result by a method
similar to

Case B: ψ, = kψ3. By (3.1), | # | 2 - K' = \H\2 + c = (1 + k2)\ψ3\
2, and

\φ31 is constant. Therefore ψ3 is constant, and after a possible rotation of coordi-

nates ψ3 may be assumed to be real. If ψ3 = γ, then

(3 3) tt»)-tt ) - F I + *' ° ^ r*- |fl|2 + C

*'•' υJ \ C\ I T T I / ' ' Λ . 1 0 7

since ̂  + & = 2|fl|. Since ̂  + 4 = 0,

<3.4, αu

assume c = 0 and therefore M2
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( i ) If k = 0, then λ4

υ = 0. If X e Γ(TM2), then

VxeA = A(ei9 X) + Dxe, = Dxe, by (1.8)

= 0 since e4 is parallel .

Therefore e± is a constant vector in EK Let p e M2. If 773 = {X e is41 <JC — p,e4>
= 0}, then it follows that M2 lies in 773. As a surface in this 3-dimensional
Euclidean space, its unit normal is e3. Furthermore (3.1) determines γ as
±\H\. Therefore by (3.3),

(3 5) tt»)-ί2lfll °

and since E = 1 we have the familiar second fundamental form of a right
circular cylinder. By the uniqueness theorem for hyper surf aces, the immersion
must be a right circular cylinder Sι(\l\H\) X ^(oo).

(ii) If k Φ 0, the equations

a(\H\ + γ) -

-akγ + b(\H\ - γ) = 0 , a2 + b2 = 1, a > 0

can be solved uniquely for a and b since |H | 2 — γ2 + k2γ2 = £ by (3.1) and
j£ = 0 by assumption. Let (e3, £4) be a new framing defined by

(3.6) e3 = β 3̂ — Z?̂ 4 , e4 = Z?̂ 3 + α^4 .

Both e2 and e4 are parallel since e3 and e4 are, and their second fundamental

forms are given by

Φ ) = ί° ° 1 = f ί°
( 3 7 ) " \o α(|ff|-r)Λrλ \o

i y ~" I 0 0/ ~ \0

It is now a straightforward matter to verify that the immersion is in fact a
product of circles. Toward that end we first notice that U2 A e3 is a constant
plane in Zs4 since

J—(U2 A SO - Wz e% A e2 + U2 A (-WZU2) = 0 .

Similarly U1A eA is a constant plane. These 2 planes are orthogonal. Futher-
more for fixed u2 (resp. u1), the immersion is a circle of radius l / ϊF 4 (resp.
I/WO i n t n e p l a n e *ΛΛ£4 (resp. U2Ae0- This clearly gives the immersion
as a product of circles.
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All that remains to complete the proof of this proposition is to study (i) and
(ii) for the case c > 0. We do that by reducing the case to the Euclidean case
c = 0.

Lemma 3.5. Let M2 c=—> S\r) be an immersion with nonzero constant
mean curvature and K = 0. Then M2 lies in some small 3-sphere of S4(r),
which is M2 =—>S\r) Π Π\ where W is an affine 4-plane.

Proof. Equations (3.3) and (3.4) give (λlj) and (λ\ά) as constant, diago-
nalized matrices of a specific form. Let e5 be a unit normal vector field to
S\r) c=—> E5. Restricted to M2 <=—> S\r) =—> E\ eδ is still a unit normal vector
field and λ\5 = δtj/r, i, j = 1, 2. We can find real constants a, b, c such that

(3.8) a(λ*j) + bWj) + c{λ\3) = 0 , a2 + b2 + c2 = 1 .

Let e = ae3 + be4 + ceδ. e is parallel since e3, eA, e5 are parallel and a9 b and c
are constants. Equation (3.8) says that the second fundamental form in the e
direction is identically zero. This implies that e is a constant vector in E5. To
wit,

Pjjfi = -A(e, Uτ) + DVie = 0 ,

since λiS = 0 and e is parallel. For p e M 2 , let W = {X e E5 \ζX - p, e> = 0}.

Clearly M 2 C 774.

Remark. Proposition 3.4 also follows from Erbacher [5, Theorem 1].

4. Complete surfaces with constant mean curvature

In this section we prove a generalization of a theorem due to Klotz and
and Osserman [11] which states that a complete surface in E3 with constant
mean curvature and Gauss curvature which does not change sign is a minimal
surface, a sphere or a right circular cylinder.

Theorem 4.1. A complete immersed surface M2 c=—> M\c) with constant
mean curvature and Gauss curvature K which does not change sign must be
minimal (H = 0), a sphere of radius (\H\2 + c)~* or a product of circles S\r)
X S\p), 0 < r < o o , 0 < p < oo, with the standard product immersion.

Proof. By observation 1 of § 1, \H\ is constant, so either H = 0 or H has
no zeros. Henceforth we assume H Φ 0 and choose a normal framing {e3 =
H/\H\,eA}. In local conformal coordinates ds2 = ^[(du1)2 + (du2)2], the func-
tions ψz and φA of Lemma 2.1 are analytic functions of z = u1 + iu2. Covering
M2 by local conformal charts induces a Riemann surface structure of M2.

