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SECOND ORDER CONNECTIONS. II

ROBERT H. BOWMAN

1. Introduction

The purpose of this paper is the development of certain implications of the
second order connection, introduced previously by the present writer [1]. If M
is an ^-dimensional C°° manifold, we show that a linear second order connec-
tion on M determines a "covariant derivative" V on TM, which satisfies the
usual conditions over the ring g'(ΓM), the vertical lift of the ring $(M) of C°°
functions on M. Using the properties of F', we obtain equations analogous to
those of Gauss and Weingarten, and an analog of the second fundamental form.

If A, B, C e %'(TM), the module of C°° vector fields on TM over the ring
g'(ΓM), then we obtain the maps Tor (A, B) and R(A, B)C which are g'(ΓM)
multilinear analogs of the torsion and curvature tensors. From the components
of R we obtain equations analogous to those of Gauss and Codazzi, as well as
an additional equation which defines a "vertical curvature tensor" on M.
Finally, we obtain an invariant which we call the second order curvature of
M; this yields as a special case the usual (first order) curvature of M.

2. Preliminary remarks

In this section we will briefly outline the main results of [1] utilized in the
main body of this paper. The notation employed is essentially that of [1] and
[2], with the summation convention employed on lower case Latin indices.

A second order connection on M is a connection on the bundle IΠ: 2M-*M
which naturally induces a (first order) connection on M. If £77̂  is the tangent
map of £/7:ΓM-»M, and D is the connection map of the induced connection,
then TTM and consequently 2M may be given a vector bundle structure over
M, such that if HTM and VTM are the horizontal and vertical subbundles of
TTM determined by the vector bundle structure, then

J77*: HTMP -> TΛίιΠip) , D: VTMP -> TΛfiΠip)

are isomorphisms at each p e TM.
Given a coordinate chart ([/, φ) of M there are determined two sets of bases,

relative to the induced coordinates Λ:01, , xOn x11, , xln on J[] ~KU),
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( 1 ) xζ = d/dxOί - Γ(kx
ιkd/dxlj , X\ = d/3xH

respectively spanning HTMP and VTMP at each p g \Π-\Ό). Similarly, there
are two sets of bases

X\ = d/dxQί - Γifildx13 , Xvt = d/dxιί

spanning the vertical and horizontal subbundles of \U:2 M —> M at each x e U.
We call these subbundles the horizontal and vertical bundles over M.

A second order connection on M determines a covariant differentiation of a
section Aoi2

0Π: 2M —> M with respect to a vector field Z o n M . The local form
of this differentiation in terms of local coordinates on M is

( 2) DXΛ = ξi ( ^ + Γ%Aή Xi + ξ* (Ml + Γ%A°« + Γ%*ή X*

where X = ξ'd/dx0' and A = AoiXΪ + AιiX\.

3. The ^'-derivative

Theorem 1. A second order linear connection on M determines a C°° map
V: X'(TM) x 3LXTM) -> £'(TM) such that ifA,B,Ce X'(TM) and f e %'(TM),
then

1) rA{B + O = V'AB + F'AC,
2) F'A+BC = F'AC + F'BC,
3) F'fAB = fF'AB,
4) PAfB = (Af)B + fPΛB.

We call Fr an ^'-derivative.
Proof. Form the map

\Π*®D: TTM ->TMφTM .

Since 2M π TM® TM, we may regard J/7* 0 D as a map of TΎM onto 2M
which is an isomorphism of TMP onto 2Miπ<ip) at each p e TM. Suppose that

A, Be X'(TAf) and that 5 Λ g 3£/(TM) is the vector field obtained by taking the
horizontal component of Bp at each p g TM. If <yp(ί) is an integral curve of Bh

through p € TM, then J/7* 5J is tangent to \Π-σp(t) at J/7(p). Since J/7^ ^
is a well defined section oi2

0Π: 2M —> M along J/7 σp(ί),

is defined and we take

( 3 ) (Fi4)p = (i/7# 0 D)-\Dlπ^ W* ©
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where (J/7* ® D)~λ denotes the inverse of the isomorphism J/7* 0 D: TMV —•
2MiΠ(p). That V'BA is C°° on TM follows from the fact that σp(t) is C°° as a

function of p. Conditions l)-4) follow from the fact that if f e g'(TM) is the
vertical lift of / e g(Aί) and J5 € 36'(ΓM), then \Π*(f'B)v = fQΠ(p)) \Π*BV and
(Bf)p = (J/7* Bp)/, together with the local expression (2).

Lemma 1. // p e TM0, then (FBA) depends only on the value of Bh at p
and the values of A on TM0.

