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' DIFFERENTIABLE FUNCTIONS ON BANACH SPACES
WITH LIPSCHITZ DERIVATIVES

JOHN C. WELLS

Introduction

In this paper we study those functions in C*(E, F), (i.e., functions from two
Banach spaces E to F having k continuous Frechet derivatives), whose k-th
derivative is Lipschitz with constant M. On R" we construct C' functions whose
derivatives are piecewise linear with Lipschitz constant M. From this we obtain
a Whitney type extension theorem for real-valued differentiable functions on
Hilbert space, and show that every Hilbert space has C* partitions of unity. We
examine the existence of “nontrivial” C* functions with Lipschitz derivatives
on separable Banach space and show that ¢, has no “nontrivial” C' function
with Lipschitz derivative. We show that the Whitney extension theorem fails
for separable Hilbert space by exhibiting a C* function on a closed subset of
having no C® extension.

We make the definitions:

Bi(E, F) = {f|f € CX(E, F) and || D*{(y) — D*{(x)|| < M||x — y| for all x, y},
B*(E, F) = {f|f e BE(E, F) for some M} .

As in Bonic and Frampton [2] a Banach space E is said to be B* smooth if
there is a function f ¢ B¥(E, R) with f(0) # 0 and support (f) bounded. Then
B**' smoothness implies B* smoothness, and E is said to be B smooth if E is B*
smooth for all k. We briefly summarize some results concerning C* smoothness
of separable Banach spaces. We refer to [2] and Eells [5] for more details.

1. Hilbert space is C* smooth with C* norm away from zero.

2. ¢, is C* smooth with equivalent C* norm away from zero. Kuiper.

3. A Lebesgue space #? is C* smooth for an even integer p, and C?™*
smooth but not D? smooth for an odd integer p; Bonic and Frampton [2].

4. If E is separable, then E has a norm in C'(E — {0}, R) if and only if E*
is separable; Bonic and Reis [3].

5. Any C* smooth separable Banach space has C* partitions of umty ; Bonic
and Frampton [2].

In § 2 we prove some basic properties of BX(E, F), the most useful one
being that {f|||f|| < b on some open subset of E} N B%(E, F) is closed in the
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topology of pointwise convergence. We observe from [2] that an #? space is
B~ smooth for an even integer p and B'?~*1 smooth when p is not. We show
that ¢, is not B! smooth and that every B* smooth separable Banach space has
B* partitions of unity. These last two results were announced in Wells [10].

The distance function from a convex set is studied in § 3, and we show that
if |x||? € B%(E, R) then distance *(x, A) ¢ B%(E, R) for closed and convex A4.

In § 4 we make a cellular decomposition of R™ on which a B, function is
constructed with prescribed values and derivatives at a finite number of points.
Using these functions we obtain a necessary and sufficient condition for a real-
valued function defined on a closed subset of Hilbert space to have a B}, ex-
tension to all of Hilbert space. One of the properties of this extension implies
that every closed subset of Hilbert space is the zero set of a B'(H, R) function.
Thus a nonseparable Hilbert space has C* partitions of unity by an easy con-
struction; this result was announced in Wells [11].

In § 5 we exhibit a closed convex subset in I* for which there exists no B?
function satisfying f(4) = 0 and f({x|||d(x, 4)|| > 1}) > 1. A corollary of this
is that the Whitney extension theorem fails for C* functions on Hilbert space.
We end the section with some open problems.

2. BF* functions and B* smooth Banach spaces

If f has a j-th Frechet derivative at x, we will let D’f(x)[4] denote the j-multi-
linear map D’f(x) acting on (A, - - -, h). A version of Taylor’s theorem reads
(refer to Abraham and Robbin [1] and Dieudonné [4]):

Taylor’s theorem. If f(x) e C*(E, F) where E and F are Banach spaces, then

i + By — f) — 3, DI

=1 i!
_ 1(1 _ t)k—-l
(k= D!

Proposition 1. If fe BE(E, F), then
(1) H 10+ h) — fr) — jz DAY “ < M|AFY(k + D! .

(D*f(x + th) — D*f(x))[h]dt .

Proof. Immediate from Taylor’s theorem.

Proposition 2. B%(E,F) = {f| 1) f is bounded on some open set, 2) for
every finite dimensional linear subspace H, f|y(x) is continuous, 3) letting
A f(x) = f(x + h) — f(x), | 4 f(x)|| < M| h||¥*! for all x and h in E}.

Proof. Suppose f ¢ BL(E, F). By the mean value theorem, we have
A3 f(x) = 4,45f(x) = 45 Df(x + c,h)[h]

= oo = 4D¥(x + ch + - + i )[A]

for some 0 < ¢; < 1. So || 45" f(x) || < M| A|***.

(2)
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Suppose that f(x) satisfies the conditions on the right side of (2). For any finite
dimensional linear subspace H, find a measure p; on H and a ¢y , € C*(H, R)
with fgo,,-,nd,,” =1,¢4,,>0 and ||y|| > 1/n= y¢ support ¢y, ,. Define

f11,2(%) bY fir.0(x) = f 1 + Y)pu.2()duy). Then

Fra + h) — fya) = f @ + P Deu = + oAy O) 5

SO

Wl + B) — fan) — f & + YDy ) — Kl = oIkl ,

and Dfy ,(x)[h] = f f(x + ¥)Doy, [ —hld,, (y). Repeating this argument
gives fy,, € C*(H, F). Now Lim fu,»(x) = f(x) for x € H, and

145001 = | [ 257165 + D a), 0] < MAIE

So by (2) we have sup||D**'fy ()| <M and fy,, € B4(H, F), and Dy ,(x)

is uniformly equicontinuous on bounded sets in H for i < k. By the Ascoli-
Arzela theorem, there are a subsequence m of n and a dif(x) e L¥(H, F) with
li}nn Dify .(x) = dif(x). Using Proposition 1 and taking m — o we obtain
1f(x + h) — f(x) — DEduf()lhl/it|| < M||A[**/(k + 1)!.

For any other finite dimensional H’, di.f(x)[h] = dif(x)[h] if x,x',he H N
H’, so we have maps dif(x) i-multilinear from E to F at each x with

Hf(x +h) — f(x) — i}ld"f(x)[h] Ji!

