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GEOMETRY OF SUBMANIFOLDS

OLDRICH KOWALSKI

1. Introduction

A. Fialkow [1] was the first author who carried out a systematic study of a
(local) submanifold Vn in a conformally euclidean space Vm. The conformal
fundamental forms and fundamental equations introduced by him enable us
to develop a theory which is quite parallel to the well-known local theory of
submanifolds of a euclidean space. The following two theorems are of particular
significance:

A) Conformal equivalence theorem. // Vm and Vm are conformal to a
euclidean space, and the corresponding conformal fundamental forms of Vn C
Vm and Vn C Vm are equal, then a conformal transformation exists such that
V Ί± V and V τ± V

B) Existence theorem. A subspace Vn exists in any conformally euclidean
space with preassigned conformal fundamental forms whose coefficients satisfy
the fundamental equations, and is determined uniquely by a set of initial
conditions.

Although Fialkow's article is original and of undisputed value, its old-fashion
style and method, with awkward and tiresome calculations, make it difficult to
read and understand.

The purpose of the present paper is to make the essential results of A.
Fialkow more appealing, concise, and also more comprehensible to a modern
mathematician.

First, we shall try to characterize a submanifold M of a conformally
euclidean space N not by fundamental forms but by a canonical structure of
its induced vector bundle φ^T(N) (φ: M —> N denotes the inclusion map).
Roughly speaking, we shall study "Riemannian vector bundles" and, in par-
ticular "conformally euclidean vector bundles" over a manifold M. An
important example of such a structure is the tangent bundle T(N) of a
Riemannian manifold N. For this particular case, H. Weyl introduced the well-
known conformal curvature tensor C, and J. A. Schouten [8] proved his famous
theorem, which can be presented in the following form: a tangent bundle T(N)
of a Riemannian space N, dim N > 4, is a conformally euclidean vector bundle
if and only if C = 0. (A special theorem holds if dim N = 3.)
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Using an algebraic interpretation of the Weyl tensor due to I. M. Singer
and J. A. Thorpe [9], the author achieved to generalize the tensor C for an
arbitrary Riemannian vector bundle E —• M (provided with a metric connection
and a solder map /': T(M) —> E), dim M > 3. If dim M > 4, we show that all
conformally euclidean vector bundles over M are characterized by the condi-
tion C = 0. A simple result also holds for dim M = 3.

We have obtained a generalized Schouten's theorem characterizing, in an
intrinsic way, local submanifolds of a conformally euclidean space, and, in our
opinion, this is the true geometrical content of the work by A. Fialkow.

2. Algebraic foundations

Let V be a d-dimensional real vector space with an inner product <( , ) , and
let W C V be an ra-dimensional subspace. Denote by Homc (V, V) the space
of all skew-symmetric endomorphisms of V.

A (W, V)-curvature structure is a bilinear map R: W X W —• Homc (V, V)
such that

(2.1) R(u,t)= -R(t,u),

(2.2) R(u, t)v + R(t, v)u + R(v, ύ)t = 0 ,

(2.3) <R(μ, t)v, w} = <R(v, w)u, t} for any u,t,v,wεW .

By the linearity, any R can be extended to a linear map of W ® W into
Homc (V, V), which will be also denoted by R. Ίt W = V, then R is called
a curvature structure on V. (As for the theory of curvature structures, see [6],
[7], [9].)

Denote by J?(W, V) the vector space of all (W, F)-curvature structures.
We can define a natural inner product < , >* on <£(W, V) by the formula

d m

(2.4) <*,*'>* = Σ Σ <R(ei,eJ)ea,R'(ei,ej)eay ,
α = l i,j = l

where {e19 , ed} is an arbitrary orthonormal basis of V adapted to W, i.e.,
such that {e1? , em} is an orthonormal basis of W.

Let us denote by τ: V —> W, v: V —» PP1 the canonical orthogonal projec-
tions. Put

Horn5 (W, V) = \fe Horn (W,V);τofe Horn ( ψ , 00 is symmetric} .

The Ricci contraction map rice: J£(W, V) —> Hom s (W, F) is given as follows:
for any R € &(W, V) and uεW we put

(2.5)
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where {eλ, , em} is an orthonormal frame of W. (The symmetry of any map
τoήccR follows from (2.1)-(2.3).)

For x,y ζ.V let us denote by x Λ y the skew-symmetric endomorphism of
F given by

(2.6) (* Λ y)z = <£y, z>x - <*, z>y ,

Define the map h: Horn* (PF, F) -> J^(PF, F) as follows: If Λl e Horn* (JF, F),
then

(2.7) (/L4)(W, ί) == Λu A t + u Λ At .

Lemma 1. // dim W > 3, then the composed map riccoΛ: Horn* (W, V)
-^ Homs (W, V) is an isomorphism.