Proof. If p e TMQ and B e 3£'(ΓM), then the integral curve σv of Bh

through p lies entirely in the zero section TM0 of J/7: ΓM—>M. Hence
J/7* φ D{A) depends only on the values of A \ TM0. That (F'BA)P depends only
on the value of Bh at p follows from (3).

Since the restriction of J77 to TM0 is a diffeomorphism 5/7: TM0 —> M, the
restriction of \Π* to T(TM0) is an isomorphism J/7*: T(TMQ) -+ TM. Because
the second order connection is linear, the induced first order connection is also.
This means that if we choose a point of M and a coordinate neighborhood
containing it, then the induced local bases for HTM and T(TMQ) coincide on
TM0. Thus we may identify the bundle \Π: TM-+M with the subbundle
IΠ: HTM0->TMQ.

If X, Y € X(M) and ξ e %υ(M), the module of vertical vector fields on
TM0 « M, then we may utilize the above identification and the fact that
Lemma 1 implies that F' may be restricted to TMQ « M to decompose Vf

xY
and F^f into horizontal and vertical components. Thus using (2) we have, on
TM0 « M,

( 4 ) F'XY - D X 7 + a{X, Y) , F^ί - F z f .

Theorem 2. // X, Y e dί(M), and ξ e Γ(M), then
1) the horizontal component DXY of V'XY is the usual covariant derivative

of the induced connection,
2) the vertical component a(X, Y) of VXY is bilinear over $(M),
3) F: £(M) x £V(M) -> Xυ(M) satisfies the usual conditions (l)-4) of F')

of a covariant derivative over g(M).
Proof. 1) D is obtained by taking the horizontal component of the re-

striction of F' to horizontal vector fields on TMQ. The induced (first order)
covariant derivative may be obtained by taking the horizontal component of
the second order covariant derivative restricted to horizontal vector fields of
\U\ 2M —> M. Since \Π* 0 D may be viewed as an identification of TTM \ TM0

with 2M we see that D is the induced (first order) covariant derivative on M.

2) That a is bilinear over $(M) may be seen by noting that since

and
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W'xΎ + (Xf)Y - ΦXY - (Xf)Y = f(a(X, Y)) ,

we have

Similarly, we see that

a(fX, Y) = fa(X, Y) .

3) The fact that V satisfies conditions l)-4) over $(M) follows from the
fact that V satisfies these conditions over g'(ΓM), and the fact that if
f e W(TM) then it is the vertical lift of some function / € $(M) with f \ TM0 = f
(since TM0 « M).

In analogy with the equations of Gauss and Weingarten we call a the second
fundamental form of the second order connection, and note that V represents
covariant differentiation with respect to a connection in the vertical bundle over
M, and that the Weingarten map vanishes identically.

If A, B β X'(TM), we define

( 5 ) Ίor(A,B) = V'AB - V'BA - [A,B] .

Theorem 3. The map Tor: dc'(TM) x X'(TM) -+ %'(TM) is skew-sym-

metric and bilinear over g ;(ΓM).
Since Tor is bilinear over g'(TM) but not over g(ΓM), Tor (A, B)p depends

in general on the behavior of A and B in a neighborhood of p however, we
may localize Tor on TM0.

Lemma 2. If A, B e X'(TM) are horizontal, and p <= TM0, then [A,B]P

depends only upon the values of A and B on TMQ.
Proof. If (£/, φ) is a coordinate chart at IΠip), then A = aιX\, B = WX7},

a\ V € g(ΓM). Thus [A,B]P = {a\X\W)X) + a^X\X) - b\X)af)X1t -
bWX$XΪ)p Since p ε TM0, (Xf)p = (d/dxH)(p) and thus we have

(6) [A,B]P = [A\TMO,B\TMO]P .

Theorem 4. If p ε TM0 and A, B e £'(TM) are horizontal, then

Tor (Ap, Bp) = Tor {A, B)p .

Proof. If A and B are horizontal vector fields on TM, and (U, φ) is a co-
ordinate chart at \Π(p), then A \TM0 = a*XΪ\ TMQ, B\TM0 = b'X*\TM0

where a1, bj ζ. $(M). Extend these to the vector fields

A = a*'X} , B = WX) ,



SECOND ORDER CONNECTIONS. II 79

where a1' and bjf are the vertical lifts of a1 and bj respectively. For p e TM0

we have by Lemmas 1 and 2

Tor (A, B)p = Tor (A, B)p = Tor (α<'Z£, &''ZJ)P = ai§b'' Tor (Z?, ZJ), ,

and we see that if A or B vanishes at a point p e TM09 then Tor (A, B)p = 0.
Hence we may take

( 7 ) Ύoτ (AP,BP) = Tor (A, B)p .