< MiAF/(k + DY

Suppose that f is bounded near x,. Find ¢ such that ||f(y)|| < B when ||y — x|
< 6. Then for ||h|| = 1 we have

Hf(xo + 5—’”) ) — 3 A1) [ Shi ]

k i/t ! k
< 1 M(éi)k«(-l < Meok+! ’
(k + D! k k + D!

so || 23k, (i/k)/dif(x)[6h]/j!|| < 2B + Ma*+'/(k + 1)!. Since the k X k matrix
A;; = (i/k)¢/j! is invertible, ||d/f(x)[A]|| < k|| A7'||(2B 4+ Mé** [(k + 1)) /o7,
and so d¥f(x,) is bounded at x, for i=1, ---, k. Now fy,, € B%(E, F),
SO | D¥fyr, m (@ + WK1 — Dy, K| < M| | |*** for x, b, K ¢ H.
Using the fact that d*f(x,) is bounded at x, and taking limits over m give
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d*f(x) e By (E, L{(E, F)). Now d'f(x + h) — d'f(x) = Lim D'y .(x + h) —

Dify n(x) = L;{n f Di+fy . (x + th)[h]ldt. By the uniform convergence of
0
D*Yfy o(x + th) on 0 < ¢t < 1, this is equal to fldj+‘f(x + th)[h]dt. Thus
0

dif(x + h) — dif(x) = fdf“f(x + th)[h]dt, and by taking j = k — 1,k — 2,
, 0 we have Dd’f(x) = d?*'f(x) and f(x) e B%(E, F) with D’f = d’f.
Proposmon 3. Suppose f, € B4(E, F) and L1m f»(x) = f(x) for all x in E.
If f, are uniformly bounded on some open set, then f € BY(E, F) and Df(x)[h]
= Llpm Df,(x)[A].
Proof. The f,|x(x) are uniformly equicontinuous on bounded sets in a finite
dimensional linear subspace H of E, so f|;(x) is continuous. Also

45| = |Lim L5l < M - [[A]**" .

By Proposition 2, f ¢ B% (E, F). Using (2) we have Df(x)[h] = 171331 A5 f(x) /¥
= Lim Lim A fp() [t = Lim Lim A, f ()]t = Lipm Df,(x)[A] by the uni-
form convergence of Lim 4/ hfp(x)/ v in p.

Proposition 4 (Inverse Taylor’s theorem). Suppose f: E — F is bounded
on some open set, and for all x there are maps d’f(x): j-multilinear from E to
F satisfying

” e + by — f(x) — z @A i H < MRk + DY

Then f e B%(E, F) and D’f(x) = d’f(x). v
Proof. For any x and h, ||f(x + ph) — f(x) — X%, pIdif(Oh]/j! ]| <

M- pE+Y| h|[F*t, Also Y Kt ( 1)1’<k —l[)— l)pf = 0for 0 < j < k, so multiplying

k+1

the first equations by (— 1)1’< ) and adding from p =0, -- -,k + 1 give

45l = | Zyeac— v2(* v Dice + om | < v mga(* 5 T)orepme,
Hence by Proposition 2, f € B¥(E, F) and D’f(x) = d’f(x). Suppose x, h, ' ¢ a

finite dimensional linear subspace H, and let f5, , = ff(x + Vou,(d,.,(y) as

in Proposition 2. Then f5 , satisfies (3) with Df , = f Dif(x + Y)¢u,.(0)du, )

and so | D**'fy .|| < M. Thus fy,,e B} (H, F), and |[D*f(x + h)[K] —
D*f()[K]]| = Lim || D*fy,, (x + WIA'] — D*fy,, IR < M| A| - |[H|[F. So

fe BL(E,F). q.e.d.
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By proposition 2 we can characterize B%(E, F) without mentioning the de-
rivatives.

Even though at every x, f(x) = L;m f»(x) in norm, D’f,(x) need not approach
D’f(x) in norm as the example f,(x) = <{e,, x> where e, is an orthonormal basis
in 2 and f(x) = O shows.

Corollary 1. For any real number b and open U in E, X = B%(E,F) N
{flllf(x)|| < b for x e U} is compact in the topology of pointwise convergence
on E to the weak topology on F.

Proof. Let b(x) = supl[ f(x)||. Then by Proposition 3, B%(E, F) N {f|||f(x)||

< bfor xe U}is closed in the compact [], .z b(x) C FE.

Corollary 2. B}(E, F) = {f|f(x) e C°(E, F) and |f(x + h) + f(x — h) —
26| < M||hJE}.

Remarks. The class B¥(E,F) may be extended to a class U*(E,F) =
{f|f € C¥*(E, F) and for every x in E there are a neighborhood U of x and a M
such that f|, € B% (U, F)}. Then C**(E, F) C U¥(E, F) C C*(E, F), and Propo-
sitions 1, - - -, 4 have obvious generalizations to U*(E, F).

Theorem 1. Suppose that E is a B? smooth separable Banach space, and
{U,} is an open cover. Then there exists a partition {f;} of unity reﬁmng {U }
with f, ¢ B?(E, R) for each'i.

Proof. We find two countable locally finite open covers {Vi}, {V3} refining
{U,} and maps g; € B?(E, R) such that ¥} C V2,0 < g,(x) < 1,g,(V/'}) = 1 and
8:(CV3% = 0. For every xe E find a ¢, € B?(E,R) such that 0 < ¢, < 1,
¢(x) = 1 and that support ¢, is contained in some U,. Let 4, = {y|e,(y) >
1/2}. Then {4,} covers E and, since E is Lindelof, we can extract a countable
subset {4,,} of {4} which also covers E. Nowlet B; = {t; > 1/2,t, <1/2 +
1/j,i<jh, C;={t; <1/2 —1/j,ort; > 1/2 + 2/j, for some i < j} in RY.
Then distance (B;, C;) >0, and we can find »; ¢ B?(R?, R), with 5,(t,, - - -,¢;)=1
for (¢, ---,t)) e Byand 9(t,, - - -, t;) = O for (t,, - - -, 1;) € C;. Let ¥, (%) = ¢,
and ¥;(x) = 7;(p;, (), - - -, 9, (%)) for j > 2. Define V} = {x|y,(x) > 1/2},

