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FORMAL LINEARIZATION OF VECTOR FIELDS
AND RELATED COHOMOLOGY. I

ROBERT HERMANN

1. Introduction

In [5] it was shown that a semi-simple Lie algebra of vector fields could be
linearized formally (i.e., in terms of formal power series) in the neighborhood
of an invariant point. Guillemin and Steinberg showed [1] that, in the real
analytic case, the linearization could in fact be carried out by a real analytic
change of coordinates.

Now, there are three directions in which it would be desirable to generalize
the argument. In the first, one would want to consider linearization of non-
semisimple Lie algebra of vector fields, around an invariant point. In the
second, one would want to discuss linearizations within a subgroup of the
group of diίϊeomorphisms of the manifold. In the third, one would want to
consider linearizations in the neighborhood of invariant submanijolds [6].

Unfortunately, the ingenious arguments of Guillemin and Steinberg are not
well-adapted to these more general, but interesting, problems. This motivates
us to investigate in more detail the original cohomology arguments given in
[5], and see what light they can shed on these more general problems. In fact,
we will show that the deeper reason for the appearance of the Lie algebra
cohomology in this problem is the connection between Lie algebra cohomology
theory and the theory of "deformations" of Lie algebra homomorphisms.

Note added in January 1973. The two parts of this paper were written over
five years ago. Its publication has been held up by the first referee, who appar-
ently felt that his comments (presented at the end of Part II) precluded its
publication. A later referee has finally suggested that it be printed together
with the comments by the first referee.

My original motivation for this work was certain ideas in elementary particle
physics, particularly the problem of "kinematic singularities" in the scattering
amplitude of a many-particle process. In order to not complicate the exposi-
tion, which was diffuse enough as it was, I did not refer to this point. However,
it should be noted that the case where the group is either an infinite dimen-
sional one (such as the "gauge" symmetry groups) or does not act transitively
on the invariant submanifold is relevant for these potential physical applications.
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2 ROBERT HERMANN

The referee's comments are not routinely applicable to these cases, and I feel
that it is still worthwhile to present a general geometric formalism. In the
meantime, the important work by Gelfand and Fuks (Cohomology of the Lie
algebra of tangential vector fields of a smooth manifold, Functional Anal.
Appl. 3 (1969) 194-210) has appeared and been developed by numerous
geometers. Their ideas make it much more feasible now to contemplate the
explicit calculation of the cohomology groups defined in this paper which are
obstructions to linearization. In certain cases, I believe that these cohomology
groups would be interesting physical invariants.

2. Linearization theorems for filtered Lie algebras

Let L be a Lie algebra. A filtration on L is defined by a sequence L\ L2,
of subalgebras of L such that:

(2.1) L = V D L 2 D

(2.2) [Lr, Ls] C Z/+5-1 for r, s > 1 .

See [2] for a description of the general properties of filtered Lie algebras.
The following problem will be discussed in this section: Let K be a given

subalgebra of L. Can one find a n Z e l such that

(2.3) Exp (AdX)(K) Π V = (0)?

In fact, we will be considering a more restrictive problem here we will attempt
to exhibit X formally (i.e., without discussion of the convergence) as a limit

. . . Exp (Ad X2) Exp (Ad Xx)

where (Xr) is a sequence of elements of L, with each Xr in Lr.
Now L2 is an ideal in L. Suppose that the homomorphism L —> V1 = L/L2

splits, i.e., there is a subalgebra H of L such that

£, = Z,2 + H , H Γi L2 = (0) .

(We will not consider the more general case in this paper.) Let φι be the pro-
jection map L-*H. For r > 1, define Vr = Lr/Lr~\ and let πr be the pro-
jection map: IS —> Vr. Notice that φλ is a homomorphism of L into H. Notice
also that [K, Lr] C U for each r > 1, hence Ad K passes to the quotient to
define a representation, denoted by φr9 of K by linear transformations in Vr.

Let us begin the process of "linearizing" K. For Y e K define:

ω2(Y) = πlY - φλ(

Consider ω2: K —> V2 as a 1-cochain of K with respect to the representation φ2
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of K in V2. (For the notations of Lie algebra cohomology theory which we use,
see [4].)