Remark. This implies that Tor induces a tensor on TM0 « M, since the
restriction of $'(ΓM) to ΓM0 may be identified with g(M).

Theorem 5. // F' w torsion free (Tor = 0on ΓM0), ί/ie/t ί/ιe induced (first
order) covariant derivative is torsion free and a is symmetric.

Proof. Suppose that X,Y€%(M). Since Tor may be restricted to
TM0 « M, it follows that if Tor ΞΞ 0 and p <= TM0, then

Tor (X, Y)p = (V'XY\ - (Vf

γX)v - [X, Y]p ,

so that

(DΣY)V + a(X, Y)p - (DYX)V - a(Y,X)p - [X, Y]p = 0 .

Thus we see that Tor,, (X, Y) = 0 and α(Z, Γ) = α(Y, Z).
Definition. An g'-metric on TM is a map G: 3e'(ΓM) x 3e7(ΓM) -> g'(ΓM)

which is C°°, symmetric, positive definite, bilinear over g'(ΓM), and has the
additional property that it A, B e %'(TM) and p e TM0, then G(AP,BP) =

We will say that F7 is Riemannian with respect to the g^-metric G if on TM0

( 8 ) Tor U , B) = 0 , ZG(C, E) - GCFiC E) + G(C, V'XE) ,

where Z e 3£(Λί), ̂ t, B,C,Eε 3c'(TM), and /4, J5 are horizontal.
Theorem 6. // F7 w Riemannian with respect to an ̂ -metric having the

property that horizontal and vertical vectors are orthogonal on TMQ, then D is
Riemannian with respect to the induced metric in the horizontal bundle over
TMQ & M, F is metric with respect to the induced metric in the vertical bundle,
and a = 0.

Proof. From the definition of an ̂ -metric it is clear that by restricting G
to horizontal and vertical vector fields on TM0 « M we obtain metrics on the
horizontal and vertical bundles over M. Suppose that X, Y, Z e 3£(M) with
extensions A, B, C respectively to horizontal vector fields on a neighborhood
of p € TM0. If V is Riemannian with respect to the metric G, then on TMQ

AG(B,C) - G(V'AB,C) + G(B,V'AC) .
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If p e TM0, then by Lemma 1 and the definition of an gί'-metric we have

XPG(Y,Z) = G(FXY,Z)P + G{YXXZ)V .

Thus on TM0 « M w e have

XG(Y, Z) = G(DXY + a(X, Y), Z) + G(Y, DXZ + a(X, Z)) .

Also we see that if ξ β XΌ(M), then G(Y, ξ) = 0 so that

XG(Y, ξ) = G(DXY + a(X, Y), ξ) + G(Y, Vxξ) = G(a(X, Y), ξ) = 0 ,

which implies that a = 0. Thus

on ΓM0 « M. That Tor^ Ξ 0 follows from Theorem 5. Finally, if ξ, η e 3eϋ

then on TM0 « M

, 57) + G(£, Γi 9) = G(Γxf, 5) + G(f, F7^) .

Suppose that the covariant derivative D: 3£(M) x 3£(M)—>3£(M) is Riemann-
ian with respect to the metric g on M, and that the covariant derivative
V: 3£(M) x XV(M) -> Xυ(M) is metric with respect to the fiber metric h in the
vertical bundle over M. If X e 3£(M), and A is a section of g/7: 2M —• M, then
we define the second order covariant derivative

and the corresponding g^-derivative, using (3),

( 9 ) (F'BA), = (IΠ* Θ D)-\D>Bn yi*A + ^

If ^ , B e X'ίΓM), and we take

(A,B\ = g(in*Ap,lII*Bp) + hφ(Ap\D(Bp)) ,

then < , y is an g^metric.

Theorem 7. F7 w Riemannίan with respect to <( , ) .
PAΌO/. If ^ , 5 e 3e7(TM) and Z s 3£(M), then we have on TM0

X<A, B} = g(Dx IΠ* A, IΠ* B) + g(W* A,DX IΠ* B)

+ h(FxD(A),D(B)) + h(D(A),FxD(B)) ,

since D is Riemannian with respect to g, F is metric with respect to h, and
IΠ*(A ITM0), D(A ITM0) are vector fields. Since
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on TM0

and a similar expression holds for F, we see that

on ΓM0. If A,B e £'(TM) are horizontal and have the restrictions X and Y
respectively to TMQ « M, then for p e ΓM0

Tor 04, B)p = Tor (Z, Y), = ΦXY - DYX - [X, Y])p .