Proof. It suffices to show that ήccoh is injective. Let A € Horn8 (W, F),
and (ricco h)A = 0. According to (2.5)-(2.7), we obtain

(τicco h)A(v) = Σ

m

= Σ
ί = l

= (m - 2)τUv) + (m - Di Uv) + ̂ ° i; = 0 ,

where A0 = ΣΓ=i <^^? ̂ i> I n particular,

^ =Σ <τ{.Aet), e,> = —
ί=i m — 2

Thus A° = 0 => Av = 0, v β W => y4 = 0.
Lemma 2. Im (h) is orthogonal to Ker (rice) in ̂ {W, F).
Proof. Let /I e Homs (PK, V), R = hA, R; e Ker (rice). According to

(2.4)-(2.7) and (2.1H2.3), we have

d m

<R,R'Y = Σ Σ «ej,e.>Aet-

~ ζei9ea>Aej,R'(ei9ej)ea>
d m

= Σ Σ <jSjtlAei-diaAej,R'(Lei,ej)emy

+ Σ Σ {<AeJ,eaχRf(et,eJ)em,eιy
α = l i,j = l

- (Aet, eay<R'(eu ej)ea, e^}
TO m

= 2 Σ <(ricc/ί/)(««)Me«> + 2 Σ <(riccΛ0(^),^^> = 0 .
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Put &JW, V) = Ker (rice), and let /: £fw(JV, V) -> &(W, V) be the
canonical injection.

Theorem 1.1. Let W C V, dim W > 3. Then there is a unique linear map
C: S£(W, V) —> S£W{W, V), called the Weyl map, and a unique linear map
D: S^{W, V) —• Horn* (W, V), called the deviation map, such that the following
commutative diagram with two exact sequences holds:

(2.8) o

Moreover, the decomposition &(W, V) = Im (h) 0 &JW, V) is orthogonal;
thus the Weyl map C is the orthogonal projection of the space J£(W, V) onto
its subspace &JJV* V)

Proof. According to Lemma 1 the map rice is surjective, and we have an
exact sequence

/ rice
0 > SeJW, V) -ί-> &{W9 V) • Hom s (W, V) • 0 .

Further, h is injective and hence dimΙm(Λ) = dim Horn5 (W, V). Con-
sequently, dim <Sfw(W, V) + dim Im (A) = dim £f(W, V). According to Lemma
2, SejJV* V) _L I m (Λ), and hence follows the orthogonal decomposition
&(W, V) = Im (A) 0 SejyV, V). The rest is obvious.

Remark 1. The statements of Theorem 1.1 are known in the case W = V.
I. M. Singer and J. A. Thorpe [9] proved that the classical Weyl tensor arises
from the orthogonal projection C: &(V, V) -> &W(V, V). The existence of
maps A and D and the orthogonality of Im (A) and J?W(V, V) were found by
K. Nomizu [7].

Remark 2. The composed map τoD is an algebraic equivalent for the
"deviation tensor" introduced by A. Fialkow [1]. Hence the name "deviation
map" for D.

Conventions. Put &e(JV, V) = Im (A). The elements of Sec{W, V) will be
called conformally euclidean (W, F)-structures. The elements of the factor



PARTIAL CURVATURE STRUCTURES 57

space VQV, V) = &(W, V)/£>C(W, V) will be called conformal (W, V)-
curvature structures. Obviously, if dim W > 3, then we have a canonical
isomorphism C*: <g(W9 V) -> &W(W, V).

Two elements R, R' € J*f (W, V) will be said to be conformally equivalent, if
they belong to the same element of tfiW, F). Finally, we shall briefly write
j£?(F), j*?c(F), nv) for se(y9 v), &e(v, v), v(v, V).

We can express the maps C, D explicitly. Let R e &(W, F). Similarly as in
the proof of Lemma 1 we obtain

(rice R)(v) = rice QιA)(v) = (m — 2)τ(Av) + (m — l)v(Av) + A°-v ,

where A = DR. Hence follows

Γ2 9) D7? — Γ ° r i c c ^ I ^°riccjR _ (scR)-I

m-2~ m-ί 2(m - l)(m - 2) '

where sc .R = trace (τ o rice R) is the "scalar curvature" of R. Further, accord-
ing to (2.8) we have CR = R — (hoD)R and hence

CR(u, t) = R(u, i) - DR(u) Λ t - u Λ

(2.10)

- R(μ, i) - Λ

m -
(scfO ii

(m - l)(ra

- [yori

- 2

Λ i
—

-CC J

-[TO

t

2)

rice /?(«) Λ t -

• Λ t — v o rice

- ro ricci?(ί) Λ

Λ w]/(m -

H]

•1).

Here the last term occurs only HWφV.
In the following we shall study relations between the spaces J?C(W, V) and

The inclusion map /: W —> V induces a canonical surjection ϊ: Homs (V, V)
-> Horn* (W, V) and a map i*: &(V) -> J?(»F, V).

Lemma 3. The following commutative diagram holds:

Horn5 (V, V) -ί-> Horn5 (ψ, F) > 0

(2.11) |A ^ j A

^ ( F ) - ^ > JSf (iy, F)

Consequently, /*(J^C(F)) = i f c (^, F).
Proof is obvious.
Thus the restriction of a conformally euclidean curvature structure R': V x

V -> Homc (F, F) to the subset W X W is a conformally euclidean (JF, F)-
curvature structure. Further, for dim W > 3, the restriction map i*: ^f(F) ->

, F) induces a canonical map of <g(V) into <g(W, F).
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Let p: Hom s(F, V)->Homs (W1-, WL) be given as follows: for Aε
Horn* (V, F) we put pA = v A i1, where iL: W1 —> V is the inclusion map.

