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1. Notation1

M will denote a connected n-dimensional C~-manifold, Mm the tangent
space to M at m, and (Mm)s the space ® s M m * . The differentiable covariant
tensor fields of rank s onM form a real vector space V8. Let J(M) be the direct
sum Vx 0 0 F r . An automorphism φ of M induces an automorphism Rφ

of Vs given by

If v is given in local coordinates (JC) at φ~ι{m) by i; = 2 α(/Ί, -,is)-dx(j1)
• dx(js), then Λ#(i;) near m by

( * ) Λ,(V) = 2 flOΊ, , /,) o ̂ -^(JCOΊ) o φ-1) d(x(js) o 0-1) .

This representation R: φ—>Rφ defines a representation of the group G of all
automorphisms of M in F s . If F and W are invariant subspaces, J(V, W) will
denote the space of intertwining operators:

J(V,W) = {Γ |T : F - ^ ^ , Γ linear, RφTv = Γ . ^ - v for all

v € F and all φ e G} .

G° is a certain subgroup of G introduced in [1, p. 127], and 7°(F, WO is the
corresponding space of intertwining operators. Clearly / ( F , W) cz /°(F, JF).
Let F s be decomposed into irreducible invariant subspaces under G: Vs =
F s l 0 F s 2 Θ . F s i , / = 1, 2, , are also invariant and irreducible under
the group of permutations operating on the indices (symmetric classes).

2. Results

( 1 ) J°(YH, Vrj) = 0 it 0 < s < n, 0 < r < n, r Φ s, r φ s + 1.
( 2 ) J°(Vsr, F ( s + 1 ) ί ) = 0 if r Φ 1 or t φ 1.

( 3 ) /°(FS1, F ( s + 1 ) 1 ) = / ( F s l , F ( s + 1 ) 1 ) = constant multiples of ds.

Communicated by R. S. Palais, October 12, 1971.
1 Identical with that in Palais [1].
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(4) P(V,p9Vaq) = 0 itpφq.
( 5 ) J\V8m, Vsm) = algebra A(s) of the permutation group of s indices.

Remark. (5) corresponds to the identity in [1], because the permutation
group operates on differential forms as the identity multiplied by ± 1 accord-
ing to the parity of the permutation.

3. Proof

Important facts in the proof of the results of Palais [1] are:
(a) the localizability of the elements of /°(F, W), [1, Theorem 6.1, p. 132],
(b) the decomposition of differential forms into a sum of differential forms

of a very special kind at ra € M, which are called basic forms of the first or
second kind at ra, [1, p. 133],

(c) the construction of automorphisms out of germs of automorphisms,
which have a very special form at ra, adapted to the basic forms at ra such that
the results follow immediately from the naturality condition Rφ T v = T Rφ v
for a basic form v at ra, [1, pp. 136-138].

Fortunately these arguments can be transfered to the case of covariant tensor
fields. Without any assumption on the symmetry of v one can prove, by the
naturality condition RφTv = T Rφ v, that the only natural linear operators
T are the exterior derivative and the algebra of the permutation group. So v
and Tv are either differential forms of rank s and s + 1 respectively or belong to
the same symmetric class Vsi. One has to use the naturality condition for very
special but rather simple automorphisms φ € G° to define basic tensor fields
similar to the basic forms [1, p. 133] in the following way.

3.1. Definition. Let w e V8, 0 < s < n. We say that w is a basic covariant
s -tensor field of the first kind at m e M, if there is a coordinate system (x)
centered at m with spherical domain U such that the support of w is a compact
subset of U and

w = f dx(ί^ dx(is) ,

where / = * ( ι ' m ) , (ιβ+1 Φ i19 , is+ι Φ is), for some neighborhood of m. We
say that w is a basic ^-tensor field of the first kind, if it is so at some m e M.

