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FORMAL LINEARIZATION OF VECTOR FIELDS
AND RELATED COHOMOLOGY. II

ROBERT HERMANN

1. Introduction

In Part I, we have discussed some algebraic features of the problem of
“linearization” of a Lie algebra of vector fields near an invariant submanifold.
There, we encountered certain cohomology groups, known as “obstructions”,
to the linearization. It is our aim now to relate those cohomology groups to
certain geometric invariants.

To explain what these invariants are, let us consider the following situation:
K is a Lie group acting on a manifold M, and N is an orbit of K. Let N+ be
the normal vector bundle to N. Then, of course, K acts linearly on N+ and
also on any tensor bundle E constructed from N-i. Let I'(E) be the space of
cross-sections of E. Then K acts geometrically as a linear transformation group
on ['(E), as does K, the Lie algebra of K. Thus the cohomology groups of K,
defined relative to this representation of K in I'(E), are natural invariants of
the orbit N.

We shall show that the cohomology obstructions to the linearization of K
near the orbit N are essentially determined by the cohomology groups of K
with coefficients in I'(E), for a certain class of tensor bundles constructed from
N+. One may also remark that these cohomology groups also play a basic role
in the problem of “deformation” of infinite dimensional linear representations
of Lie groups [2].

2. Construction of the vector bundles

All data will be of differentiability class C~. We refer to [3] for the notations
of differential geometry.

Let N be a manifold, and E a vector bundle over N. I'(E) will denote its
space of cross sections. I'(E) is a module over F(N), the ring of real-valued C*
functions on N. It is a general principle of differential geometry that most
ideas can usually be described in an optimally elegant fashion in terms of these
modules.

If E, E’ are vector bundles over N, a differential operator from E to E' is a
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real-linear mapping; I'(E) — I'(E’) which, in terms of local coordinate systems
for N and local product structures for E and E’, takes the form of differential
operator in the classical sense. The order of such an operator is its “classical”
order on terms of local coordinates. In particular, let us denote by D}(E, E’)
the space of differential operators 4: I'(E) — I'(E’) which, in terms of local
coordinates, are given by first-order homogeneous differential operators in the
classical sense. (Notice that “homogeneity” is a property which is independent
of local coordinates for first-order differential operators, but not for higher
order operators.)

Let K be a group of transformations of N which also acts linearly on the
vector bundles E and E’. Thus K acts as a transformation group on I'(E) and
I'(E’) as follows:

If y»: N — E is an element of /'(E), and & ¢ K, then

k()(p) = ky(k~'p) forpeN .

Suppose that ¢t — k(f), o < t < oo, is a one-parameter subgroup of K. Its
infinitesimal generator, which we will denote by X, may be considered as an
element of K, the Lie algebra of K. Given + € I'(E), one may define the Lie
derivative of y» by X, denoted by X(v), as follows:

_d
X)) = Wk(t)(«lr) le=o -

This action defines a linear representation of K by operators on I'(E).
K and K’ also act on D3,(E, E’): For 4e D,(E,E’), ke K, and v ¢ ['(E) we
have

k(D) = k(d(k™Y)) .
The action of K on 4 is
2.1 X(DW) = X)) — AX ) .

D} (E, E’) may also be identified with the space of cross sections of the vector
bundle I'(T(N) ® E® E’*). The Lie derivative action (2.1) agrees with the
action obtained by letting K act in a natural way on the bundle E ® E’*.

(® denotes the tensor product bundle. E’* denotes the dual bundle of E’,
i.e., the fibre over each point is the dual space of the fibre of the original
bundle. T(N) denotes the tangent bundle to N. In making these identifications
one should keep in mind the following fact from linear algebra; If V, V' are
vector spaces, the space of linear maps: V — V¥’ can be identified with
VRV'*)

Let us apply these general remarks to the following situation: K acts as a
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transformation group in a manifold M, while N is a submanifold of M which
is left invariant by the action of K.