Case 1: K<0. In this case Kf = K — c < 0. By (3.1) we have in each
local chart

(4.1) η = \φ3\
2 + M = E\\H\2 - K') > 0 .

By Lemma 2.1 (c), either φ3 = φi = 0 or one is a constant multiple of the
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other. Therefore log£2(|#p - Kf) = logη is harmonic. Let ds2 = </η[(du1)2

+ (du2)2]. The Gauss curvature K of this new metric is given by

(4.2) K= -Jfl-iJlogVT = 0 ,

since log 37 is harmonic. Therefore ds2 is a flat metric conformally equivalent
to ds2. By a standard argument the simply connected covering surface of M2 is
conformally equivalent to the plane. On M2 the function log (JΊflE) *s a

globally defined function, and is bounded below by log \H\ > — 00 due to (4.1).
Moreover, it is superharmonic since

Δ log Wη/E) = Δ log v^? - Δ log \I~E

= -J logVlΓ by (4.2)

= £ £ < 0 since K < 0

Lifting log (̂ 57 /£) to the simply connected covering space of M2 we have a
superharmonic function bounded below on a surface which is conformally
equivalent to the plane (parabolic). Therefore log(Vη /E) is constant. This
implies η = \H\2 — K' and hence K are also constants. Using conformal
equivalence with the plane again, K must be identically zero. By Theorem 3.1,
M2 must be immersed as the standard product of circles Sι(f) x Sι(p). This
completes the proof if K < 0.

Remark. By Proposition 3.4 and its proof, is the case where <p3 = 0 M2 is
a product of circles with r = p (minimal Clifford torus in a hypersphere), while
in the case where φ3 ^ 0, φ± = 0, M2 is a right circular cylinder (r = 00). If
neither ψz nor ψk are identically zero, M2 is 5!(r) x Ŝ̂ p) with r Φ p and r Φ 00.

Case 2: K>0. By a theorem of Huber [9], a complete surface with
K > 0 is either compact or parabolic. Suppose M2 is compact. If K = 0
we are done by Proposition 3.4. If not, M2 must be of genus 0 by Gauss-
Bonnet, and is a sphere of radius (\H\2 + c)~* by Theorem 2.3 (b). Suppose
M2 is parabolic. We claim that M2 must then be flat (K = 0). To see this,
observe that η = E 2(|#| 2 — X7) is not identically zero; for otherwise K = \H\2

+ c > 0, and then M2 would carry a complete metric of constant positive
curvature, an impossibility since M2 is parabolic. As in Case 1, log 9 is
harmonic. Therefore

0 = Δlogη = 2[ΔlogE +

= 2[-2KE + J

< 2(Δ log (V7/£) since K > 0 .

Thus log (V 37 IE) is subharmonic, and is further bounded above since
log(VY/E) = log (| # |2 - &1)* > log (| # |2 + c)K Therefore V^/E is constant
since M2 is parabolic. By the definition of η, K is also constant. As is Case 1,
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K = 0 since M2 is parabolic. Hence Proposition 3.4 completes the proof.
Remark. The special case of pseudo-umbilical immersion in E4 with con-

stant mean curvature has been treated by Itoh [10].

5. A local existence theorem for surfaces of constant

mean curvature in M\c)

In the previous sections the only examples of surfaces with constant mean
curvature have been products of circles or minimal surfaces in hyperspheres.
The following theorem shows that there are indeed a good many more
examples.

Theorem S.l Let ^ Ξ O be an analytic junction of z — u1 + iu2 defined
in a neighborhood of the origin in the (u1, u2) plane. Let h and a be real con-
stants with h > 0. Then there exist a neighborhood °U^ of the origin, a con-
formal metric E(uι, u2) defined on °l/Q and an isometric immersion (<%0, E) c=—>
M4(c) with the following properties:

The immersion has constant mean curvature. The mean curvature vector
field H has length \H\ = h. If {e3 = Hjh,e^ is an orthonormal framing of
N%0, then φz = φ and <p4 = aψ.

Proof. Suppose such a metric E and such an immersion existed. By (3.1)
we must have

(5.1) E2[(h2 + c)-K] = (l +a2)\φ\2 ,

where K = —^E^AlogE. The existence of a positive E satisfying (5.1) is
equivalent to the existence of a positive E which is a solution of

(5.2) J l o g E = 2{(/ + a2)\φ\2E-' - {h2 + c)E) .

It is therefore a necessary condition (for the existence of an immersion as stated
in the theorem) that a solution of (5.2) exist.

Claim. There exists a solution of (5.2) defined in a neighborhood of the origin.