Lemma 4. There are unique maps Q: Horn5 (W, F) —» Horn* (F, V) and
S: Horn'^W1, W1) -> Homs (F, V) such that the following commutative
diagram with two exact sequences holds:

(2.12) 0 > Horn5 (JV, V) -^-> Horn5 (V, V) JL» Homs (JV\

Proof. Let us define Q and S by the following formulas:

(2.13) ζQA(x), y} = <A(τx), y} + <*, A(τy)> - <τx, A(τy)}

(2.14) <5BW, y} =

for JC, y € F5 ̂  € Homs (ΪF, F), 5 € Horn* (JF-1-, Pf1). We can see easily that
a) QA,SAeHoms(V, V),
b) the commutativity of (2.12) and the exactness of both sequences hold.

For uniqueness suppose that there is a map

Q': Horn* QV, V) -> Horn5 (F, F) such that ?o Q7 = 0 , po β 7 = 0 .

Then for any A € Horn5 (W, V) we can write

(QΆ{τy),vx) + <β^(^),^>

> + <0oQ')A(τy),vx}

Hence Q! is a null map and Q is unique. The proof for S is quite similar.
Theorem 1.2. Lei W (Z V, dim W > 3. Then there is a unique map

Q: &e(JV, V) -> <^C(F), cα//grf canonical completion, such that the following
commutative diagram with two exact sequences holds:
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Proof, Transform the lower part of the commutative diagram (2.12) by
the isomorphisms D: J?C(V) — Horn5 (V, V), D: J?C(W, V) -> Horn5 (W, V)
(see Theorem 1.1) and use Lemma 3.

In particular, we have Q = h o Q o D.
In case dim W-1- is also greater than or equal to 3, we can obtain a stronger

result. Let hv: Horn8 (W1, WL) -> Se{WL) be the corresponding map (2.7), and
let p* : ^f(F) —> ̂ {WL) be the canonical restriction map. (More precisely, if
R 6 J2?(FO, Λ j , z e W\ we put (P*Λ)(JC, y)(z) = v[R(x, y)(z)l)

Lemma 5. The following commutative diagram holds independently of

(2.16) ]h

Hom s (F, K) -^-> Hom s (P^-1, W1-)

This lemma can be proved by a direct calculation.
Now, if dim WL > 3, then the map hv is an isomorphism, and its inverse is

the deviation map D\
Theorem 1.3. Let W c V, dim W > 3, dim JF-1 > 3. Then there are

unique linear maps Q: &e(W, V) -* ^f c(F), S: &C(WL) -> J2fc(F) {canonical
completions) such that the following commutative diagram with two exact
sequences holds:

(2.17)
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Moreover, Q is identical with the map introduced in Theorem 1.2, and the
decomposition J*?C(F) = Im (β) 0 Im (5) is orthogonal with respect to the
inner product on J?(V).

Proof. We obtain all statements concerning diagram (2.17) by transforming
(2.12) by the deviation maps D: ^C(V) -> Horn5 (F, V), D: £>t(W, V) -»
Horn5 (W, V), Dv: &C(WL) -> Horn5 (W\ W1), which all are isomorphisms.
We use also Lemma 3 and Lemma 5 here. The orthogonality property is easy.

3. Generalized Schouten's theorem

By a Riemannian vector bundle E(A, F) —> M we shall mean a real vector
bundle E —• M over a real manifold M, provided with a fibre metric A and a
raeίπc connection F. (Cf. [2, pp. 116-117].)

Recall that a linear connection F in E is metric if and only if

(3.1) UA(X, Y) = A(FVX, Y) + A(X, FVY)

for any vector field U and any sections X,Y:M-*E.
Any vector subbundle F of E(A,F) is canonically a Riemannian vector

bundle F(A, FF), where FF denotes the orthogonal projection of the connection
F into F (cf. [4] for details). F(A, FF) will be called a Riemannian subbundle
oίE(A,F).

Let d i m £ > d i m M , and let /: Γ(M)-»2? be a fixed bundle injection
("solder map"). The Riemannian vector bundle E(A,F) -* M will be called
j-adapted to M if F is torsion-free with respect to j , i.e.,

(3.2) Fv(jT) - VTQU) - /[£/, T] = 0

for any vector fields £/, Γ of M.
Finally, a soldered Riemannian vector bundle E(A, F) —> M is a Riemannian

vector bundle £04, F) together with a fixed solder map /: T(M) —• E such that
E is /-adapted to M.

Example. Let φ: M —> N be an immersion of a manifold M into a
Riemannian manifold JV. Then the induced bundle <p^T(N) is canonically a
soldered Riemannian vector bundle E(A, F) over M. Here A, F are determined
by the Riemannian metric and the Riemannian connection of N respectively.