Let N+ be the normal vector bundle to N. Then the fibre of N+ over a point
p e N is the quotient M, /N, of the tangent spaces to M and N at p. I'(N+)
can be identified with the quotient F(N)-module I'(T(M))/ I'(T(N)). Of course,
since T(M) and T(N) are the tangent bundles of M and N, I'(T(M)) and
I'(T(N)) can be identified with V(M) and V(N), the spaces of vector fields on
M and N.

Let V(M,N) denote the Lie algebra vector fields on M which are tangent
to N. Our geometric assumptions then imply that K can be identified with a
subalgebra of V(M, N).

We will now define a mapping: V(M, N) — D} (N1, N4). Let X ¢ V(M, N).
Then AdX: Y — [X, Y] maps V(M) into itself, and acts there as a first-order
differential operator. Let 4 ¢ I'(N+). Choose a vector field Y e V(M) whose
restriction to N, followed by the projection on the normal bundle, is the cross-
section . (For simplicity of terminology, we will refer to this operator as
“projection of Y on I'(N1)”.) Now set

2.2) Ax() = projection of [Y, X] on I'(N1) .

Since the kernel of the projection map: V(M) — I'(N+) is V(M, N), this defi-
nition is independent of the +» chosen (algebraically, of course, this is nothing
but the action of Ad (V(M, N)) in V(M)/V (M, N).)

Let V*(M, N) be the set of X ¢ V(M, N) such that 4, = 0. We will define
A% as a bilinear map: I'(N+) X I'(N+) — I'(N*) as follows:

For Y, yr, € I'(N+), choose Y,, Y, € V(M) whose projections on I'(N1) are
Y1, ¥, Set

(2.3) Ax(¥y, ) = projection of [Y, [Y,, X1] on I'(N1) .
Lemma 2.1.
2.4 AxWi, V) = Adx(ps ) for Y4 € (NS, X € VXM, N) .
Proof. Using the Jacobi identity, we have
Y, [Y,, X11 = [[Y,, Y,1, X] + [Y,, [Y,, X]1 .

Since X ¢ V¥(M, N), the projection of [[Y}, Y,], X] on I"(N') vanishes, which
proves (2.4).
Set

2.5) E=N!, F?=E-E} E=Eo-E-E, etc.

(o denotes the “symmetric tensor product of vector bundles”.) Thus we can
regard (2.3) as defining a map:
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(2.6) VXM,N) — D,(E*, E) .

Now let V*(M, N) denote the kernel of the map (2.6). One can now define
a map: V3(M,N) — DI(E? E) in a similar way.

A (g Uy ;) = projection of [Y,, [Y,, [Y,, X1]] on I'(N?) .

In a way similar to that used in Lemma 2.1, 45 depends symmetrically on
Y15 Yas Y.

This construction may be continued indefinitely. The result is a sequence
{Vr(M, N)} of subspaces of V(M, N), r = 1, 2, such that

2.7 V(M,N) = V(M,N) D VA(M,N) D V¥M,N)D --- .
A map:
2.8) V¥M,N) — D} (E", E)

is defined naturally.
2.9 [V"(M,N), V*(M,N)] C V"*~{(M, N) forr,s>1.

(Lemma 3.1 of Part I applies to prove (2.9)). Notice that (2.7) and (2.9) im-
ply that

(2.10) [V(M,N),V'(M,N)] C V"(M,N) .

In particular, if K is a subalgebra of V(M, N), then Ad K passes to the quotient
to define a representation of K in V7(M,N)/V7+*(M,N). The cohomology
groups of K defined by this representation are obviously geometric invariants
of the action of K. Our goal is to see their relation to the cohomology groups
defined in Part I, which governs the “linearization” of K.

To this end, let us determine the V7(M, N) in local coordinates. Choose the
following range of indices and summation conventions:

1<i,j<m=dmM;1<a,b<n=dmN;n+1<u,v<m.

Suppose (X,) are coordinates for M, such that X, = 0 determines N. A vector
fields Y e V(M) of the form Y = b,d/ox; belongs to V(M, N) if and only if
b, (N) =0.

Let us first determine V*(M, N). Suppose X € V(M,N) = V'(M,N). Then
X is of the form

(2.11) X = A,9/0X, + buoXod/ox, .

First, if X € V3(M, N) we must have
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(2.12) [6/0x,, X]1e V(M,N) .

