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RELATIVE CHERN-LASHOF THEOREMS

NATHANIEL GROSSMAN

We assign to each compact connected manifold with boundary smoothly
embedded in a Euclidean space a number, the total absolute curvature, which
is positive and at least 1. We prove that the total absolute curvature can equal
1 only when the embedding is onto a closed convex body of a Euclidean sub-
space of the same dimension. If the total absolute curvature is less than 2, we
show that the manifold is contractible and its boundary is a homology sphere.
The manifold is difϊeomorphic to a closed disc, if its dimension is at least 6,
and it as well as its boundary is simply connected. We obtain restrictions on
the topology, if the total absolute curvature is less than 5/2. Finally we con-
sider a surface in three-space, and relate the total absolute curvature to the
knottedness of the boundary. There is a suggestion of a new type of "tight"
embedding.

1. Definition of total curvature

Let M be an rc-dimensional connected compact manifold with boundary dM
smoothly embedded into Euclidean (n + Λ0-space En+N. We do not assume
dM to be connected, but always require it nonempty. We will assign to M a
total absolute curvature κ(M) which will always have value at least 1.

Suppose all the cut points of M and of dM in En+N lie at distance from M
greater than ε. Let Mε be the set of points of En+N at distance ε from M. The
unit normal bundle v of M is well-defined. We adjoin to χ> those unit vectors
normal to dM whose inner product with the outer normal of dM relative to M
is nonnegative, calling the totality of such vectors together with v the augmented
unit normal bundle of M, denoted by y+. (Cf. the constructions used by White
[9], [10].) Then Mε = {p + εe\p <= M and e <= p+}. Our cut point hypothesis
implies Mε is a submanifold of En+N of class C1 and, in fact, of class C°° ex-
cept on the set A = {p + εe\p e dM and e is orthogonal to the normal of dM
relative to M}. The measure of A is zero. There is a map π: Mε—* M given
by π(p + εe) = p. Obviously, Mε is a closed orientable hypersurface of En+N

whose interior is distinguished by containing M.

By Gauss' lemma, the exterior normal to Mε at p + εe is e. We obtain a
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Gauss map Γ: Mε-+ S71™-1 by Γ(p + εe) = e. Since Me and S71^'1 have the
same dimension, we obtain a scalar function G(p, e), the Lipschitz-Killing
curvature, as a Radon-Nikodym derivative by setting Γ*dSn+N~1 = G(p, e)dMε,
unless p + εe € A when we set G(p, e) = 0. Now we define the fota/ absolute
curvature of M by

*(Λί) - — A — f Γ I G(p, e) idS^

+ — L _ Γ f \G(p,e)\dH%ddM .

In this formula, S^"1 = TΓ" 1 ^) is an (N — l)-sphere of radius e if p € IntM,
Hp = π~\p) is a hemi-Λf-sphere of radius ε if p e dM, dW denotes the
Riemannian volume element of a Riemannian manifold W, and the quantity
cn+N-i is the volume of the unit Sn+N~1 in En+N. Our definition is in analogy
with, but not in strict correspondence with, the definition of total absolute
curvature given by Chern and Lashof [3] for the case of a compact manifold
without boundary.

Under the influence of [4] it has become customary to normalize the total
absolute curvature defined by Chern and Lashof by dividing it by the volume
of an appropriate unit sphere. If L is a compact n-manifold without boundary
embedded in En+N, we denote its total absolute curvature in the sense of Chern
and Lashof (suitably normalized) by r(L). Then our total absolute curvature
is connected with that of Chern and Lashof by the relation 2χ(M) = τ(Mε).

B. Y. Chen [2] has defined a total absolute curvature function TA for em-
beddings of manifolds with boundary. It is given, in fact, by the first summand
of our definition, but his definition does not seem capable of yielding theorems
such as we have found.