= {x|¢+(x) > 0}. Since V2 C support ¢,,, {V3} refines {U,}. To show that
{Vi} covers E, suppose that x € E and that i(x) is the first integer for which
@,(x) > 1/2. Such an integer exists because the 4;’s cover E. Then 4, ,, = 1,
and hence x € Vj,,, so {V}} covers E. Now again suppose that x ¢ E and find
an integer n(x) such that ¢, ,,(x) > 1/2. Then there exist, by the continuity of
©n(zy» @ Neighborhood N, of x and an a, > 1/2 such that 1/ienlxﬁz Oy (Y) = ag.
Pick k large enough so that k£ > n(x) and 2/k < a, — 1/2. Then for j > k,
Pury@ > 1/2 + 2/j for ye N,, and hence y,(y) = O for y e N,. There-
fore N, N V2 =@ for j > k so that {V'} is locally finite. Finally take some
heB?(R,R) with h(f) = 1fort < Oand A(¥) =0 for t >1/2, 0<h < 1.
Defining g,(x) = h(y;(x)) we have thatg; ¢ B?(E,R)and 0 < g < 1, g,(V}) = 1
8:(CV?) = 0. Now let f,(x) = g,(x) and f;(x) = g1 —gx))- - - (1 —g;_,(x))
for i > 2. Then f; ¢ B?(E, R) and support f; C support g; C V3, hence every
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point of E has a neighborhood on all but a finite number of f;’s vanish. Since
{xlge(x) =1} 272, [, — g;(x)) = 0 for every x and some n. Also
Diafi® =1— [, A — g®), so 17, f(x) = 1 and {f;} is a partition of
unity refining {U,} with f; € B? for each i. q.e.d.

For the 27 spaces it can be shown that for p an even integer D?*!||x||? = 0
and that for p not an even integer | D*||x + A|? — D*||x|?|| < (p!/k!)| h|?"*
(see Bonic and Frampton [2]). So #? is B~ smooth for p an even integer and
£? is B'*~11 smooth for p not an even integer. Not every C' smooth space is
B' smooth as the following corollary shows (see also Wells [10]).

Theorem 2. If n = 27, endow n-dimensional Euclidean space E" with the
norm || x|| = 1sup |x;|. Suppose fe BY%(E™, R) with f(0) = 0 and f(x) > 1

when || x|| > 1. Then M > 2N.

Proof. Assume M < 2N, and let 4 = {x|x;, = +1/Nfor i=1,.--,n
except for at most one i, where |x,| < 1/N}. Then A is radially symmetric
and connected, so there is an s, ¢ A with Df(0)[A,] = 0. h, has at least 2¥!
components = 1/N. Likewise there is an 4, ¢ A with Df(h,)[A,] = 0, and we
can choose g, = +1 so that &, + g,h, has at least 27~ components equal to
2/N. Inductively choose #; ¢ A and a4, k = 3, - - -, N, such that Df(h, + a,h,
4+ -+ 4+ op_ihp_DlA] = O and that A, + a,h, + --- + o.h, has 2Y* com-
ponents equal to k/N. Then ||, + --- + oyhy| = 1 so by Proposition 1,

1— 0] = If(hi + ah, + -+ + oyhy) — f(O)]
N
= kzllf(}h + Uzhz + oo+ oophy) — f(h1 + ah, + -0 + Uk—lhk-l)l
<N.-JMN* <1,

a contradiction.
Corollary 3. ¢, is not B' smooth.
Proof. Assumef e B%(c,, R) withf(0) = O and f(1) > 1 when ||x|| > 1, and
restrict f to {x|x; = 0,i > 2%+1/2} to get a contradiction to the theorem.
Remark. In this theorem we have only used the uniform continuity of Df.

3. Convex sets and B}, functions

If A is a subset of a Banach space E, let d(x,4) = inf||y — x|. Then
d(x,A) e BE,R). If A is convex, d(x,A) shares many of the properties of
|lx||. The first proposition is well-known. See Restrepo [8] or Phelps [7].

Proposition 5. Let A be a closed convex subset of a Banach space with
norm differentiable away from zero. Suppose that d(x, A) = ||x — p(x)| for
every x in E and some p(x) in A. Then d(x, A) e D(E — A, R) and Dd(x, A)
= D[ [|(x — p(x)).

Proof. Let D|||(x) denote the derivative of ||| at x. Then for xe 4,
Ix 4+ b — p@|| = |x — p@)|l + D |G — pG)IA] + o(|A]), and for any h
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with p(x) + he A4, ||x — (p(x) + A)|| > ||x — p(x)|| which implies D]||||(x —
p(x))[h] < 0. Thus the hyperplane L = {y[D||||(x — p(x))[y — p(x)] = 0} is
a supporting hyperplane for 4 at p(x), and d(x + A, L) < d(x + h, A) <
d(x 4 h, p(x)) so that

X — pM)| + DIl1I(x — p(x)[A]
<dx + h,4) <|lx — p@| + D|[[|(x — pGDLA] + oAl .

Hence 0 < d(x + h, A) — d(x, A) — D| |[(x — p(x))[h] < o(||A]), and so
d(x, A) is differentiable at x and Dd(x, A) = D||||(x — p(x)).

Proposition 6. If A is closed and convex and | x| € By, ({x|||x|| > a}, R),
then d(x, A) € By, ({x|d(x, A) > a}, R).

Proof. Suppose that every point x in E has a closest point p(x) in A. By
Proposition 1, if d(x, p(x)), d(x + h, p(x)) > «, then |d(x + h, p(x)) — d(x, p(x))
— DJ||| (x — p(x)[h]] < M| h|? /e, and we have

0 <d(x + h,4) — d(x,4) — D||||(x — p(x))[h] < M| h|}/a

by arguing as in Proposition 5, and therefore d(x, 4) e By, ({x|d(x, A) > a}, R)
by Proposition 4. Now suppose that A is arbitrary. If H is a finite dimensional
linear subspace, then every point in E has a closest point in 4 N H. Hence
d(x, A N Hye By, ({x|d(x, A) > a}, R). With the finite dimensional linear
subspaces ordered by inclusion, d(x, 4) = Lim d(x, 4 N H) € By, ({x|d(x, A)
>(a}, R) by Proposition 3.