As a rule, we shall identify T(M) with /T(M). Γ(M) is canonically a
Riemannian subbundle T(M)(A,FT) of £04, F), called the tangent subbundle
of E. Here A is a Riemannian metric on M and, according to (3.2), F τ is the
corresponding Riemannian connection on M (see [4] for details). The Rieman-
nian subbundle T{M)L(A, Fv), where Fv is the orthogonal projection of F into
T(M)L, is called the normal subbundle of E.

We shall introduce canonical projections

(3.3) τ:E->T(M), v\E-
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Recall that the curvature transformation of a Riemannian vector bundle
E(A9 F) is the bundle morphism 3t\ T(M) <g) Γ(M) -• Horn (E, E) defined by

(3.4) 0l(U, T)X = F ^ r Z - Γ ^ ^ Z - F[C7,Γ]X

for any two vector fields U, T on M and any section X: M —> E.
Let now #04, F) be soldered to M. For any point p ζ M and any two vectors

u,t eTp(M) we have &(u, i) e Homc (EP,EP). Consequently, we obtain a
(TP(M), £p)-curvature structure 0tp on any fibre Ep of £. According to
Theorem 1.1 we can introduce the following definition.

Definition 1. Let E(A, F) —> M be a soldered Riemannian vector bundle
with dimM > 3, and denote by 01 its curvature transformation. Then the
bundle morphism C0ί: T(M) ® T(M) -> Horn (E, E) is called the Weyl trans-
formation of E(A, F), and the bundle morphism DM: T{M) —> E is called the
deviation transformation of £"04, F).

We shall briefly write #, ̂  for C^?, D ^ , and recall that

(3.5) #(l/, T) = ^(C/, T) + S(ϋ) Λ Γ + C / Λ

for any two vector fields U, T on M, where the exterior product Λ is taken
with respect to the metric A. (See formulas (2.6) and (2.10).)

Proposition 1. Let E(A, V) -+ M be a soldered Riemannian vector bundle
with dim M > 4 such that its Weyl transformation Ή vanishes. Then a
"Codazzi equation"

(3.6) <Fu®)(y) ~ (Fv®)(V) = 0

holds for any two vector fields U, V on M. Here (F
V) by definition.

Proof. Define the covariant derivative Vτ&£ of 0ί by

J9 V)X = Fτ[3l(U9 V)X] - @(FT

TU, V)X

- 9t{Ό, Fτ

τV)X - 3l(U9 V)(FTX) .

Then the second Bianchi identity

(3.7) (Fτm(U, V) + (Fu^iV, T) + (Fvm(T, U) = 0

holds (cf. [4]) for any vector fields T, U, V on M. According to (3.5), we have
gt{ϋ9 T) = 2{U) Λ T + U Λ 2{T)9 and (3.7) implies

(J9)(T9 U) Λ V + (Amu, V) AT + (J^)(F, Γ) Λ £/ = 0 ,

where U^)(£/, F) = (Γ^)(fO - (FrS)(U).
Now by applying [5, Lemma 4] to the case where d — 1,A* = identity map,

and Δx = Δ$>, we obtain AQ) — 0.
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Remark. Consider the case E = T(M). Then our Proposition is an
immediate consequence of [7, Proposition 4]. This statement represents a
decisive step of any proof of the classical Schouten's theorem.

Let E(A,F) be a soldered Riemannian vector bundle over M, and define
the first normal tensor P on M as a bundle morphism P: T(M) (g) T(M) —> E
determined by

(3.8) P(U, T) = VΌT - FhT = v(VvT)

for any vector fileds U, T on M (cf. [4]). Because F is torsion-free, P(U, T) =
P(U (x) T) is symmetric.

Now the mean curvature vector field μ of E(A, F) is a section μ: M —» E
defined at any p e M by the formula

(3.9) MP) Σ
m i=i

where {e1? , em) is an orthonormal frame of TP(M) (cf. [1]).
Let now dim E > dim M. The conformal measure tensor G: T(M) (x) T(M)

—> E is determined by

(3.10) G(t/, T) = P(C/, T) - A(U, T)μ .

A point p e M is said to be umbilical in Zs if G vanishes at p.
At any non-umbilical point p e M we define /Λe ^ΛW^̂  function a by the

formula

(3.11) ί" = - Σ Σ Λ(G(eί; βy), G(eif

m

where {̂ 1? , em} is an arbitrary orthonormal frame of TP(M) (see [1, p. 327]).
We shall say that E(A, V) —> M is V-connected if at any point p e M w e have

Ep = U?=i p̂> where S£ denotes ίAe osculating space of order k at p. (Cf. [4,
p. 682].)

Two soldered Riemannian vector bundles E(A, F), E'(A\ V) over the same
manifold M are said to be equivalent and denoted by Ef ^ E if there is a
bundle isomorphism φ: E->Ef (called an equivalence) such that

(i) Φ is an identity map on the common tangent subbundle T(M),
(ii) φ*F' = p, andΦ*A' = A.
Proposition 2. The only equivalence of a V-connected bundle E(A, V) onto

itself is the identity map. Consequently, if E(A, V) = E'(Af, F'), and E(A, V)
is V-connected, then there is a unique {canonical) equivalence Φ: E(A, V) —>
E'{A\V).