A second form for κ(M) is useful. As a hyper surf ace in En+N, Mε has princi-
pal curvatures λ19 , λn+N_λ at p + εe relative to the exterior normal e, ex-
cept on the null set A. Then

Λ ( M ) = — L _ C\λι... λn+N.1\dMε
Cn + N-1 *L

A dilation of En+N with factor δ takes Mε onto a manifold where each λ is
replaced by λ/δ, and dMε by δn+N~1dMε. The cut locus moves to distance from
M greater than ε<5, and the integral defining κ(M) remains invariant: it is posi-
tive and homogeneous of degree zero. By choosing δ sufficiently large, say
δ>2/ε, we can insure that the cut locus lies at distance from M greater than 1.
It is therefore no loss of generality to assume from this point on that ε = 1
and to deal with Mx.



RELATIVE CHERN-LASHOF THEOREMS 609

There is yet another form for κ(M) which is useful. Given any e e Sn+N~\
there is a p e M1 with Γ(p + e) = e, so that Γ is surjective. (We may use the
standard argument of "bringing a plane in from infinity", perhaps first used
by H. Hopf.) If we denote by m(e) the number of points in Γ~\e) c M1 (finite
for almost all e by Sard's theorem) well-known arguments [3] lead to a third
expression for the total absolute curvature:

tc(M) = — - — f mdSn-— f
N-l% + N_1

2. Minimum total absolute curvature

We have just observed that m(e) > 1 for all e e Sn+N~1. Therefore κ(M) > 1
always.

Theorem 1. κ(M) = 1 // and only if there is an En in En+N into which M
is embedded as a closed convex body.

Proof. Suppose tc(M) = 1. Then τ(Mx) = 2, so Mx is a convex hyper-
surface in En+N by [3, Theorem 4]. Of course we can also make the same
statement about each Me, 0 < ε < 1. Because the open sets IntMe are also
convex and

M = (Ί Int Mε ,

we find that M is a convex subset of En+N. The conclusion of Theorem 1 fol-
lows easily by a dimensional argument.

The following argument also leads to the conclusion starting from only the
convexity of Mλ.

Let p e IntM, e e pp. Denote the principal curvatures of M at p in the
direction e by μλ(e), , μn(e). An easy calculation shows the principal curva-
tures of Mλ at p + e in the direction e to be

H p + e)= \μt(e)[l + μtie)]'1 , 1 < i < n ,
1 U , tt + i < ; < t t + N — l .

Since Mλ is convex, ^(p + e) > 0, entailing μt(e) > 0, for 1 < i < n. Because
μt( — e) = —μi(e), the principal curvatures of Mx at p — e in the direction of
the outer normal — e are

The convexity of M1 entails —μ^e) > Ofor 1 < / < n. (We have twice used
the cut locus hypothesis in the form \μi(e)\ < 1.) Therefore μt{e) — 0 for all
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e 6 v and 1 < i < n, so M is totally geodesic. We conclude M lies in some
En of En+N with Int M open in En and dM a hypersurface of En.

Since Mλ is convex in En, M2 = Mx Π En is convex in En. Since M2 is the
outer parallel surface to dM at distance 1, it is easy to see that dM is convex
(and, of course, connected).

Conversely, if M is a closed convex body in an En of En+N, it is quite easy
to show m(e) = 1 except on a set of measure zero in Sn+N~\ so κ(M) = 1.

3. Total absolute curvature close to minimum

Let L be a submanifold of En+N, and let β(L) denote the sum of the rational
Betti numbers of L. It is well-known [4] that τ(L) > β(L). We have therefore
the following lemma.

Lemma 1. κ(M) > ±β(Mλ).
Lemma 2. Let L be a closed hypersurface of a Euclidean space with

τ(L) < 4. Then L is diffeomorphic to a sphere.
Proof. Because τ(L) < 4, there is a smooth real-valued function on L with

less than 4 critical points, all nondegenerate. If the function has two critical
points, then L is homeomorphic to a sphere. It follows that L is diffeomorphic
to the standard sphere: if dimL < 3, by classical results; if dimL = 4, by
a theorem of Cerf [1]; if dimL > 5, because L embeds as a hypersurface. It
cannot happen that the function has three critical points, for then L would be
a manifold like a projective plane, studied by Eells and Kuiper [5], and no such
manifold embeds as a hypersurface into a Euclidean space.