Lemma 2.1. dω2 = 0, i.e., ω2 is a 1-cocycle.
Proof. For YuY2XeK

dω2(Yu Y2) = φάYOMYJ) - φ2(Y2){ω2(Yλ)) - ωJSXu YJ)

x, r j - ΦAY» yj))

lt Y2 - φ,(Y2)] - [Γ2> Y, - φ,(YJ

- [Y1,Y2] + ^(Yύ

ΦiiYO, Y* - ΦAYΰH) = 0 ,

since both Y, - φtfd and Y2 - ί42(Y2) are in L\ and \L\ V) c V.
The cohomology class in H'iφJ determined by ω2 is the first obstruction to

linearizing K. Suppose it is zero, i.e., there is an element X2 € V such that

d πlXύ =ω2, or ω2(Y) = [φ2(Y), π2(X2)] - π2([Y, X2])

f or Y e K .
Then

Exp (AdZ2)(Y) = Y + [Z2, Y] + -L[Xt, [X2, Y]]

+ ••• +ω2(Exp(AdZ2)(Y))

= π2 (Exp (Ad Z2)(Y) - φx (Exp (Ad X2)(Y))

+ [Z2, Y] + -A-[Λf2, [Z2, Y]] + φ,(

πt(lXt, Π) = 0 ,

i.e.,

(2.4) Exp (Ad Z2)(Y) - ^,(Γ) e £ 3 for all Y € iΓ .

Now replace Kby K2 = Exp (AdZ2)(AΓ). If (2.4) is satisfied, then we have

(2.5) Y - φSX) e L3 for Γ s F .

Define ω3(Y) = π3(Y - φ
A similar reasoning shows that ω3, when interpreted as a 1-cochain defined

by the representation φ3, is a 1-cocyle. Its cohomology class is the second
obstruction to linearizing K. If it is zero, there is an element X3 € L,3 so that

ωjLY) = πi(lY,XiD for Y e * 2 .
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Define K3 = Exp (AdX3)(K2).
Notice that, since Xz e Z,3,

0 = ω2(Y) = ω2 (Exp (Ad X3)(Y)) for Y <s K2 .

A similar calculation then shows that

ω3(K3) = 0 .

We can now continue the process, obtaining a sequence K = A"1, ϋΓ2, 2Γ3 of
of subalgebras of L.

Thus we have proved:
Theorem 2.1. // H\φr) = 0 for r = 2,3, - --, there is a sequence K1 =

K, K2, of subalgebras of L. Each Kr is conjugate to Kr~ι within the sub-
group Exp Ad U of the group of inner automorphisms of L. Also, for Y € Kr,

Y - φ,(Y) e L'*1 .

Notice that we will have succeeded in "linearizing" K, i.e., showing that it
is conjugate to a subalgebra of H, if

(2.6) Lr — 0 for r sufficiently large.

Another hypothesis which will guarantee this linearization is that the "infinite
product" Exp (Ad X3) Exp (Ad X2) converges to an element of the group
on inner automorphisms of L. However, there is another more general and
interesting condition which may be satisfied. Suppose that the "limit" (as
explained in [3, Chapter 11]) of the sequence of subalgebras K\K2, is a
subalgebra 2Γ°°. Then

Y - φx(χ) = lim Yr - φ,(Yr) = 0 ,
r-*oo

i.e., the limit algebra K°° is a subalgebra of H, and hence is "linearized". Now,
as explained in [4], there is a close relation between this idea of limit of sub-
algebras, the Inonu-Wigner "contraction" idea, and the idea of "deformation"
of subalgebra, as studied by Kodaira-Spencer, Gerstenhaber, and Nijenhuis-
Richardson. Thus we may conjecture that (if the cohomology obstructions
vanish) even if the subalgebra itself is not linearizable, one of its contractions is.

3. Construction of filtered Lie algebras

Let G be a Lie algebra, and L a subalgebra. We define subspaces Lr, r =
1,2, ., of L with

(3.1) L = Lι ID L2 ZD V .

as follows:
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V consists of the elements X e L such that [X, G] C L.
V consists of the elements l e i such that [G, [G,X]] C L.
In general, define IS by induction as the set of elements X e Lr~ι such that

[G,X] C Z / " 1 .

Lemma 3.1. [Lr, Ls] C Lr+S~\ i.e., the sequence (3.1) forms a filtered Lie
algebra.