Proof. By induction on the order k > 1.
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Proposition 3. Let φ: M —• N be an immersion of a manifold M into a
Riemannian manifold N, andF: N —• iV an isometric transformation. Then the
soldered Riemannian bundles φ^T(M), (F o φ)^T(M) are canonically equivalent.

Proof is obvious and therefore omitted.
Definition 2. Two soldered Riemannian vector bundles E(A, F), E(A', V)

with the same underlying vector bundle π: E —> M are said to be conformally

equivalent and denoted by E(A',F') = (ψ,ξ) • E(A,F),A' ^ A, if there
is a real function ψ on M, called the transition function, and a section ξ: M
—» E, called the transition section, such that

(3.12) Af = (e2+oπ).A on E ,

(3.13) V'vX = VΌX + A($, X)U + A(ξ, U)X - A(U, X)ξ

for any vector field U on M and any section X: M —> E.
Definition 3. Two soldered Riemannian vector bundles E(A, V), E\A', V)

are said to be conformally equivalent and denoted by E(A, V) ̂ ^ E\Af, V) if
there is a bundle E(A*, F*) which is equivalent to E\Af, F') and conformally
equivalent to E(A, F).

Remark. One can see easily that the relation ^ ^ actually is an equivalence
relation.

Proposition 4. Let φ: M —> N be an immersion of a manifold M into a
Riemannian manifold N. If F: N —• N is a conformal transformation of N into
itself, then the induced bundles φ^T(M) and (Foφ)^T(N) are conformally
equivalent in a canonical way.

Proof. Obviously, it suffices to show the following:
Let φ: M —• N be an immersion of M into a Riemannian manifold N with

the metric A, and denote by N' the same manifold N provided with a con-
formally equivalent metric Af = e2ψ-A. Then the induced bundles φ^T(N),
<p^T(N') are canonically conformally equivalent.

Let F, V be Riemannian connections of N, N' respectively, and let ξ denote
the gradient of ψ with respect to A. Then

V'XY = VXY + (Yψ)X + (Xf)Y - A(X, Y)ξ

= VXY + A(ξ, Y)X + A(ξ, X)Y - A(X, Y)ξ

for any two vector fileds X, Y on N. (See [6, Proposition 7] for instance).
Hence φ^KN") = (ψ, ξ) D φ*T(N). q.e.d.

Let V be a vector space with the inner product A. Consider the map LA: V
-> Horn (V <g> V, V) given by

(3.15) LA(w)(t, u) = A(w, i)u + A(w, u)t — A(u, i)w

for t,u,w e V.
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Lemma 1. The map LA is infective.

Proof. Let {e19 , en) be an orthonormal frame of V. Then 2 ?=i

= (2 — w)w, and hence follows our assertion for n ψ 2. If n = 2, then

i(w)(^u 2̂) = ^ ( ^ 5 ̂ 1)̂ 2 + A(w, e2>e\ a n d L(w) = 0, so that w = 0.
Proposition 5. Lei £04', F') = (ψ, f) • E(A, F) and denote by P, P', μ, μf

the corresponding first normal tensors and mean curvature vector fields. Then

(3.16) V'iT = V\jT + LA(τoξ)(U, T) ,

(3.17) F(U, T) = P(U, T) + LA(voξ)(U, T) = P(U9 T) - A(U, T)(voξ) ,

(3.18) τo ξ = grad^ ψ ( = gradient of ψ with respect to A on M),

(3.19) voξ = μ-eϊ+.f/ .

Proof. Let us consider the tangent and normal parts of the formula (3.13)
for the case X = T = vector fields. Then we have (3.16) and (3.17). Further,
replacing the manifold N by the manifold M in (3.14) gives V'iT — Vτ

υT +
LA(gradAψ)(U, T). Using (3.16) and Lemma 1 we obtain (3.18). Finally,
(3.19) follows from (3.9) and (3.17).

Proposition 6. // E(A, V) is a soldered Riemannian vector bundle with ψ, ξ
satisfying (3.18), then the operation (ψ,ξ) Π E(A9V) determines a soldered

Riemannian vector bundle E(A\ V) ^ E(A, V).
Proof is easy and therefore omitted. (See also the proof of Proposition 12.)
Proposition 7. Let E(A'\ V) = (ψ, f) • E(A, F), and dim E > dim M,

and denote by G\G,a\a the corresponding conformal measure tensors and
gauge functions. Then

(3.20) G'(t/, T) = G(U, T) (U, T e Γ(Af)) ,

(3.21) 0/ = a - ψ .

Proof is obvious from (3.10), (3.11), (3.17), (3.19).