Lemma 3. Let κ(M) < 2. Then M is contractible.
Proof. We are assuming, in fact, that τ{M^) < 4, so M1 is (C1-) diffeomor-

phic to a hypersphere in En+N by Lemma 2. The complement of Mλ has two
open components, the inner component Jo containing M. Clearly M is a strong
deformation retract of Jo. Since Mλ is of class C1, one form of the differentiate
Schoenflies theorem [8, Theorem 3.1] shows that Jo is contractible to a point.
It follows that M itself is contractible.

Theorem 2. Let κ(M) < 2. Then dM is an integral homology sphere (and,
in particular, has one component if n > 2).

Proof. According to the Poincare duality theorem [6, Theorem 7.5],
Hk(M, dM) is isomorphic to Hn~k(M) for all k. By Lemma 3, M is contractible.
The conclusion follows from elementary homology arguments, q.e.d.

The low dimensional cases of Theorem 2 deserve some comment. The case
n = 1 is trivial, M being a closed interval. In case n = 2, dM must be Sι and
M the 2-disc D2, since we know from the ancient homology theory of surfaces
that no other surface bounded by S1 can have the homology of a point. The
nature of M in dimension 3 seems to be tied up with the Poincare conjecture
and in dimension 4 with the "4-Disc conjecture" [6, p. 113].
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There are various ways of characterizing the closed n-disc Dn amongst
manifolds with boundary, starting from the Λ-cobordism theorem. Here is one
example [6, p. 108].

Proposition A. Suppose Wn is a compact simply connected smooth
n-manifold, n > 6, with a simply connected boundary. Then the following
four assertions are equivalent:

(1) Wn is diβeomorphic to Dn,
(2) Wn is homeomorphic to Dn,
(3) Wn is contractible,
(4) Wn has the integral homology of a point.
If we are willing to make simple topological assumptions on M and dM, we

may invoke the Λ-cobordism theorem.
Theorem 3. Suppose M is a compact simply connected n-manifold, n>6,

with simply connected boundary, smoothly embedded in a Euclidean space.
Suppose κ(M) < 2. Then M is diβeomorphic to Dn.

Proof. By Lemma 3, M is contractible, so fulfills assertion (3) of Proposi-
tion A. The conclusion of the theorem is the equivalent assertion (1).

4. Stretching the limits a bit more

If we make no hypotheses on the homology of Mί9 we can obtain a relation
amongst the Euler characteristics of M19 M, and dM. There is a Mayer-Vietoris
decomposition Mλ = Xλ U X2, where Xλ = {p + e\p e M, e e %>} and X2 =
{π~ι(p)\p € dM}. The subspaces X19 X2, and X1 Π X2 are fiber bundles whose
base and fiber are, respectively, M and SN~\ dM and DN, and dM and SN~K
The Mayer-Vietoris relation for Euler characteristics gives

χ(Af,) + x(X, Π X2) = χ(XJ + χ(X2) .

Using the product relation for Euler characteristics in a bundle, we obtain

χ{Mλ) + (-ir-^χ

Because the Euler characteristic of a closed odd-dimensional manifold is zero,
we have the following relations.

Lemma 4. (a) Suppose N even. Then χ(Mj) = χ(dM). (b) Suppose N odd
and n even. Then χ(Mx) = 2χ(M).

The next result is a simple consequence of Lemmas 4, 1, and the obvious
inequality I χ(L) I < β(L).

Theorem 4. Suppose κ(M) < r. Then

(a) |χ(3M)| < Ir if N is even,
(b) Iχ(M) I < r if N is odd and n is even.
Now we stretch the bounds on κ(M) a little past the limit allowed in Theo-

rems 2 and 3, and sharpen the conclusion of Theorem 4.
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Theorem 5. Suppose κ(M) < 5/2. (a) // N is even, then χidM) = 0, 2,
or 4. (b) // N is odd and n is even, then χ(M) = 0, 1, or 2.

Proof. Since κ(M) < 5/2, we have r(Mx) < 5, so that β(Mx) = 2, 3, or 4.
We may exclude β(Md = 3 for reasons stated in the proof of Lemma 2. If
β(Mλ) = 2, then χiM,) = 0 or 2.