But, in view of (2.11), the condition for (2.12) is b,,(N) = 0. Thus X satisfies
(2.12) if and only if it is of the following form:

(2.13) X = A,0/0x, + byyyXpXyd/0x, .
With (2.3) satisfied, let us now determine the condition that
(2.14) [b,0/0x,, X]e V(M,N)
for all b, € F(M). For this, we must have
Xb,)WN) =0, ie., XFM) =0and N, or A,N)=0.
Finally then X is of the form:
(2.15) X = A, x,0/0x, + AyppXpX,0/0%, .

We have proved the following:

Theorem 2.2. A vector field X on M belongs to V*(M, N) if and only if,
in terms of local coordinates, it admits a description of form (2.15) with
coefficients Agy, Aoy € F(M).

We can continue in this fashion to determine V7(M, N). For example, for
r = 2, it requires that [8/dx,, [0/0x,., X]] belongs to V(M, N), then requires
that [b,0/0x,, [b,,d/0x,., X]] belongs to V(M, N). The obvious result can be
summed up as follows:

Theorem 2.3. A vector field X on M of the form:

belongs to V"(M, N) if and only if : a) the functions A, vanish to the (r — 1)-st
order on N, and b) the functions A, vanish to the r-th order on N.

We can relate the results to those of Part I concerned with ‘“linearization”.
Define

V' (M,N)[V"*'(M,N) = V;(M,N)
(the subscript “h” indicates “homogeneous”). Then, in those local coordinates,

V:(M, N) is identified as a vector space with the space of vector fields X of
the form:

X = Aaul-uur-l(xl, e axn)xu1 e xu,_la/axa

2.16
( ) + Auul---u,(xla Tty xn)xul e xura/axu .

Let Z = x,0/0x,. Then Z is geometrically the vector field representing
“dilitations” in a direction nomal to N. Further, for X of form (2.16),



20 ROBERT HERMANN
.17 Z,X]1=rX.

Conversely, any X satisfying (2.17) can be written in form (2.16). This deter-
mines the spaces labelled “V7” in § 7 of Part I with the spaces now labelled
“V7(M,N)”, and hence identifies the cohomology groups of K which represent
the obstructions to “linearizing” K, as described in Part I, with the cohomology
group of K determined by the action of space D4(E",E). Now, in turn,
Di(E’, E) may be identified with the space of cross-sections of a vector bundle
over N. Hence we may sum up by saying that the cohomology obstructions are
determined by the representations of K in the space of cross-sections of vector
bundles over N which are associated with the normal vector bundle to N.

3. Lie algebra cohomology associated with
homogeneous vector bundles

As we have seen, computing the “obstruction” to formal linearization of Lie
algebras of vector fields in the neighborhood of an invariant submanifold
reduces to computing the cohomology of the Lie algebra, as determined by the
representation of the Lie algebra on the space of cross-sections of various
vector bundles over the submanifold. We now turn independently of the lineari-
zation question to the following problem.

Suppose that G is a Lie group, and that a maximal rank, onto map n: E— N
determines E as a vector bundle over N. Let us suppose that G acts as a trans-
formation group on both E and N, and that the following conditions are
satisfied :

a)  is an intertwining map for the action of G,

b) G acts transitively on N, i.e., if the isotropy subgroup of G at one point
is a subgroup L, then N is the coset space G/L,

¢) G actslinearly on E, i.e., if p € N, with the fibre z~'(p) = E(p) a vector
space, then g maps E(p) linearly onto E(gp).

To abbreviate the terminology, we will call such an object a homogeneous
vector bundle. For the rest of the section one such object will be fixed. I'(E)
will denote the space of cross-sections of the vector bundle. G and G (the Lie
algebra of G) act linearly on I'(E). For X ¢ G, and + € I'(E), X(+) will denote
the transformation of +» by x. This “Lie derivative” satisfies the following rule:

X)) = XDy + fX()  for e I'(E), fe FIN) .