A soldered bundle E(A, V) —> M will be said to be conformally V-connected

if any E'(A'9 V) ^^ E(A, V) is reconnected. Obviously, if dim E = dim M,
then E(A,V) is conformally Γ-connected. For dim E > dimM we have the
following criterion:

Proposition 8. Let E(A, V) be a soldered Riemannian vector bundle such
that dim E > dim M, and let μ be its mean curvature vector field. Then E(A, V)
is conformally V-connected if and only if the bundle E(A, Γ°) = (0, μ) Π E(A, V)
is V°-connected.

Proof. Let μ° denote the mean curvature vector field of E(A,V°). From

(3.19) we get (j? = μ-voμ = 0. Let E{A'9V) ~ E(A,F°), E(A,F°) =
W, 10 D E(A', V). Then voξ' = μ

f - e2rμ° = μf and V°πX = Vf

vX +
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LA,(ξ')(U,X) = V'vX + LA, (gradψ' + μ'){U,X).
Up€3f °^pj where 5^, °Sk

p denote the osculating spaces of order k in E{Af, Vf),
E(A,F°) respectively. Obviously, °51 = T{M) c S'1. Suppose that °S* c 5/fc

for a fixed Λ > 1. Let Z ( f c ) : M -* E be a section such that Im (Z(ίfc)) c °Sk.
Then for C/ e ΓP(M), p € M, we obtain P ^ ( f e ) = F^Z'*' + LA, (grad ψ' + μ')v

.{U,Xa)). Because F p ί ( f c ) € S'p
k+1, (grad ψ' + / / ) p e S;2, Z f € ^ / , we get

F°ε,Z
(fe) € y / + 1 . Hence follows °^+ 1 c S7/+1.

We have proved by induction that UΓ=i °Sfc c: |J?=i s'k Because E(A, F°) is
reconnected, JBC^', ΓO is Γ'-connected. The rest is trivial.

Proposition 9. Let E(A', F') = (ψ , f) D ^(-4, F), and denote by 0t9 0tf the
curvature transformations of E(A, F), E(A', V) respectively. Then

(3.22) &{JJ, T) = 9t{U, T) - JP(U) AT - U A

where Jf: T(M) —• E is a bundle morphism given by

(3.23) ^(U) - Vυξ - A(U, ξ)ξ + iA(ξ, ξ)U ,

the exterior product A is taken with respect to the metric A.
Proof. If follows from (3.4) and (3.13) by direct calculation.
Now from (3.18) and (3.23) we can see that Jf € Horn* (T(M),E). Hence

we get
Proposition 10. / / E(A, F),E(A', V) are conformally equivalent, then the

corresponding curvature transformations 0t, 0tr, as (TP(M), Ev)-curvature struc-
tures at each point p e M, are conformally equivalent. In particular, if dim M
> 3, then the corresponding Weyl transformations are equal, i.e., <$ — <€'.

A soldered Riemannian vector bundle E(A, F) —> M will be said to be
a) euclidean, if 0ί = 0,
b) conformally euclidean, if it is conformally equivalent to a euclidean

bundle,
c) locally conformally euclidean, if it is conformally euclidean over a

neighborhood of any point p e M.
The following assertion is a consequence of Proposition 4:
Proposition 11. Let φ: M —> N be an immersion of a manifold M into a

euclidean {conformally euclidean) space. Then the induced bundle φ^T(N) —>
M is euclidean {conformally euclidean).

Now for euclidean bundles we have a converse global theorem, which follows
from [4, Theorem 1].

Theorem A. Let E{A, F) ->Mbe a V-connected euclidean bundle over a
simply connected manifold M, dim E = d. Then there is exactly one immersion
φ: M —• Ed of M into a d-dimensional euclidean space Ed such that

( i) φ*T{E*)^E{A,F),
(ii) with respect to the canonical equivalence, a preassigned orthonormal

frame {f19 ,fd} of T{Ed) corresponds to a preassigned orthonormal frame
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{eλ, - - -, ed} of E. In particular, the immersion φ is isometric with respect to
the Riemannίan metric A induced on M by E{A, F).

In the following, we shall derive some (local) existence theorems of the
above type for locally conformally euclidean bundles, and also characterize
these bundles by the quantities <£ and 2).

Let E(A, F) -»M, dim M > 3, be conformally euclidean, i.e., # = 0. Let
ξ: M —> E be a transition section from E(A, F) to a euclidean vector bundle
E(A',V). Then 9t' = 0 and (3.5), (3.22), (3.23) imply

FΌξ - A(U, ξ)ξ + ±A(ξ, ξ)ϋ =

where 2 is the deviation transformation of E(A, F). So ξ satisfies a system of
linear partial differential equations of the first order:

(3.24) FΌξ = A(U, ξ)ξ - \A{ξ, ξ)U + 9<JJ) .

By covariant differentiations we obtain (using (3.5))

Wϋ,Vy\ξ - FiUty£ = 9t(U9 V)ξ ~ (

and hence the Codazzi equation (3.6) holds. Moreover, the system (3.24) is
completely integrable. In other words, for any element ze E and any sufficiently
small neighborhood U of p = π(z) in M there is a unique local section
ξ2: U —• E satisfying (3.24) and the initial condition ξ(p) = z.