Proof. Proceed by induction on the total degree r + s. Suppose Y eG.
Then

[Y, [IS, Ls] C [Y, Z/], L ] + \U, [Y, L5]]

C [Z/-1,//] + [ I M -1]

C Lr+S~2 , by induction hypothesis.

This shows that [G, [L r,L s]] C Lr+S~2, which shows that [Lr,Ls] C L r+*"1.
Let G and L be connected Lie groups whose Lie algebras are G and L.

Lemma 3.2. Suppose that L has no nonzero ideals which are also ideals in
G. (Geometrically, this means that G acts almost effectively on G/L, i.e., the
set of elements g <~G which acts as the identity on G/L as discrete.) If Lr~ι Φ
0, then Lrl Φ V\

Proof. If Lrl = Lr, then [G, Lr~ι] c Lr~\ i.e., U~ι is an ideal of G.
Now let M be the coset space G/L. The action of G on M defines, as usual

in Lie group theory, an infinitesimal action of G, i.e., a homomorphism of G
into the Lie algebra (under Jacobi bracket) V(M) of vector fields on M. Each
element X eG then determines a vector field, i.e., an element of V(M), which
we also denote by X. Let p0 be the identity coset. Then

X(p0) = 0 for X € L .

Let Vr, r = 1, 2, , be the set of elements X € V(M) whose coefficients all
vanish to at least the r-th order at pQ.

Lemma 3.3. U c Vr, for all r.
Proof. Let (x19 . . . , * „ ) = * be a coordinate system for M valid in a

neighborhood of p0 with ^(/?0) = 0. Proceed by induction on r. Since Lr C
L r - \ we know that U c F7""1.

Let X e Lr. About p0, it can be written in the form

X = ^9/9*! + + And/dxn .

The coefficients ^413 , An vanish to (r — l)-st order at x = 0. Since G acts
transitively on M, the coordinate vector fields d/dxx, , d/9xw can be, in a
neighborhood of p0, written in terms of vector fields of G, i.e.,

d/dx, = fxXx + + fmXm , with X, ,Xm e G .
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Now [X19 X]9'"9 [Xm, X] e U~\ since X e U. Hence also

[d/dx1,X]eIt~1 .

But this equals also

dAλ 9 . . dAn 3
T" ' ~Γ ~ 9

which must vanish to order r — 1 at JC = 0. A similar statement is true for
d/dx2, ,d/dxn. This implies that the coefficients A19 ,An vanish at least
to order r at x = 0, i.e., AT 6 Vr. q.e.d.

Conversely, if G is a Lie algebra of vector fields on a manifold M, and L is
the isotropy subalgebra of G at a point p 0 € M, then Lr — Vr Π L defines a
filtration of L, to which we can apply the conjugacy arguments of § 2, and
deduce, from the abstract theorem of § 2, the results that under certain condi-
tions Lie algebras of vector fields K can be linearized by a change of coordinates
(perhaps, if G is infinite dimensional, requiring a formal power series defini-
tion, whose convergence is still unknown) about a common zero point for the
elements of K. This returns us to the treatment given in [5].

As an example, suppose that K is one-dimensional, generated by a single
element X. The "cohomology groups" take a very simple form, of course:
Suppose φ is a representation of K on a vector space V. Let ω: K —> V be a
1-cochain. It is automatically a 1-cocycle, since K is a one-dimensional. It
cobounds if and only if there is a vector v € V such that

ω{X) = φ(X)(v) ,

i.e., the first cohomology group is zero if and only if φ(X) maps V onto V, so
that if V is finite dimensional, φ(X) must be one-one.

For example, consider the case where G is the Lie algebra V(M) itself, and L
is the subalgebra of those vector fields which vanish at pQ. Suppose X e L is of
the form

X = A1d/dx1 + + And/dxn

with ^ ( 0 ) = 0 for i = 1, . ., n.
Suppose that Taylor expansion of At about x = 0 is of the form:

At(x) = Σ ZijXid/tej +

It is readily verified that Ad Z acting in Vr\Vr~ι is one-one if the matrix (X^) is
diagonalizable, and if its eigenvalues are nonzero. The problem of linearization
of AT by a change of variable is, of course, a classical problem first considered
by Poincare, and brought to definitive form by S. Sternberg (see [8], and the
references quoted there).
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4. Filtrations defined by submanifolds

First, we will present an algebraic construction, then explain how it applies
to a problem (but not the most general) of "linearizing" a Lie algebra of vector
fields near an invariant submanifold.