We proceed with the proof of the theorem modulo the claim. (A proof of
the claim follows at the end.) Let E be a solution of (7.3) in a neighbor-
hood ^o of the origin. Consider ^ 0 with the conformal metric E. Let N — Wo

X R2. We consider N as the total space of a vector bundle over (%0, E). With
the usual inner product on R2, N is a Riemannian vector bundle endowed with
the usual connection on R2 which we denote by D. Let {es, e4} be an orthonor-
mal parallel framing of N. Such a parallel framing clearly exists since D is the
usual flat connection on R2. Let B be a section of ^ ( T ( ^ o , E) (x) Γ ( ^ o , E), N)
defined as follows. If Ut = d/dut are the coordinate vector fields on °tt^

B(Uί9 Uλ) = (Λ + Re ψ)ez +

(5.3) B(U2, U2) = (A - Re0e 3 - (αRe0e 4

19 U2) = (-Im0ί?3 - (a im0^ 4 .
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By a theorem of Szczarba [18] there exists an immersion of (WQ,E) into
M\c) with N as normal bundle and B as second fundamental form if and only
if E and B satisfy the Gauss and Codazzi equations (1.7). (These equations
are clearly necessary. Their sufficiency in the codimension-one case is the clas-
sical theorem on existence and rigidity of hypersurfaces.) The Gauss equation
(1.7) (i) reduces this case to

(5.4) cE2 = KE2 + E\h2 + 0 + a2) \ψ\2] ,

which is an immediate consequence of (5.1). The Codazzi equation (1.7) (iii)
reduces to the Cauchy-Riemann equations for φ once one uses the fact that h
is constant and e3 and e4 are parallel. The second Gauss equation (1.7) (ii) is

y Uj)ea = B(Uj, A(eβ9 £/,)) - B(U,, A(ea9 Ό3)) .

The left-hand side is always zero since ea is parallel. The right-hand side is
seen to be (after a calculation exactly like* that in Lemma 2.1 (b))1 equal to
lm(a\φf) = 0.

By the aformentioned theorem of Szczarba, there exists an immersion (^0, E)
c=—>M4(c) with N as normal bundle and B as second fundamental form. We
remark that it is also unique up to isometries of M4(c). Expressing this immer-
sion in terms of the coordinates (u1, u2) yields the conformal metric E. From
the definition of B in (5.3) it is immediate that H = hez and φz = φ, φA = aφ.

Proof of claim. Let β = h2 + c, η = (1 + a2)\φ\2 and / = logE. By as-
sumption, β is a real constant and η is real analytic. We may write (5.2) as

(5.5) d2f/du2 = ~d2f/du2 + 2{ψ~f - βef) .

If we consider (5.5) with the initial values

(5.6) /(0, u2) = 0 , Sf/duKO, u2) = 0,

we may assert the existence (and uniqueness) of an analytic solution to this
initial-value problem by the Cauchy-Kovalewski theorem [3, p. 39]. Then E
= ef will be a solution to (5.2).

Corollary 5.2. Let (<%09 E)<=—>M\c), c > 0, be an immersion correspond-
ing to a specified φ ^ 0, a and h > 0 as in Theorem 5.1. Then each of the
following holds:

( i ) The image of %^ does not lie in any hypersphere of M\c) as a mini-
mal surface.

(ii) The immersion is a piece of a standard product of circles ^ \φ/Έ\ is
constant. In particular, if ψ has zeros, (<%Oi E) is not immersed as a product of
circles.

(iii) a = 0 ^ Wo lies in a 3-dimensίonal hyperplane or hypersphere as a
surface of constant mean curvature.
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Proof. ( i ) %Q lies minimally in a hypersphere & the immersion is pseudo-

umbilical <=) <p3 = φ = 0. This last condition is prohibited by hypothesis.

(ii) By equation (5.1), K is constant t=}\φ/E\ is constant. The immersion

must be a piece of standard 2-sphere or a product of circles by Theorem 3.1,

cannot be a piece of a standard 2-sρhere by (i) of this corollary, and so is a

product of circles. In particular if φ has a zero, then \φ/E\ cannot be constant.

(iii) a = 0 £=) B(Ui9 Uj) is always a multiple of e3 Φ=) the immersion lies in

a 3-dimensional hyperplane (in the case c — 0) or hypersphere (c > 0). The

first equivalence follows from the definition of B in (5.3), and the second from

the following lemma by taking as model for M\c) a hyperplane or hypersphere

in E5.

Lemma 5.3. Suppose Mn

 >£n+k has a n r-dimensional distribution 3)

in NMn such that (a) the range of B is in & and (b) // V is a smooth section

of 2, then DΣV e 2 for all W e Γ(TMn). Then Mn lies in an (n + r)-plane

ίϊc:En+k.
Proof. Choose Vi9 , Vr, difϊerentiable vector fields which span 2. For

coordinates (uι, , un), let Xt = dx\dut be coordinate vector fields, and set

W = Xλ A Λ Xn A Vx A Λ Vr. Then conditions (a) and (b) imply

dW/duk =fkW , k = 1, - . . , « .

For real-valued functions fk. This says that in + r)-vector W spans a constant

(n + r)-plane Π. Let p eMn. Clearly the aίfine (n + r)-ρlane Π = 77 + p

contains Mn.
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