Proposition 12. Let E(A, F) be a soldered Riemannίan vector bundle over
a simply connected manifold M, dim M > 3, with vanishing Weyl transforma-
tion <€. Then any section ξ: M-+E satisfying (3.24) is a transition section
from E(A, F) to a euclidean vector bundle E(A', V). Moreover, if the Codazzi
equation (3.6) holds, then the system (3.24) is completely integrable.

Proof. We show first that a transition function ψ exists. From (3.24) we
obtain A(Fuξ, V) = A(Fvξ, U) for any two vector fields U, V on M and hence
follows easily

UA(τoξ,V)- VA(τoξ,U) - A(τoξ,[U,V]) = 0 ,

which means that τoξ is locally a gradient. Because M is simply connected,
we have τ o ξ = grad^ ψ, ψ : M —> R being determined uniquely exactly up to
an additive constant. Put Ar = e^Ά. If we define F' by formula (3.13), we
can see easily, using the relation τ o ξ — grad^ -ψ , that F' is metric with respect
to A'. Further, we show immediately that F' is torsion-free. Finally, (3.22)-
(3.24) and (3.5) yield St' = # = 0, i.e., E ^ ^ F O is euclidean. The rest is
obvious.

Proposition 13. Let E(A,F) -* M, dimM > 3, be a locally conformally
euclidean vector bundle, p e M a fixed point, w e TP(M) and n € TV(M)L given
vectors, and λ a real number. Then there are a neighborhood U of p in M
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and a unique euclidean vector bundle E(Af, Fr) \Ό over U such that

a) E(A\F/)\ϋ^E(A,F)\ϋ,
b) Ar = e2λΆ, F/τ = Fτ + L^w) έtf ίήe point p,
c) /4 = n.
Proof. We shall construct the quantities ψ and f. The condition b) is

equivalent to ψ(p) = Λ and (ro£) p = (grad^ ψ) p = w (Lemma 1). Further, c)
implies (voξ)v = μp — en>n (see (3.19)). Thus the initial values ξp,ψ(p) of
the required transition quantities are determined. Now let us take a sufficiently
small simply connected neighborhood U 3 p and apply Proposition 12.

Convention. We shall denote the euclidean bundle constructed in Proposi-
tion 13 by EUA, F, p9 w, n,λ).

Remark that if E(A,F) is conformally F-connected, then any bundle
2504', F') \u = EbiA, F, p, w, n, X) is ^-connected.

Corollary. Let N, dimΛf > 3, be a conformally euclidean space with the
metric G, and q e N a fixed point. Then there is exactly one euclidean metric
Gr on a neighborhood W 3 q such that

a) G'^G on W,
b) G' = G and F' = P at q, i.e., Gr is osculating to G at q.
Convention. The corresponding euclidean space will be denoted by

N°(q,W).
Theorem 2.1 (Existence theorem). Let E(A,F) - > M , dimM > 3, be a

locally conformally euclidean vector bundle which is conformally F-connected.
Let N be a conformally euclidean space, dim N = dim E. Further, let p € M,
qe N be fixed points, f: Ep-+ Tq(N) a prescribed homothety with coefficient
e2λ, andw € TP(M), n e TV(M)L given vectors. Then there is a unique imbedding
φ of a neighborhood U(p) C M into a neighborhood W(q) C N such that

( i ) φ(p) = q9 (ϋ) E\j(A, F, p, w, n, λ) ̂  φ^T(N\q, W)),
(iii) the canonical equivalence map Φ coincides with f on Ep.

Moreover,
a) the imbedding <p: U —> W is conformal,
b) (dφ)p is a homothety with coefficient e2λ,
c) (<p*FN)τ = Fτ + LA(w) at p, (FN: the Riemannian connection of N),
d) f(ή) is the mean curvature vector of φ(U) C N at q.
Proof. See Proposition 13, its Corollary, and Theorem A.
Remark. We can also state an existence theorem without the requirement

that E be conformally Γ-connected, but the formulation of such a theorem
would be a little awkward (Cf. [4, Theorem 1].)

Theorem 2.2 (Equivalence theorem). Let φ,φf: M —• N be two immer-
sions of a manifold M, dim M > 3, into a conformally euclidean space N, such

that φ^T(N) ^^ φ*T(N). Then for any point p e M there are a neighborhood
U B p in M, a neighborhood W Z) <p(U) in N and a conformal map F: W —>
N such that ψ' = F o φ on U.
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Outline of the proof. Let us apply Proposition 13 to the bundle T(N)(G, F)
—» N at the points q = <p(p), q' = φ'(p). So we can construct a euclidean metric

c c

Gλ ^^ G in a neighborhood Wλ{q) and a euclidean metric G2 ^ ^ G in a
neighborhood W2(q/) with preassigned initial conditions. Now we can suitably
choose these initial conditions so that the induced euclidean bundles
E(φ*G19φ*F1)9E'(φf*G29φ

f*F2) over V = φ-KWJ Π φ'-ιQVJ (Z M satisfy
φ*d = ^>*G2, (φ*F1)

r = (φf*F2)
v

9μ1 = μ2 = 0 at the point p. Hence according
to the uniqueness part of Proposition 13, we have E(φ*G19 φ*F^ =
E'iφ^G^φ^F^ over a neighborhood £/ C F. From Theorem 1, [4], we can
see that there is an isometry F of W c JFΊ(g) (provided with the metric Gx)
into W2(qf) (provided with the metric G2) such that φf = F o ̂ ? on £/. If we
return to the original metric G on iV, then F: W —• PF2 is conformal.