Proposition 7. Suppose that A is a closed convex subset of E and that
|x|? € B4(E, R). Then d*(x, A) ¢ By,(E, R).

Proof. Suppose every point x of E has a closest point p(x) of A. Then

d(x + h,4) <||x + h — p@)|
<|x — p@ P + D|[|P(x — pGx)A] + $M||A|P.
Defining L = {y|D|| ||(x — p(x))[y — p(x)] = 0} gives

d&(x + h,A) > d(x + h,L) = (|x — p(x)| + D| ||(x — p(x))[A])
> ||x — p®)|F + 2D ||(x — pG)AI(|x — p(x) |
= ||lx — p@)|? + D|||*(x — p(x)IA],

so |d(x + h, A) — d*(x, A) — D| |f(x — p(x))[A]| < M| h|?. Thus d¥(x, A) €
BY(E, R) by Proposition 4. Taking limits of d*(x, 4 N H) over finite dimen-
sional linear spaces H gives as above d*(x, A) € BY(E, R) for arbitrary 4.

Remarks. If E happens to be uniformly convex, then every point x has a
closest point p(x) in a closed convex A and p(x) is continuous. So, if || x| ¢
CY(E — {0}, R), then d(x, A) e C'(E — A, R). The question of whether || x| ¢
CYE — {0}, R) implies d(x, A) e C'(E — A, R) in general remains open.
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4. B! functions on Hilbert space

We will suppose that H is a real Hilbert space endowed with the usual norm,
and we will identify H* with H and write <{y, x> = y-x and || x| = x%.

We recall the Whitney extension theorem (see Abraham and Robbin [1])
Let A C R* be a closed subset, and f;,i =0, .-+, k: 4 — LY(R", F), F an-
other Banach space, and suppose :

Lo Lim 160) — BE @I — 1/G = DU/lx — [ = 0.

Then f, has a C* extension to R™ with D’f(x) = f;(x) for x e A4.

In this section we prove a version of this for real-valued B functions on
Hilbert space, and show that C' partitions of unity exist on any non-separable
Hilbert space.

Theorem 1. Let A = {p,, ---, p.} be a finite subset of R™ endowed with
the usual norm. Let a,, e R,y,, e R" fori=1, ---, m satisfy

(4) ap <ap+ 30, + ¥)- (0 — D) + MY — p)* — 10y — ¥,)' /M
forall p, p’in A. Then there exists an f(x) € By, (R™, R) with f(p) = a,, Df(p) =y,

for pin A and f(x) > lnf [ap — /M + IM(x — p + y,/M)*]. Further, if

2(x) e B4 (R™, R) with g(p) = a,, Dg(p) = y, when p e A, then g(x) < f(x) for
all x.

Proof. We first construct a convex linear cell complex and a dual complex.
From these a cellular decomposition of R™ is constructed on which f is defined.
Df will turn out to be piecewise linear.

Definition. When p ¢ A we define:

P=p—¥/M, p={r'|p' = b, e 4},
dy(x) = a, — 3y, /M + IM(x — p)*.

Definition. When S C 4 we define:

ds(0) = infd,), § = {plpeS),
S, = smallest hyperplane containing S ,
Sz = {x|dy(x) = dyp.(x) for all p,p’ e S},
Sy = {x|dp(x) = dyp(x) < dyp(x) for all p, peS,p’ed},
= {S|S C A and for some x € S, ds(x) <dy_s}.
So, 1fpeSeKthean S.

Definition. S = convex hull of .
Lemma 1. {p, p'}z = R" or an (n — 1)-dimensional hyperplane, and

P —p1{p,Ple N
Proof. d,(x) —d,. (x) = (a, — 32 /M) — (ap, — 3} /M) + P> — §”* +
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2x-(p’ — p). If p + p’, this immediately gives the lemma. If j = p’, then
p— P = (p — ¥p)/M and (4) gives a,. — $¥3. /M < a, — }y% /M. Reversing
p and p’ gives d,(x) = d,.(x).

Lemma 2. S, is closed and convex.

Proof. By the definition and Lemma 1, S, is the intersection of closed
convex sets.

Definition. Let S?, 8% be the relative boundaries of S, S, if dim S
dim S, #+ 0, in which case let Si S¢ be the relative interiors; if dlmS
dimS, =0, let §* = @, 2 = ¢, §* = § and §¢ = S,.

Lemma3. S, | S, and if Sy # 0, then dim Sy + dim S; = n.

Proof. Sz = ﬂ {p, P’} together with Lemma 1 implies S;; | Sz. Assume

dim S}, + dlmS;T = n for =8 — 7P, and p’e S — p. Then by Lemma 1
dim (p, p")y + dim (p, p')z = n, and dim Sy = dim ({p,p'}y N (S — P)g) = n
—dim({p, p'}x U (S —P)y) = n — dim S. By induction dimS, + dimS; =n
for all S.

Lemmad. IfSC S, then S, CS,. If S,S €K, then S & S if and only
if Si C Sy, and S = S’ if and only if S, = S.

Proof. The first statement follows from the definition of S,. If S C §” and
S,8 eK, find zeS, with dg(z) < dg _g(2) so that S, #+ S and S5, < S,. If
S C Sy, find z e % with dg.(z) < d,_s.(2). So, if p e S, then dg.(z) = d,(2),
sop¢A — 5, and hence S C §'.

Lemma S. If Se K, then S, = {x|x e Sg, ds(x) < d,y_g(x)}.

Proof. 1f Se K, then clearly {x|x e Sz, ds(x) < d,_s(x)} C Si. Suppose
xeSiandpe S, p’ e A with d,(x) =d,(x). Then the hyperplane d,(x) = d,.(x)
must contain all of S, so p’ € S. Therefore dg(x) < d,_s(x).

Lemma 6. d,.y) — d,(y) = d,,(9) — d;0) + 20/ — 3)-(5 — P).

Proof. Immediate from the definition.

Lemma?7. S | S,. For SeK, dimS + dimS, = n.

Proof. Sy | Sy implies the first part. Suppose S ¢ K and find z ¢ S, w1th
ds(z) < ds_s(z). But then for some e, open ball center z radius e N Sy C S,
so dim §,, = dim S5 and dim § + dim S,, = n.