3.2. Definition. Let w € V89 0 < s < n. We say that w is a basic s-tensor
field of the second kind at me M, if there is a coordinate system (x) centered
at m with spherical domain U such that the support of w is a compact subset
of U and

w = ί'dxii^) - dx(i8) ,

where / is constant near ra.
3.3. Theorem. Let T e J°(VS, Vr), and w be a basic s-tensor field of the

first kind at ra, i.e., there is a coordinate system {x) centered at m with
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spherical domain U such that the support of w is a compact subset of U and

w = x(is+1)'dx(h) - - dx(is)

is some neighborhood V of m with i8+1 Φ i19 , is+1 Φ is. Then

Tw=Σ «(/i, ,/r) (χ(i8+θy'mt'+ιUu"mJr)'dχ(iO dx(jr)

near m with

v/i5 * * * 5 Jr) == \h> ' ' ' 5 h> h + l> ' J h + l) ?

which means that the indices j19 , j r are identical with the il9 , i89 i8+19 ,
i8+1 modulo permutations. H(i8+1\j19 -,jr) is the number of times for i8+1 to
occur in the indices (j19 , / r ) , and a(jλ, ,/ r ) are real constants. So the
theorem says that all indices il9 , i8 occuring in the differentials of w must
also occur in Tw and that i8+1 is the only index different from the i19 , /„
which can occur in Tw.

Proof. If a(l), - -9a(ή) are sufficiently small real numbers, then by [1,
Lemma 5.4, p. 130] we can find a φ e G° such that x(ι)-φ~ι = x(ι) + a(ΐ) near
m. Under the assumption

( 1) Tw = Σ a(j19 , jr)(x)dx(jj

formula (*) in § 1 implies that

( 2 ) RφTw - Σ a(Ji, '"Jr)o φ~Kx) * dx(h) - - dx(jr) .

If a(is+ι) = 0, then clearly Rφw = w near m. Since Γ is localizable, and TRφw =
Tw near m, from the relation RφTw = TRφw = Tw together with the expres-
sions (1), (2) it follows that the a(j19 , jr)(x) are function of x(i8+1) alone:

Tw = Σ a(ii, • ,jr)(x(i.+θ) dx(jd έfcOV)

Given a real number c sufficiently close to unity, we can, appealing to [1,
Lemma 5.4, p. 130], find a ψ e G° such that we have, near m, *(/) ψ - 1 = JC(O,
(/ φ i8+1), x(i8+1) o ψ" 1 = cjc(/β+1). Using the formula (*) of § 1 and the fact that
the a(j19 , jr) depend only on x(is+1) near m, we have, near m,

( 3 ) i?ψΓw = Σ a(h, ,/ r)(c Λ ( i , + 1 ) ) . c σ « ^ ' ^ - . ^ . ώ α i ) dx(jr) .

On the other hand, it is clear that Rψw = c>v near m, so by the localizability

and linearity of T we have at m:

( 4 ) i ^ T V = TR+w = c-Tw = c Σ <*(ii, ~, / r ) W ^ i ) ) ώ ( / Ί ) dx(jr) .



120 HORST LEICHER

Comparing (3) with (4) we have

a(]19 ,/ r )(*( i , + 1 )) - a(j19 ,Jr) x

where the a(j19 , jr) are constants.
It is still to prove (j19 •, jr) = (/x, . ιβ, /s+1, , ιβ+1). For this purpose let

c(l), , c(n) be real numbers with \c(ί) — 11 < ε, c(i) Φ 1 for i Φ iβ+1, and
c(/ί+1) = 1. Let the c(ί), (i Φ is+1), satisfy the following condition: the relation

( 5 ) c0\) w ( 1 ) . . . c(/r)»<'> = c(/i)J>(1) c(/ ί) p ( ί ) ,

with ij < - . . < ιr, /Ί < < /ί € OΊ •/„ ιθ+1, , ι n ), and rational m ( 0 and

/?(/), is possible only if r = /, ι\ = j 1 9 . . , ir = / r and m ( l ) = p ( l ) , , m(r) =

By [1, Lemma 5.4, p. 130] we can find a φ € G° such that JC(O O ^ - 1 Z= C(0 x(j)
at m. Then at m

( 6 ) RφTw = Σ βOΊ, , /r)(c(ιm) JC(I,+1)) c(/i) c(jr)

On the other hand,

Rφw = cO^O ^ + i ) - ^ )

So again

Λ̂ Γw = TRφw = di^'CiiJ .