Let p be the point of N at which the isotropy subgroup of G is L. Let V
denote the vector space E(p) = =~ !(p). The action of G on E determines a linear
action of L on ¥V, and hence a representation of L by linear transformations
on V. As is well-known, this linear representation of L determines the vector
bundle [1]. In fact, if 4 € I'(E), and X e L, then this “linear isotropy represen-
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tation” assigns to y-(p) the vector X(4)(p).

Suppose that X — «(X) is a one-cocycle of G with coefficients in I'(E), i.e.,
w is a linear map: G — I'(E). (For simplicity, we will only consider one-dimen-
sional cohomology since this determines the linear “deformations” with which
we are concerned.) The “cocycle” condition is just

3.1 X((Y)) — Y(eX)) = o(X,Y]) for X,YeG.

Our basic problem is to decide when such an « cobounds, i.e., to determine
when there is an element + ¢ I'(E) such that

(3.2 X)) = o(X) foral XeG.

As the first step to decide this question, we can define an operation of
“restriction to the point p” for 1-cocycles, namely, given «G — I'(E) satisfying
(3.1) we can define w(p): L — n~(p) as follows:

(3.3) o(p)(X) = o(X)(p) for XeL .

Obviously, w(p) is a 1-cocycle of L, with coefficients defined by the linear iso-
tropy representation.

We now ask the following question: Suppose w(p) cobounds. Does o itself
cobound? We will examine this point locally. Choose the following range of
indices and the summation convention:

1<i,j<n=dmN,
1<a,b<m=dimngG,
1<u,v<r=dmzp) .

Suppose (x;) is a coordinate system for N, (X,) is a basis of G, and that
() is a basis for cross-sections of E. Then

(34) [Xa) Xb] = Cachc .

Suppose that

(35) Xa("l’u) = aavu‘pv ’
(3.6 Xy = Bari0]0x; ,
3.7 o(Xo) = TeuVru -

The coefficients in (3.4) to (3.7) are functions on N, and C,;, are constants,
the structure constants of the Lie algebra G.
Let us now express (3.1) in terms of this local data.



22 ROBERT HERMANN

Xb(Tau‘pu) - Xa(rbu‘lf'u) = Xb(ru)‘r,’u + Taua'bvu‘l’v
- Xa.(rbu)‘l’u - Tbuaavu‘l’v ’
o([X,, X)) = Cppe0(X,) = Covelcu¥ru -

(3.1) then takes the form

(3.8) Xb(Ta,v) + Tau®bvu — Xa(Tbv) — Toulavu = Cabcrcv .

Let us now try to solve (3.3). Suppose that we look for  of the form =
futrs. Then (3.3) takes the form

X () + fullavulro = TauVru

or
(3'9) Xa(fv) + fuaavu + Tou -

Note that conditions (3.8) are the compatibility conditions resulting from first
applying X, to both sides of (3.9) and then permuting a and b and substract-
ing. One can thus prove, using the classical methods, the existence of solutions
of (3.9) in a neighborhood of a point p. Further, this solution is unique if its
value at p is prescribed. Let us then summarize as follows:

Theorem 3.1. Suppose w is a 1-cocycle of G with coefficients in I'(E). Let
p be a point of N, such that o(p) of L is the coboundary of an element
V(p) e n7X(p). Then p has a neighborhood U such that w, restricted to U, is
a coboundary.

Now let us attempt to make the argument global. First, suppose that N is
connected, and that w(p) cobounds for one point of N. Then notice that the
set of all points p such that w(p) cobounds is both open and closed, and hence
is all of N.

Thus we can cover N with contractable open sets {U} such that in each U,
o is the coboundary of a 0-cochain, i.e., of an element v, of I'(E;), where
E, denotes the vector bundle E restricted to U. In the intersection U N U’ of
two such open sets, set Yryy. = Yy — Yy.. Then ¢y is a 0-cocycle, i.e.,

(3-10) G(‘I’UU') =0.