Let F be an algebra over the real numbers, whose elements we denote by
/, g, etc. Let V be the Lie algebra of derivations of F. Elements of V will be
denoted by X, Y, and the action of X e V and / e F by X(f) e F. Let F1 be a
subalgebra of F, and F 1 the subalgebra of V consisting of the elements
X e V(F) such that

X(Fι) C F1 .

Define Fr as the subalgebra of polynomials of degree > r in the elements of
F1. Then

Fr'Fs C Fr+S

Define Vr = {XeV: X(Fι) c Fr}. Then

Vr(F°) C Fr+S~ι .

Now consider X e Vr, Y e Vs, f e F\

[X, Y](f) = X(Y(f)) - Y(X(f)) .

Hence we have proved:
Lemma 4.1. [Fr, FS](P) c Fr+s+t~1.
Lemma 4.2. [F% Vs] C F ^ "1.
Thus F 1 Z) F 2 Z) forms a filtered Lie algebra to which we can apply the

general procedure given in § 2.
The geometric situation which we have in mind can be described as follows:

Let M be a manifold, and F(=F(M)) the algebra of C°° real-valued functions.
Then V( = V(M)) is the Lie algebra of vector fields on M. Suppose F1 is a
subalgebra of F, and N is a submanifold of M defined as the set of points of
M where all the functions of F1 vanish. Then Vr consists of vector fields which
are tangent to N to the r-th order, but does not contain all such vector fields
(unless N reduces to a single point). To see what is involved in this point,
suppose that M = R\ the Euclidean plane, with x, y the Euclidean coordinate
functions. Suppose that F1 is the subalgebra of F generated by x, so that N is
the plane x = 0. Suppose / e Fr. Then X(x) = arx

r + , i.e.,

X = (arχr + ...)d/dx + Bd/dy ,

where B is any function C(x, y), and the coefficients ar, are real numbers.
Of course, this is not the most general form of vector field which is tangent to
N to the r-th order, since it omits those of the type:
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X = (ar(y)xr + 03/3* +

but these remarks do give us one type of linearization theorem. For example,
if we write

X = xra(x,y)d/dx + Bd/dy ,

with α(0, y) Φ 0, then we can define

X' = χ/a = x'd/dx + B'd/dy .

The integral curves of X and Xr only differ by a change in parameterization,
and we can apply the general theory. A similar remark applies to a single
vector field which is tangent to a hypersurface in a general manifold M.

5. Contraction and deformation of Lie algebra homomorphisms

We temporarily leave the problem of linearizing a Lie algebra of vector fields
near an invariant submanifold in order to treat a more abstract problem which
will be shown later to be relevant.

Suppose K and L are Lie algebras, and φ, φ' are homomorphisms: K —> L.
φ and φr are said to be related by a deformation if there is a one-parameter
family λ —> φλ of homomorphisms: K-* L such that

(a) φ0 = φ , φ^ — φ'^ (b) 0,, depends analytically on Λ.

Then we can form the Taylor expansion:

φλ(x) = f; tf/jt)^ , for X € IT .

Let a be the following representation of K by linear transformation on L:

= [φ(X), Y] , for Z € 2Γ, Y 6 L .

Then the 0/s are 1-cochains of ϋΓ with coefficients in £ . The relation of the
corresponding cohomology groups and the "triviality" of the deformation has
been investigated in [7] and [4, IV].

Recall that the deformation λ—*φλ is said to be trivial if there is a one-
parameter family λ —> Aλ of automorphisms of L such that

(a) φλ(X) = Aλφ(X) , for X e K and all Λ,

(b) Aλ depends smoothly on λ.

Now (modelling our terminology on that used by Inonu and Wigner in a similar
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case, the deformation theory of Lie algebra structures) let us say that φ is a
contraction of φ' if

(a) there is a one-parameter family of homomorphisms φλ: K-*L such
that φQ = φ,φχ = φ',

(b) λ—>φλ depends continuously on λ for 0 < λ < 1,
(c) 0; depends analytically on Λ for λ Φ 0.
Let us present a set-up which leads to such notions in a very natural way.

Suppose in addition that F is a vector space, and L is a Lie algebra of linear
transformation on F, with the bracket in L given by commutator of liner trans-
formations. Thus φr are representations of K by linear transformations on F.
Suppose that λ —> Bλ is a one-parameter family of linear transformations: F -» F
such that

(a) # , depends analytically on λ for all Λ,
(b) Bj1 exists only for ^ φ 0,
(c) ,4,(7) - BλYB? for Y € L.