Comparing (6) with (7) and using condition (5) for the c(ι) and c(i8+1) = 1 we
have

Remarks, (a) Tw = 0 near m for all Γ € /°(FS, Fr) with s > r and for all
basic fields w of the first kind at m.

(b) For 5 = ror equivalently H(i8+1 \ j19 , ;r) = 0we have

Tw = Σ «0Ί, ,h) x(ί8+i)'dx(Ji) ' <**(/,) ?

which means that Γ operates on w as a symmetric operator TeA(s).
(c) For r = s + 1 or equivalently H(i8+1\j19 , j ί + 1) = 1,

Tw = Σ «0"i, , js+i)dx(h) ί&O'm)

Since the proofs of the following Theorems 3.4 and 3.5 can follow along the
lines very close to those of the proof of the preceding theorem, we mention
only the necessary changes.
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3.4. Theorem. For w € Vs given at m by

w = x(i9+d x(ip)m'dx(ij - dx(is)

with (is+1 ^ / 1 } . . . , ιβ+1 Φ ip) and for T e /°(FS, Vr) we have

Tw=Σ b(h, - - , / r ) . Λ ( / , + 1 ) 1 - ^ ̂ ' ^ - ^

with (/1? , /„ ι m , , ίβ+1, Ϊ P , , /p) = (A, , /V)

r — J = H(ip\j19 - .,/V) - iϊ(ϊp|/i, ••,/,) + iϊ(/ β + i |/i, ,/r)

zβ occurence of is+ί and ip can change.
Proof. We assume near m

Tw=Σ b(h, , h)(x)dx(h) • <fz(/r)

Using the naturality condition with φ19 φ2, φ3e G° given at m by

JC(O o 0Γ 1 = Λ(0 + a(f) , Λ(iί+1) - έi(/p) = 0 ,

φ i ^ /p , x(ip)oφfι = cx(iv) ,

we find the form of the functions 6(/u > JrX*)- The indices are determined by
a 954 β G° given by Λ(0 oφ~ι = c(ί) x(ΐ) according to (5) of § 3.3 with c(is+1) =
c(ip) = 1.

3.5. Corollary. For T € J(VS, Vs+1) we have, near m,

( 1) Tw = x(ip)
m Σ a(h> , L+

wfcft OΊ, ? 7*s+1) = (i19 ? ιβ, i β + 1 ) .

v = x(i8+J-dx(iJ - - dx(is) .

Proof. Let v be a basic field of the first kind at m:
According to [1, Lemma 5.1, p. 129] we have a φ β G° given by jc(i) o ̂ - 1 = jc(ί),
/ f̂c ip, x(ip)oφrι = jc(/p) + jc(/p)2. Then from Remark (c) of § 3.3 and m =
H(ip I /i, , O it follows that

Λ^Γ'y = 2 [fl(/ / l) + Σ i 0 l ΛOΊ / )

Γ^i; = Tv+ Σi=o,...,m-i mcvT(x(iM)

•(2x(ip))™-i dx(i1) ..dx(is))
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The first terms on the right side of (2) and (3) cancel with each other. The
second term of (3) is given by (1) of § 3.4. Since H(ip\i19 , /,) = H(ip\jι,
• , /β+1) holds in (2), it must also hold in (3) and (1) of § 3.4.

3.6. Theorem. Let v be a basic field of the second kind at m:

v = const. dx(ίd dx(is) .

Then
(a) T-v = 0forT€ J°(VS, Vr) with r ψ s,
(b) T operates on v as symmetric operator: T <= A(s) for T <= J(VS, Vs).
Proof. Assume

T v = Σ Kh, ,7r)W Λc(/i) dx(jr) .