Definition. If S, -0, let S = {p|p e 4, d,(2) = ds(2) for all z ¢ S,}.

Lemma 8. If S, + @, then SeK and §* = Sy

Proof. Immedlate from the definitions.

Lemma9. (@) IfS,SecKandS NS +0@, then S N S’eKandS n s

PRl
=SN¥s.

b) IfS,SeKand S, N Sy, +0, then S, N S, =@ US),.

Proof. (a) Assume S ¢ S" and 8’ ¢ S, and find yeS,, Y €S, with
ds(y) < d,_s(¥),ds.(y) < d4_s('). Then L = cohull {y,y’} = (S N §’)5. For
anyp' e A —(SUS)and pe S N S, the half space d,(x) > d,.(x) does not
contain y or y’, so it does not contain L. For pe S N S’ and p’e (S — S) U
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(8" — S), the half space d,(x) > d,.(x) does not contain both y and y’. Since
d,(y) = d,(y) or d,.(y') = dy(y’), the half space d,(x) > d,.(x) can not inter-
sect L¢. Picking z € L? we have dgq5.(2) < dy_sns5(2), s0o SN SeK. SN S

A~
= S N & is obvious.
(b) Observe (S U 8, = S, N S and use Lemma 8.
Lemma 10. If Se K, then S” U s

S £8,8’eK

Proof. Suppose x € §°. Then x ¢ § for some S’ C § with &  $°. Find an
(n — 1)-dimensional hyperplane M containing S’, supporting the convex set S
but not containing S Find y e S, with ds(y) < d a- s, and find ¥y’ = y with
y —y | M, with § on the side of M in direction ¥’ toy and ds.(y") < d4_s().
Then y' —y | (S N M)y which implies y’ ¢ S;. For all p’e S’ and pe S,
(7 —P)-(v — ) > 0. Thus d,(y') > d,.(y") by Lemma 6 so that dg.(3") <
ds(y). Also (p — p)-(y — ¥) > 0 for some pe S — M and all p’ € §’, so by
Lemma 6, d,(y) > d,.(y'); hence ds(y) < dp(y'). Thus y’ e S and Y ¢ S,.

SoSﬁk =8,28,andxeS C S’ < Swith § ¢ K by Lemmas 8 and 4.

Suppose on the other hand that §' C S, Se K. Then S} 2 S, by Lemma
4, so we can find Y’ e S§ — S, and y e S,.. Take some p’ eS' and let M =
{xl(y —¥Y)(x —p) = 0} Then ¥,y € Sy, and S; C M by Lemma 2 and so
§’c M. Now if peS — S, then d,.(y") < d,(y). Since d, () = d, (),
o —¥)(p —p) > 0by Lemma 6 and P lies on the side of M in direction
y’ to y. Hence M supports S and 8’ < S$°.

Lemma 11. IfSeK, then S5 = |\J Sk

S'28,8’€K

Proof. By Lemma 5, x e S% if and only if x e S for some S’ 2 S. But then
xe§’ with ¥ e Kand & DS 2 S.

By Lemmas 9, 10, 11, | J S is a cell complex, and U S, is a cell complex of

SeK

R™ U oo dual to | J § by Lemma 4. We show that U S = cohull 4. We can

S~€K ASEK
assume that dim A = n. Suppose S € K with dim S = n — 1. From Lemma 6

we see that S, extends infinitely in a half space determined by Sy if and only

if there are no points of A in that open half space. Hence S C (cohull Ay if
and only if S, has only one boundary point if and only if § does not lie on the
boundary of two other S’sin K by Lemma 11. Now there are members of K
with dim § = n, otherwise if dim &’ = max dim § < n then S = S,. How-
ever, p’ e S’ implies that {p’, p”’}; must intersect S% for some p”’ € 4, otherwise
dim 4 would be less than n. Thus S; # S,, a contradiction. Hence ¢ +

( U ,§)6C (cohull ) so that | J § = cohull 4.
SEK,dim S=n SeK

We also observe that for any x in R if we let S = {p|d,(x) = pi,rg4 d,.(0)}
then S e K and x € S,.. Hence | S, = R". Fig. 1 shows an example of these
SeK

two cell complexes.
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Fig. 1

We now perform another decomposition of R”.

Definition. For all Se K let Ty = {x|x = 1(y + z) for some ye S and
ze S}

Lemma 12. Ty is closed and convex with nonempty interior.

Proof. Immediate from Lemmas 2 and 3.

Lemma 13. The representation x = 1(y + z), ye S, z e Sy for xe Ty is
unique.

Proof. Suppose x = (Y + 2), ¥ € S, 7 ¢ S, also. Then y —y' =
—(z—2),andy —y | z— 7z by Lemma 3,s0y =) and z = 7.

Lemmald. T, N Tg = {x|x =30 +2,yeSN &§,zeS, N S}

Proof. Immediate from Lemma 13.

Lemma 15. (a) (ToaNTs)'=0if S+, and (b) T3 C U Ts..

R . PN 8,8’¢K,8’2Sor S’'&ES

Proof. (@) SNS =8SNS,andS N S e KbyLemma9. If S == 5, then
SN c8ors?, sodim(S N §) < max (dim S, dim §) = n — min (dim S,,
dim $%) < n — dim(S, N S%). By Lemma 14, dim (Ts N T.) < n and the
interior of Tg N Tg. is empty.

(b) If xeT%, then x = (y + z) where ye S and/or zeS%. So ye S
and/or ze Sy for some §’ C S and $” 2 S by Lemmas 10 and 11. Hence
xeTg and/or Tg.. with S’ € S and/or §” 2 S. '

Lemma 16. T5 N Ts = T5n5 N T555-

P PR —
Proof. SNS=SNSYNSUS, and S, NS =G NS, NEUS),
by Lemma 9, and Lemma 16 follows from Lemma 14.
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Lemma 17. | ) Ts = R™.
SeK
Proof. Since the complement of a closed convex set is locally connected

and T% N T% = @ if S = §’, this lemma follows from the next proposition.
Proposition 8. Let {T;} be locally finite collection of nonempty closed sub-
sets of a connected space E. Suppose that the T's have disjoint interiors, E — T;

is connected in some neighborhood of each point of E for eachi, and T; C | ) T ;.
J#i

Then UT;=E.
Proof. | T, is closed since {T;} is locally finite. Suppose that whenever a
0
point y of E is contained in k or less T,’s then y ¢ (U Ti> I xeTy, -+, Ty

and no others, then we can find a neighborhood U about x which meets only
T;,---,T,;, and such that U — T,, is connected. Thus T;,, U.--U T;, is
open and closed in U — T, by assumption, and so contains all of U — T,.
This implies that U C T, U---U T, so that xe U T9. The statement is

true for k = 1, so by induction x ¢ U T? for all xe E Hence U T; is open,
and U T; = E since is connected. q e.d.