Consider now the sheaf of germs of cross-sections of E which satisfy (3.10).
By the existence and uniquness theorem, the stalks of this sheaf are finite
dimensional. Notice that (U, U’) — vy defines a 1-(Cech)-cocycle of N with
coefficients in this sheaf. Now, we have:

Theorem 3.2. Suppose that the first (Cech) cohomology group of N with
real coefficients vanishes. Assume also that N is connected, and that o is a 1-
cocycle of G with coefficients in I'(E) such that w(p) cobounds for one point
p e N. Then o itself cobounds.
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Proof. Our assumption about the first cohomology group implies that the
1-Cech cocycle {;;.} cobounds, i.e., to each U in the covering one can as-
sign an element ;. such that

a) Gyy) =0, b) Yyy = ¥y — Yo = Yy — Yy »

in the intersection U N U’ of of two such open sets. Then v, — 4}, agrees
with ;. — 47, in the intersection U N U’, and hence defines a globally defined
cross-section of E, i.e., a 0-cochain of G with coefficients in I'(E). By con-
dition a), the coboundary of this 0-cochain is  cobounds.

Remark. The general features of this argument are very reminiscent of A4.
Weil’s proof of the de Rham theorem [4] connecting differential form
cohomology and Cech cohomology. Presumably, it is a special case of a theorem
relating Lie algebra cohomology with coefficients determined by sheaf coho-
mology and the action of the Lie algebra on cross-sections of vector bundles.
(See the comments by the referee at the end of this paper.)

We can now present another point of interest.

Theorem 3.3. Suppose that both the first cohomology group of L with
coefficients in the linear isotropy representation and the first Cech cohomology
group of N with real coefficients are finite dimensional (as real vector spaces).
Then HY(G, I'(E)) is finite dimensional.

For the proof, notice that we have defined a “restriction” linear map:
H\(G, I'(E)) — H\(L, = '(p)). We have also defined a homomorphism of the
kernel of this map into H'(N, R). The argument of Theorem 3.2 shows that
this map is one-one, whence the conclusion of the theorem.

This result is of interest for group representation theory. Recall [2] that the
first cohomology group may be considered as the “tangent space” to the
equivalence classes of representation. Theorem 3.2 then reinforces the intuitive
belief that the equivalence classes of representation of a Lie group form a
“finite dimensional” family.
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REFEREE’S COMMENTS ON THE PRECEDING TWO PAPERS

The second paper and part of the first deal with the probrem of linearizing
a Lie group or algebra near an invariant manifold. Some comments are in
order with regards to this problem. Let G be a Lie group acting on a manifold
M and acting transitively on an invariant submanifold N. The problem is
whether the action of G in a tubular neighborhood of N is equivalent to the
induced linear action on the normal bundle of N. Let H be the isotropy group
of a point of N. We have the following:

Lemma. The action of G is equivalent to its normal bundle action if and
only if there exists a submanifold through p transversal to N, which is invariant
under H and on which the action of H is equivalent to a linear action.

Proof. 1If G can be linearized, then the fibre of the linear action of G
provides the desired submarifold through p. Conversely, suppose such a sub-
manifold exists. We are thus given a linear representation of H. Construct the
associated vector bundle over N. We are given a map of a neighborhood of
the origin in the fibre over p of this bundle into M which is equivariant with
respect to the action of H. The action of G then induces a map of a neigh-
borhood of the zero section into M which is equivariant with respect to G.
This then provides the desired linearization. Notice that in this argument we
could replace Lie group by local Lie group and thus by Lie algebra as well.
The important point is that what really counts is the behaviour of H. We
mention two corollaries:

If H is semi-simple, the action of G can always be linearized.

In fact, according to [1] of the first paper, we can linearize H in a whole
neighborhood of p. The tangent space to N is invariant, and has an invariant
complement since H is semi-simple. Thus the hypotheses of the lemma are
satisfied. Another consequence is:

If H has an action near a fix point which cannot be linearized, then we can
construct an M and an N for G which cannot be linearized.

In fact, starting with G and N and the given action of H, just construct the
associated bundle over N.

Some more comments about the second paper: The relationship between the
cohomology of the Lie algebra of G with values in the sections of the homo-
geneous vector bundle and the cohomology of the Lie algebra of H with values
in the fiber is well known. This is, for example, the content of equation (2a)
in Proposition 4.2 of H. Cartan and S. Eilenberg, Homological algebra,
Princeton University Press, Princeton, 1956, p. 275.