By φ € G° given by x(ί) o φ~ι = x(ϊ) + a(ί) we see that the /(/1? , jr)(x) are
constant. By φ € G° given by ^(0 o φ~ι = c(ί) x(ί) according to (5) of § 3.3 with
all c(ί) ^ 1 we obtain

(/i, , U) = 0Ί, 5 O or /(/i, , / r)W = 0 .

4. The cases J\VS, Vs+J, m = 0,1,2, . . .

According to Remark (a) of §3.3 and Theorem 3.6 (a), basic fields of
both kinds are mapped into zero by T e J\VS, Vr) Ίίs>r. So J°(V89 Vr) = 0,
which proves partially (1) of § 2.

4.1. J°(VS, V8). According to Remark (b) of § 3.3 and Theorem 3.6 (b)
every T € J°(VS, Vs) acts on both basic fields as a symmetric operator. From
Palais [1, Lemma 7.3, p. 134, and the arguments of Theorem 10.3, p. 138], it
follows that for both kinds of decomposition of a tensor field, T is the same
symmetric operator. Thus by [1, Corollary 6.3, p. 133] the operator acts in-
dependently of m e M. Hence (4) and (5) of § 2 are proved.

4.2. J\VS, Vs+1). For T g J\VS, Vs+1) and a basic field of the first kind
given by

v = *0'β+i) ίiz0Ί) dx(is)

we have

T v = Σ <*(j19 "Js+1)dx(h) Λ Λ dx(js+1)

= const. dx(js+1) A dx(jj) Λ Λ dx(j8) .

Proof. By φ e G° given by

xtyoφ-1 = χ(ί) , i φ i8+1; xOs+Joφ-1 = x(is+1) + x(is+1) x(is) ,

and using the expression for Tv in Remark (c) of § 3.3 we obtain
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RΦTW = Σ a(L '' Js+i) dx(h) dx(ja+1)

( 1) + x(i8) Σ α(h, , js+ι)dx(h) <**(/.+i)

+ *(*β+i) Σ α(ki, -, ks+^dx(kd dx(ks+1)

with (j15 , j ,+ 1) = 0\, , /„ is+1), (kί9 , Λβ+1) = OΊ, , ιβ, /,),

( 2 ) TΛ,w = Γw + T(x(ίs+1) jc(ίt) dx(iΰ ' Λc(ϋ) .

The first terms on the right side of (1) and (2) cancel with each other. For the
second term on the right side of (2) we have (1) of § 3.5 with m = 1, which
now becomes

( 3 ) x(ίs+ι) Σ α(k19 - - , ks+ι)dx{kx) . dx(ks+1) = 0

with (Λi, , fcβ+i) = OΊ, , ι'β, iβ). (Notice the two equal indices i8.) As the
same expression (3) but with different indices ίs, i8+1 is not zero (Remark (c),
§ 3.3), the antisymmetry in ks, ks+1 of (3) is proved. By repeating these argu-
ments for every index ir € (i19 , /,), we thus obtain the antisymmetry be-
tween ks+1 and every kr in (3), which means the total antisymmetry in all k19

• -,ks+ί. By linearity of T e J°(VS, Vr), tensor fields, which are not totally
antisymmetric, are mapped into zero by T. So the arguments of Palais [1,
Theorem 10.5, p. 139] give that J°(VS, Vs+ι) = constant ds.

4.3. J\VS, Vs+J, m > 1. According to Theorem 3.6 (a) basic fields of
the second kind are mapped into zero. For basic fields of the first kind, by
Theorem 3.3 we have

Using (1) of § 3.4 and the naturality condition with φ e G° given by

x(ϊ)oφ~ι = χ(ί), i φ is+1 , x(is+1) oφ~ι = x(i8+1)(l + x(i8))

we obtain Tw = 0, which together with § 4 proves (1) of § 2.
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