Thus Tor = 0 on TM0 since D is Riemannian.
lίA,B,Ce 3c'(TM), we define

(10) R(A, B)C = V'AV'BC - V'BV'AC - V[AtBf .

Theorem 8.

R(A,B)C = -Λ(B,y4)C ,

w g'CΓAf) multilinear.

Theorem 9. If A, B, Cζ%'(TM), and A, B are horizontal, then for

Proof. In terms of a coordinate chart at J77(p) we have

A \ T M 0 = aQiXf\TMQ , B\TM0 = f \ 0 ,

CIΓM0 = C°*Zf I ΓM0 + ClfZJ I ΓM0 ,

where α°% feM, CM, Cιi € g(M). Extend these to the vector fields

A = floi/z?, 5 = bHfxt, c - c ' j r f + c" ' j r j ,

where the accent denotes vertical lift. From Lemmas 1 and 2 and the definition
of R we see that for p 6 TM0, Rp depends only upon the values of A, B, and
C on TM0. Consequently, we have on TMQ

, B)C = R(Ά, B)C =

Thus we see that if A, B or C vanishes at a point p 6 ΓM0, then (/?G4, B)C)V = 0,
and hence we may take
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Remark. This implies that R induces a tensor on TM0 « M, since the
restriction of W(TM) to TM0 « M may be identified with g(M).

Using the fact that V may be restricted to TM0 « M we have for

F'XF'YZ = F'X{DYZ + a{Y9 Z)) = DXDFZ + Fxα(Y, Z) + α (Z, DFZ) ,

(11) V'YV'XZ = DYDXZ + Fγa(X, Z) + a(Y, DXZ) ,

Fί x,F ]Z = D [ X . n Z + a([X, Y], Z) .

If D is torsion free, then

DXY - DYX = [X, Y] ,

so that

J7[X,F]Z = DίZtT1Z + a(DxY,Z) - a(DγX,Z) .

Using (11) we see that the horizontal component of R is

(12) (R(X, Y)ZY = Zλ,DFZ - DYDXZ - DίXtY1Z = R(X, Y)Z ,

where Ά is the curvature of the (first order) induced connection. (12) is analo-
gous to the equation of Gauss. The vertical component of R is

(R(X, Y)Zy = Fxa(Y, Z) + a{X, DYZ) - a([X, Y], Z)

-Pγa(X,Z)-a(Y,DxZ) ,

Taking

Fxa(Y,Z) = Fxa(Y,Z) - a(DxY,Z) - a(Y,DxZ)

we have in the case where D is torsion free

(13) (R(X, Y)Z)» = Fxa(Y, Z) - Fγa(X, Z) ,

which is formally the same as the equation of Codazzi. Finally, we have for
ξ €

V'xV'τξ = FxFγξ , Ff

γF'xξ - FγFxξ , F[x, F ]f = FίX, F ]f ,

and hence

(14) R(X, Y)ξ = FxFγξ - FγFxξ - Fιx>γ,ξ = R(X, Y)ξ .

We call R the "vertical curvature tensor" of M.

If <( , > is an ^-metric on ΓM, and Ff is Riemannian with respect to <( , ),
then we define, for A,B,C,Dζ K'i
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(15) R(A, B, C,D) = <A,R(C,D)B} .

Theorem 10. If A, B e 3i'(TM) and X,Ye £(M), then

R(A,B,X,Y) = -R(A,B,Y,X), R(A,B,X,Y) = -

Proof. The first of these follows from the skew-symmetry of R(X, Y)B,
and the second from the fact that, since <( , > is Riemannian,

[X, Y\<A, By = <F'ίXtYΊA,B> +

on TM0 « M. Hence

XY -YX - [X, Y] = 0

, Y)B} .

Let GU,B) = <A,A}(B,B} - <A,B}\ and

(16) K(A,B) = R(A,B9A
h,B*)/G(A,B) .

Theorem 11. // p 6 TM0 « M and 4 , 5 € 2MP, then the scalar K(A, B)
depends only upon the hyper plane of 2MP spanned by A and B.

Proof. We see that

K(A, B) = K(B, A) = K(rA,sB) = K(A + tB, B) .

Thus if ad - cb φ 0, then

K(A,B) = K(aA + bB,cA + dB) .

Corollary. If a = 0 and A, Be X'(TM) are horizontal with A \ TM0 = Z,
B\TM0 = Y,then

where K is the curvature of the induced {first order) connection on M.
If X e £(M), let Z * <= %υ(M) denote the vertical vector field having the

property that D(X*) = X. Then to complement the first order or horizontal
curvature K we define the vertical curvature

(17) K(X, Y) = R(X*9 Y*,X, Y)/G(X, Y) .
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