Theorem 2.3 (Generalized Schouten's theorem). Let E(A9F)-*M9

dim M > 3, Z?̂  α soldered Riemannian vector bundle with the Weyl transfor-
mation <$ and the deviation transformation Q).

I. For dimM > 4, E is locally conformally euclidean if and only if

<e = o.
II. For dim M — 3, E is locally conformally euclidean if and only if(g = O

and (Fu$)(V) - (FySXU) = 0.
Proof. We use Proposition 12 and Proposition 1.
Remark. The condition <€ = 0 in the statement II cannot be neglected if

E Φ T(M).
Theorem 2.4 {Second existence theorem). Let E(A, F) —>M, dimM > 3,

be a F-connected, locally conformally euclidean vector bundle, and p e M a
fixed point. Then there is a neighborhood U 3 p, a conformally euclidean
space N, dim N = dim E, and an imbedding φ: U —• N such that

(i) φ*T(N)^E(A,F)\u,
(ii) the curvature transformation 0lN of N along φ(U) is the canonical

completion of the curvature transformation & of E over U: 0ίN = Q£%.
Outline of the proof. 1) We construct a euclidean bundle E(A\ F') ^^

E(A,F) over U 3p.
2) We take an imbedding φ of U into a euclidean space N such that

φ*T(N) = E(A\ Ff) over U.
3) We construct a tubular neighborhood W of φ(U) in N and a con-

venient local coordinate system in W using the "normal exponential map"
exp 1 :

4) Put E(A, F) = (ψ , ξ) Π E(A', Ff). We shall seek a function S o n W
which is a transition function from the given euclidean metric to a required
conformally euclidean metric in N.

The requirement (i) implies © = ψ and grad© = ? along p(t/), i.e., gives
the values of ©, the first partial derivatives of © and some second partial
derivatives of © along φ(U).
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Now the requirement 0tN = Q& can be expressed in the form
(see corresponding relations (3.22), (3.23)), and the last condition determines
uniquely the remaining second partial derivatives of © along φ(U). Then it is
easy to give a coordinate expression for ©. q.e.d.

A soldered Riemannian vector bundle E{A,F) —>M will be said to be
umbilical (or non-umbilical) if all points of M are umbilical (or non-umbilical)
inE.

Proposition 14 (c/. [1, pp. 426-427]). Let E{A, F) -> M be an umbilical
locally conformally euclidean vector bundle. Then the tangent subbundle
T(M)(A,Fτ) is locally conformally euclidean, and consequently, so is the
manifold M.

Proof. If dimM < 2, the assertion is trivial. Let now dimM > 3. Then
the bundle E(A, V) = (0, μ) • E(A, F) satisfies P'(U, T) = G(U, T) = 0 for
U,TeT(λf), according to (3.10), (3.17) and due to the fact that E is
umbilical. From (3.8) we obtain Fr = F/τ = Fτ on Γ(M) and hence 0t\\J, T)V
= 0t\U, T)V for U, T, V € T(M), where ^ Γ denotes the curvature transfor-
mation of T(M)(A, Fτ). Consequently, rice 0tτ = rice 0lr, sc 0lτ = sc ̂ ' , ̂ τ =
& and ̂ τ(ί/, Γ)K = ^(C/, Γ)F for C/, T, V € Γ(M) (see formulas (2.5), (2.9),
(2.10)). Now the assertion is a consequence of Theorem 2.3.

Proposition 15. Let E(A, F) —> M be a non-umbilical soldered Riemannian

vector bundle. Then there is exactly one bundle E(A°,F°) ̂ ^ E(A,F) with
vanishing mean curvature vector field μ! and gauge function a!.

Proof. According to (3.19), (3.21) it suffices to put E(A°,F°) =
(a, gmάAa + μ) Π E(A,F). (Cf. [1, p. 333].)

We shall call E(A°, F°) the Fialkow bundle of E(A, F).
Proposition 16. I. A non-umbilical bundle E{A,F) is conformally F-con-

nected if and only if its Fialkow bundle E(A°, F°) is F°-connected.
II. Two non-umbilical bundles E(A, F), E\A', F') are conformally

equivalent if and only if their Fialkow bundles are equivalent.
Proof. The argument for Part I is quite similar to the proof of Proposition

8. Part II is a consequence of Proposition 15.
Now we can introduce the canonical graduation, the normal tensors, the

fundamental forms and the Bompiani forms of a Fialkow bundle similar to
those for a euclidean bundle in [4], [5]. Due to the strength of the generalized
Schouten's theorem one can develop all the theory of A. Fialkow [1] in a
more appealing compact form. The details will be published elsewhere.
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