In this case, (5.1) takes the form

(5.2) φλ(X) = Bλφ{X)B~λ

1 for X e K .

Thus we have the possibility of the singularity in Bj1 at λ = 0 generating non-
trivial deformations between φ and φf.

Before proceeding further with the general algebraic theory, let us turn to
the geometric situation which motivates our work, the linearization problem
for Lie algebras of vector fields near invariant submanifolds.

6. The linearization problem near an invariant submanifold

Suppose M is a manifold, F = F(M) is the ring of C°° real-valued functions
on M, and V(M) is the derivations of F(M), i.e., the Lie algebra of vector
fields on M. Let iVbea submanifold of M, and K a subalgebra of V(M) which
is tangent to N. Since we will only be working locally for the moment, suppose
(Xί), 1 </,/,••• < m = dim M, is a coordinate system for M such that

xu = 0 , n + 1 < u, v, < m dim N = n

defines N. (Adopt the summation convention.) Suppose that λ —• Bλ is the
following one-parameter family of linear transformations:

F(M) -> F(M) ,

**Λ//v^U ' * " J X m) = 7v^l5 ' ' ' 9 X"ni ΛJCΛ + 1 , , λXm) .

Let X e K. Suppose

Suppose φλ is given by (5.2). Then
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(6.1) φx(X)(Xi) = BtXBTKxt) = \\.^ ί [
lB2(/<) for 1 < i < n .

Suppose now that X is tangent to N, i.e.,

/«(*!, •••,*„,()) = 0 .

Then fu admits a Taylor expansion of the form:

Ju\X\> * * 5 -*-m/ = = JwυV*i5 * * * ? Xn)Xv ~Γ 7uvw\Xl9 * * * ? XnjXvXw ~Γ '

* ) ^ n ) ^ ΐ "r ΛJuvw\Xi> ' * * ? XmJ^v^w ~Γ

J = fa(x19 - " , x n , λ x n + 1 , ., λ r j , 1 <a<n .

We see that φλ, considered as a homomorphism: K—> F(M), is perfectly
analytic at λ = 0 despite the fact that the transformation Bϊ1 used to define it
has a pole at λ = 0. Further,

γQxΓ*-) ~~~ \*^Ί? * * J 719 ^J"^V I i t t \ ^Ί5 * * 5 71? ^*^ 5

(6.2) (M^ (M^ uXa

f or Z e K .

The subalgebra 0OOO is then the linearization of L. Linearization" of IT itself
is equivalent to proving triviality of the deformation in the neighborhood of
λ = 0, a problem which is solved, in the formal sense at least, by the
cohomology theory of [8] and [4, IV]. Now we turn to the task of freeing this
argument from local coordinate systems, thus enabling one to apply to it situa-
tions in differential topology, partial differential equations and continuum
mechanics. (In the last discipline, one will be interested in seeing how the
argument goes for infinite dimensional manifolds.)

Let N be a submanifold of M, V(M, N) be the Lie algebra of vector fields
on M which are tangent to N, and A" be a subalgebra of V(M,N). Suppose
that λ —> βλ is a one-parameter family of mappings of M —> M such that

(a) βλ is a diffeomorphism for λ > 0, and depends smoothly on λ for λ > 0.
(b) βλ(p) = piorpeN.
(c) For each p e M , the curve λ —> βλ(p) proceeds toward N smoothly and

transversally as λ —• 0. Precisely, βQ(p) has a neighborhood with a coordinate
system (JC15 , xm) having the properties described above.

Now we can define Bλ: F(M) -^ F(M) as follows:

Bλ(f) = βf(f) for / e F(M), i.e.,

B(f)(p) = Kβλ(p)) for p e M .

Define φλ: K-* V(M,N) as follows:
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φλ(X)(ί) = BλXBj\j) for / € F(M), X e K .

Then the local argument given above can be used to show that φλ(X) is well
defined and smooth as λ —> 0. φQ(X) can be considered as the "linearization"
of the vector field X, relative to the homotopy λ—>βxused to retractMintoN.