Flg. 2 illustrates the T”’s superimposed on the dual complexes of Fig. 1.

Definition. S; = S; N Sy for S € K. S, is a point by Lemma 3.

We now construct f on R”.

Definition. fg(x) = ds(Sp) + tMd*(x,Sy) — tMd*(x,Sg) for Se K and
xeTs.
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Lemma 18. fi(x) = fo.(x) if xe Tg N Tg..

Perof. By Lemma 16 we can assume that S C §’. Now x = 3(y + 2) with
yeSc &, zeS,CS, by Lemma 14, and d(x, Sy) = d(z, Sy) = 3d(z, S¢)
and d(x, S;) = 3d(y,Sy) = 3d(y, S;) so that

fs(x) = ds(S¢) + §Md*(S¢, 2) — §Md*(Se, y) ,
Similarly,

fs:(x) = ds/(St) + §MA*(S;, 2) — FMA(Ss, y)

Now z,8, ¢S, and S, S, €Sy, and d*(z,S8,) + d*(S¢,S,) = d*z,S,) since
S% | Sy. Alsoy, Sy e Sy and S¢, S, € Sy with S | Sy, so &y, S¢) + d*(S¢, S¢)
= d*(y,S;). Finally, p — S¢; | S¢ — S, for pe S, so 1Md¥S,, Sz) + ds(S¢)
= ds(S;) = dgs(S;). Hence our lemma follows from these equations.

Lemma 19. fge C>(Tg, R).

Proof. Observe that d*(x, Sy) and d*(x, S;;) are C*.

Lemma 20. Df(x) = ¥M(z — y) where x = }(y + 2), ye S and z ¢ S,,.

Proof. Dd¥x,Sy) = 2||x — P, (x)||D]|x — Pg,(%)|| = 2(x — Pg,(x)) where
Pg,(x) is the closest point of S;; to x by Proposition 5. Now x — Pg,(x) =
3z — S;), so DIMd*(x,S;) = tM(z — S;). Likewise Dd%(x, Sz) = $M(x —
Pg (x)) = $M(y — S;) where Pg,(x) is the closest point of S; to x. Hence
Df(x) = §M(z — y).

Lemma 21. f¢(x) e BY,(Ts, R).

Proof. Letx,x eT, x =3 + 2) and x’ = 1(/ + 2’) as usual. Then by
Lemma 20,

(Dfs(x) — Dfs(x))* = iM((z — 2) + 0 — ¥ = M*(x — x')?,

since z — z/ | y — y'. Hence | Dfs(x) — Dfs(x)|| = M|jx — X'|.

Lemma 22. Dfg(x) = Dfs.(x) if xe Tg N Ts..

Proof. IfxeTgN Tg., then x =4(y +2) where y e Sns and z e S, NS,
by Lemma 14. Thus Dfg(x) = $M(z — y) = Dfs.(x) by Lemma 21.

Definition. f(x) = fg(x) if x e T.

f is well defined on R™ by Lemmas 17 and 18, and f € B},(R", R) by Lemmas
21 and 22.

Lemma 23. f(p) = a, and Df(p) =y, if pe A.

Proof. By the definition and an assumption in the hypothesis of Theorem
1, for any p’ € A we can easily obtain d,(p + y, /M) = 3y /M + a, <3y, /M +
ad,+ M@ — ')V + 30, +3p) (0 — D) — §0p —yp )} M =dy(p+ ¥, IM).
Thus p + y,/M e p,andp = 3(p + p + y,/M) e Ty. Hence f(p) = fz(p) =
dy (@) + M — (p — y,/M))* = a,, Df(p) = FM((p + y,/M) — D) =y,
by Lemma 20.

Lemma 24. Suppose g ¢ By, (R", R) and g(p) = a,, Dg(p) = y, for pe A.
Then g(x) < f(x).
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Proof. Suppose first that x e T. Then by Proposition 1, g(x) < a, +
Vo(x — p) + FM(x — p)’ = a, — 35/M + $M(x — p)’ = fy(x) = f(x). Sup-
pose next that for all § e K with §R(S) < m, gx) < f(x) for x e T5. If R(S)
=m+ 1 and xe Ty, then let x = 1(y + zl, yes, zeS,. Fix z, and dgﬁne
e(w) = g((w + 2)) — fG(w + 2)) for we S. Then g (w + 2)) € Bj;,i(S, R)
and f(3(w + z)) = const. — IM(w — S;)* with D, fG(w + 2)) = — IM(w
— S¢). For any h with w 4+ he S, De(w + h)[h] — De(w)[h] = IMK +
(Dg(EW + h + 2)) — Dg((w + 2)))[A] > 0. Thus, if e(w) is maximal at w,
then De(w) # 0, so e(w) has its maximum on S?. Since w ¢ S° implies x ¢ S for
some S’ C S, x = 3(w + z) € T, so that e(w) < O by the assumption. Hence
e(w) < 0on S and g(x) < f(x) on Ts. By induction g(x) < f(x) everywhere.

Lemma 25. f(x) > gIGIE d,(x).

Proof. Take p with d,(x) = (}lélg dy(x). Then x e p, so (P + x) € Ty and
feG(P + %) = a, — §¥3,/M + tM(x — p)*. Also Df(3(p + %)) = M (x —
P). So by Proposition 1, f(x) > fG(x + p)) + DfG(x + p)[F(x — p)] —
IMG(x — p)) = dy(x).

Lemmas 24 and 25 complete the proof of Theorem 1. We observe from
Lemma 20 that Df is a piecewise linear map from LS) T to R", whose deriva-

tive in T% is M -Identity @ — M -Identity on S; D Sj.

Lemma 26. Suppose p and p — y,/M e L for all p in A where L is an
affine linear subspace of R™. Then f(x) = f.(x.(x)) + $Md*(x, L), where f, is
the function obtained in Theorem 1 by taking L instead of R" as the underlying
linear space, and r; is the orthogonal projection of R® onto L.

Proof. Observe that e L for all p in 4 and that K is the same taking
R* or L. Also Ty on R® = 7;}(Ts on L), and d*(x,Sy) = d*(n.(x),Sy) +
x — 7, (0)), d(x,S5) = d(r.(x),Sz). This establishes the lemma.

Theorem 2. Let A be a closed nonempty subset of any Hilbert space H
endowed with the usual norm. Suppose that f, is a real-valued function on A.
Then there exists an f e B,(H, R) with f|, = f, if and only there is a map
f.:A — H such that for all x,ye A

) < fo®) + 3¢ + LOD-G — x)
+ M@y — x* — (O — f(x)*/M .
Further, f can be found such that f(x) > 1i/1él£ d, (x) where d,(x) = f,(y) —

) /M + IM(x —y + f,(») /M)’ and such that if g(x)e By (H, R) with
g(x) = f,(x) and Dg(x) = f,(x) for x € A, then g(x) < f(x) for all x.

Proof. 1If f, has an extension f in B, (H, R), let f,(x) = Df(x). Let x,,i=0, 1
be two points in H, set a; = f,(x;) and y; = f,(x;), and define x, = 3(x, + x,)
+ 1(y, — y)/M. By Proposition 1 we have

flx) < f(x) + ¥ G(x, — x) + 300 — ¥) + FMG(x, — x) + 300 — ¥))*,
f(xz) > f(xl) — }’1'(’2]‘(xl - xo) — %(yl - yo)) — %M(%(xl - xo) — %(yl - yo))2 s

(5)
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so by the parallelogram law,

f(fﬁ) S f(xo) + %(yo + yl)‘(xl - xo) - %_(yl - yo)2
+ $MI2(5(x; — x))* + 260, — y)/M)’]
= flx)) + 3o + ¥ -(xy — x) + $M(x, — x)* — 3O, — y)* /M .

To go the other way, choose for every finite subset F in A4, a finite dimen-
sional linear subspace Hy of H containing p and p — f,(p) /M for all p in F. By
Theorem 1 construct f ¢ BY,(Hy, R) satisfying f-(p) = f,(p), Dfx(p) = f,(p) for
p in F, etc. Now define for x € H, fy(x) = fi(zy(x)) + $Md*(x, H;). Then
fr € By(H, R), f»(p) = f(p), Dfx(p) = fi(p) for p e A, and fr is independent
of H, by Lemma 26. So we have fz(x) > z}le'l; d,(x), and g(x) < f(x) for all x
in H if g € B}, (H, R) with g(p) = f,(p) and Dg(p) = f,(p) for p e A.

Now order & the set of all finite subsets of 4 by inclusion. Then F’ D F
implies fz.(x) < fz(x) for all x, so IE,IGI}} fr(x) = f(x) exists for every x, and
f € By, (H, R) by Proposition 3. Also f(p) = 15161}1 fr(p) = Lim _fu(x) = f,(p)

Fe#,peF

for pe A, and Df(p)-z = FGI‘;,I&FD]‘F(I’)'Z = fi(p)-zforallzin H and pin A4,
so Df(p) = f,(p). fp(x) > lerelg d,(x) for all F gives f(x) > 525 d,(x). Finally,
g e By(H,R), g(p) = f(p), and Dg(p) = f,(p) for pe A implies g(x) < fz(x)
for all F, so g(x) < f(x).

Corollary 1. Let A be a closed subset of a Hilbert space H. Then there is
an f e By, (H, R) with f(x) > IMd*(x, A), and g(x) < f(x) if g ¢ BY,(H, R) and
g(4) = Dg(4) = 0. '

Proof. Take f, = f, = 0 on A. Then d,(x) = 1M(y — x)?, and the corol-
lary follows.

Remark. If A4 is convex, then iMd*(x, A) e BY,(H, R) by Proposition 7,
and f(x) < $Md*(x, A) by Proposition 1. So f(x) = $Md*(x, A).

Corollary 2.  Any locally finite open cover {V;} of a Hilbert space H is the
supporting set for a C* partition of unity.

Proof. Find f; € Bi(H, R) with f,(x) > d*(x,H — V). Then V; = f-}(R*),
and by defining ¢;(x) = f,(x) /2, f;(x) we have a C* partition {¢;} of unity with
V= ¢;'(RY). Actually ¢; e U'(H, R) in the sense of the remark following
Corollary 2 of §2.

Corollary 3. C\(H, F) is uniformly dense in C°(H, F) for a Hilbert space H
and any Banach space F.

Corollary 4. Given A and B closed in a Hilbert space H with d(A, B) =
0 > 0, thereisan f € B} ;,(H, R) with 0 < f(x) < 1 and f(A) = 0 and f(B) = 1.

Proof. Let B’ = {x|d(x, A) > d8}. Let f,(4) =0, f,(B) =1, f,(4) =
fi(B") = 0. Then (5) holds with M = 4/, and we have f e }(H, R) with
f(4) =0, f(B') = 1.

Since d(x, (4 U B’)) < d for all x, m = sup f(x) < oo. Suppose m > 1, and
find a sequence x, in H — B’ with f(x,) —» m and a sequence z, ¢ A with



150 JOHN C. WELLS

X, — z,|| < 8. Then m > f(x, + 6(;Df(x,))) > f(x,) + $*||Df(x,)|* by
Proposition 1. So || Df(x,)|| — 0. But then (5) implies m = Ll;zm [f(x) — f(z,)]
< 1, a contradiction, so m <1 and 0 < f(x) < 1.

Corollary 5. Suppose A is closed in Hilbert space H, and f,: H — R* and
fi:H — L(H, R*) with

Cu, f)) < <u, [0y + {u, }(Df(x) + DNy — xI>
+ iM(x — ¥)* — i u, DY) — Df(x)))* /M

for all x,y e H and ue R, ||u|| = 1. Then there is an f ¢ B%, ;7(H, R™) such
that f(x) = f)(x) and Df(x) = f,(x) for x in A.