What does "linearization" of K mean? Obviously, that the "deformation"
φλ of homomorphisms: K-> V(M, N) is "trivial" in the neighborhood of λ = 0.
Then the construction of cohomology obstructions to linearization follows from
the general theory.

One might also pose a more restricted linearization problem which also has
geometric interest. Suppose that L is a given Lie algebra of vector fields on N.
Denote by F(M, N9 L) the set of all vector fields X on M such that

a) X is tangent to N, b) X restricted to N belongs to L.

Then V(M,N,L) is a subalgebra of V(M,N). Suppose K c V(M,N) is
given so that

Kd V(M,N,L) .

Notice then that

V(M,N,L) .

Thus we may say that to linearize K within L is to prove the triviality of the
deformation φλ in the neighborhood of λ = 0, considering φλ is a
homomorphism: K—» V(M,N,L).

7. Cohomology invariants for homomorphism deformations

Let us now return to the abstract point of view of § 5. Suppose that K and
L are Lie algebras, and λ —> φλ is a one-parameter family of homomorphisms:
K —> L which can be expanded in a formal power series in the parameter λ:

(7.1) φλ(X) = φQ(X) + Σ θj{XW for X e K .

Let φ' be the following representation of K by operators in L:

(7.2) ?/(X)(y) = W * ) , Π for Y € L .

Then the 0̂  are 1-cochain of K determined by the representation φf. The fact
that each φλ is a representation translates into the condition:

(7.3)
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where a is the "cup product" on 1-cochain induced by the Lie algebras struc-
ture on L [4, IV]. In particular, θλ is a 1-cocycle.

Let us now consider deformations of a special form, namely,

(7.4) φλ(X) = Aλψl(X) for X e K ,

where λ —> ^ is a one-parameter family of automorphisms of Z, (for λ Φ 0),
of the form

(7.5) ^(X) = exp ((log X) Ad Z)(Z) ,

where Z is a fixed element of L. (The geometric motivation for this assumption
is explained in § 6.) Think of L as V(M, N), IT as a subalgebra of V(M, N), Z
as a vector field on a tubular neighborhood which, in local coordinates, has
the form

Let us now compare (7.5) with (7.1). For X € K,

ψQ(X) = lim exp ((log X) Ad Z)(Ψι(X)) ,

(7.6) Θ^X) = -A
dλ

= Uml[

This gives the relations:

(7.7)

(7.8) 0ιQO = [Z, 0,(X)] for all X 6 iΓ .

Set:

(7.9) ^ = {Y6L:[Z,y] = 0 " - l ) y } for y = 1, 2

Then (7.7), (7.8), (7.10), (7.9) imply respectively:

(7.10) ^(JO c V1 ,

(7.11) Θ,{K) C V2 ,

(7.12) fo,(tf), vq C K' , /(AΓ)(F0 C Vi ,

(7.13) [F-1', Vk] C F ^ * " 1 .
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Let ψj be the representation of K obtained by restricting φ'(k) to Vj+\ and
ωγ be the map: K —> V2 defined as follows:

(7.14) ωx(X) = θλ(X) for X e K .

Then ωι is a 1-cocycle of K with coefficients in the representation φ1. Let us
suppose that it cobounds, i.e., there is a Y € V2 such that

9 ) , Y] for all X <=

Then we can modify φλ as follows:

φλ{X) -> exp (Ad λY){φλ(X)) =

Thus following the pattern of [5] (and notice that this is merely an algebraic
version of the argument of [5]), the new deformation has a Taylor's series of
the form

φ'λ{X) = ψQ(X) + λΨ2(X) + ,

with Θ'2(K) C F 2 .
The argument can be repeated now—we see that the "obstructions" to the

formal "linearization" of φ(K), i.e., an equivalence under a formal inner
automorphism of L, are the cohomology groups Hλ{K, <pj), j = 1,2, . We
can state this as follows:

Theorem 7.1. Suppose H\K, φj) = 0 for j = 1, 2, , and let L be the
group of inner automorphisms of L. There is then a sequence Z1? Z2, of
elements of L with lj 6 exp (Vj+1) such that formally, <pQ(X) = lim Ad ln

If each Vs is finite dimensional, and Kh semisimple, then Theorem 7.1 is
an immediately useful result, since we know that the first cohomology groups
automatically vanish. If L = V(M,N), each Vj is not finite dimensional,
however. We will investigate the geometric meaning of the cohomology groups
in the second part of this paper.
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