Proof. Lete,, - --,e, be an orthonormal basis for R*, extend {f,, ;> to
fty -+, f* and set f(x) = f'(X)e, + -+ + " (X)e,.

Corollary 6. Given g(x) € B,(H, R), a Hilbert space H and an ¢ > 0, there
is an f € By, (H, R) with |f(x) — g(x)| < ¢ for all x.

Proof. LetA, =g '(ne),n=0,+1,+2,.--. Thend(4,,A4,,,) >¢/M,
and by Corollary 4 we can find f, € By, (H, R) with f,(4,) = ne, f,(4,,) =
(n+ Deand ne < f, < (n + 1)e. Let f(x) = ne if x ¢ 4, and f(x) = f,(x) if
ne < f(x) < (n 4+ 1)e.

Remark. This corollary is not true if R is replaced by £. Take H = I, and
let a(x) = };;|x;|e; where {e;} is an orthonormal basis. Then ¢ € BY(P?, I?), but
ﬁu“p If(x) — a(x)|| > 1 for f e B'(, I?). This was proved in Wells [12].

z||<1

5. B functions and some open problems

The corollary of the next theorem shows that Corollary 4 of § 4 is not true
if B! is replaced by B? even for A convex and bounded.

Theorem 1. Suppose f ¢ B4, (RY,R), f(4) = 0, and f(x) > 1 when d(x, A)
> 1 where A = {x|x; (i-th coordinate of x) < 0, ||x|| < 1}. Then N < M? +
36M".

Proof. Assume fe B%L(R", R), f(A) =0, f({x|d(x, 4A) >1}) >1 and
N > M? + 36M*. Let g(x) = 3,5, f(P(x))/N! where Sy is the set of all
permutations of the N coordinates of x. Then g e B}(R", R) with g(4) =0
and g({x|d(x, A) > 1}) > 1. Define points y" forn = 0, - - -, M* with y} = 1/M
fori=1,-.-,n,y» = —1/Mfori=n+ 1, ---,M? and y? = Ofori = M*
+1,..-.,N.Definez*forn=1, ..., M*withz? = 1/Mfori=1,.-.-.,n—1,
22=0,z2=—1/Mfori=n+1,...,M*, andz =0fori=M*"+1,-.-,N.

9% () — 98 () form =M +1,.--,N. So
ox, a

m

By symmetry,

1 v
m=M2+1

1
<1 _pgmir <

08 (. -
@) = 36p 36M°

00X,

2
<
36M*

b

|2 (e
0x,
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or a—‘g;(z") < & Now by Proposition 1,
8O <) + - a""f @+ 2o g§< w -+ X (L)
Se@ + o+ oo aaf‘;(n) e
20" > g(z") — 6—i47 + ; gxf( z) — 6]1‘42 ,
so g(y") < gly™"Y) + 2M~?%. Summing up from n = 1, - . -, M* gives g(y™) <

80" + 2/3. But y° ¢ 4 with gO°) = 0, and d(y**, 4) = 1 with g(**) > 1, a
contradiction. Hence N < M? + 36M".

Corollary 1. Let A = {x|xe I’, x; <0, || x|| < 1}, and suppose f ¢ C*(?, R)
with f(A) = 0 and f({x|d(x, A) > 1}) > 1. Then f ¢ BXl’, B).

Proof. Obvious from the theorem.

Corollary 2. There exist a closed subset of I* and functions f,, f;, f,, fy: A —
R, L(E R), LY, R), LX?, R) satisfying the conditions of the Whitney extension
theorem with the property that there is no C® or B? function agreeing with f, on
the closed set.

Proof. lLetA ={x|x,=1,x,<0forj=2,3,---, and |[x — ¢ < 1},
and B = {x|x, = 1, d(x, A) > 1}. Let CA and CB be the cones formed on 4
and B with the origin. Define f,(x) = x8, f,(x)[h] = 8x,h,, f,(x)[h] = 56x°h2,
f2(x)[h] = 336x3K3 for x e CA, and f,(x) = f,(x) = f,(x) = f,(x) = 0 on CB.
Then it is easy to see that these functions satisfy the hypotheses of the Whitney
extension theorem. If f e C}(%, R) or B, R), and f|y 4 05 = fo(%), then in the
first case D*f(x) is bounded near zero, and in either case f|,,_, € B*({x|x; = a}, R)
for some a > 0. But this is impossible by Corollary 1. q.e.d.

We list some open problems:

(1) Does ||x|| e C'(E — {0}, R) imply d(x, A) e C'(E — A, R) whenever 4
is convex and closed?

(2) Do nonseparable #?, p > 2, have C* partitions of unity?

(3) Does nonseparable Hilbert space have C? partitions of unity?

(4) Is Theorem 2 of § 4 true for Banach-valued functions on H or for func-
tions on non-Hilbertian Banach spaces with an appropriate change in (1)?

Added in proof. Since the submission of this paper Henryk Taruiicyk has
obtained in [9] results which settle questions 2 and 3. We summarize some of
these results:

(i) A Banach space E admits C?, p = 1,2, - - -; oo partitions of unity if
and only if there are a set 4 and a homeomorphic imbedding u: E — c,(4)
with p, o u(x) e C? for all @ ¢ A where p, is the projection of c¢,(A4) on its a-th
coordinate.
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Thus Taruficyk observes that any Hilbert space ¢,(B) has C* partitions of
unity by taking A = B U {1} and by defining u(x) by

Peou(x) = ||x|f  fora=1
= X fora =B, peB.

(ii) If E is a reflexive Banach space with an equivalent locally uniformly
convex norm of class C?, then E admits C? partitions of unity.

Thus #? has C* p.o.u. if p is an even integer, and C?~! p.o.u. if p is an
odd integer.

(ii)) A Banach space E has C? p.o.u. if and only if there is a g-locally finite
base of the topology of E consisting on nonzero sets of real valued functions of
class C?.

(iv) In apersonal communication Taruiicyk has shown that E has B? p.o.u.
p < oo if there is a g-discrete base of the topology of E consisting of nonzero
subsets of real valued functions of class B?. The author has proved the converse
statement.

This generalizes Theorem 1. Also using Corollary 1 and the fact that every
metric space has a ¢g-discrete base for the topology, it follows that every Hilbert
space admits B! partitions of unity.
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