We need only analyze ^(Mj) = 4 further. The Betti numbers of Mλ in
dimensions 0 and n + N — 1 are 1, the other Betti numbers summing to 2 if
/3(Mt) = 4. By Poincare duality, either (i) n + N — 1 is even and the Betti
number in dimension ^(n + N — 1) is 2, all others being 0, or (ii) there is a
d<n + N — 1 — d with Betti numbers 1 in dimensions d and n + N — 1 — d
and all others 0. In case (i), χίMj) = 0 or 4 according as n + N = 4k + 3
or 4& + 1. In case (ii), χiMJ = 0, 2, or 4 according to various possibilities
for the parities of d and n + N. The conclusions (a) and (b) follow using
Lemma 4.

5. Surfaces in 3-space and knotted curves

Let M be an orientable surface in E3 with boundary curve C oriented so
that the forward tangent to C together with the inner tangent normal form a
positively oriented frame. (It was proved four decades ago by Frankl and
Pontryagin and by Seifert that any curve C in E3 is the boundary of an orient-
able surface. The genus of C is the smallest genus of such a surface span-
ning C.) Of the two integrals in the first definition of κ(M), the first is seen
to be

where K is the Gauss curvature function on M. The second integral can be

reduced (cf. [10]) to

1 C
I £2\1/2ΛC — x I hΛv

where kg and kn are respectively the geodesic and normal curvatures of C with
respect to M, s is the arc length of C, and k is the curvature of C in E3.

We can now give the following specialization of Theorems 2, 3, 4 and 5.
Theorem 6. Let M be an orientable surface in E3 with connected boundary

curve C. Suppose

Γ C\K\dM + Ckds < 2πr .
M G

(a) // r = 1, then M is a planar disc with convex boundary.
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(b) // r < 5/2, then M is diβeomorphίc to a closed disc, and C is un-
knotted.

(c) In general \χ(M)\ < r, and the genus of C is at most ^(1 + r).

Proof. Only (b) does not follow directly from the previous theorems. The
assumption r < 5/2 implies β(Mλ) = 2 or 4. Since Mλ is a closed orientable
surface, Mx is the sphere or the torus. But Mx is diffeomorphic to the double
of M, so χ(M) = IχίMj) = 0 or 1. Since M is orientable with connected
boundary, χ(M) -ψ. 0 and thus χ(M) = 1. Therefore M is a disc. q.e.d.

We note that the conclusion (c) of Theorem 6 follows directly from the
Gauss-Bonnet theorem.

A direct proof of conclusion (a) of Theorem 6 can be given as follows. By

FencheΓs inequality, Ckds > 2π, so j j \K\dM = 0, whence K=0 on M.
G M

Hence M is flat. But I kds = 2π implies that C is a convex plane curve, so
c

M is planar and a disc.

Milnor [7] showed that I kds < 4ττ implies that C is unknotted (that is, C
c

bounds an embedded disc). The conclusion (b) of Theorem 6 may be inter-
preted as a condition that C be an unknotted curve.

Corollary 1. // C is knotted and bounds an orientable surface M in E3,
then κ(M) > 5/2.

What if C bounds a nonorientable surface M in F ? We obtain a surface Mλ

as before, and again Mx is closed and orientable. We define κ(M) = ^τ(M1)9

just as in the orientable case. The relation χ(M^) = 2χ(M) remains true, for
the set Xx in the Mayer-Vietoris decomposion of M19 no longer a product, is
fibered over M with fiber consisting of two points. We obtain this corollary to
Theorem 6.

Corollary 2. Let the curve C in E3 bound a nonorientable surface M with
κ(M) < 5/2. Then M is a Mδbius band.

In conclusion, we remark that our total absolute curvature K suggests a new
tightness concept for submanifolds of Euclidean spaces. If L is a submanifold
of a Euclidean space, we may consider all oriented manifolds embedded into
that space with L as boundary. It is natural to ask whether one of these mani-
folds has the minimum possible total absolute curvature. If such a manifold
with boundary L exists, we can call L "tightly embedded" (in quotation marks
to distinguish the notion from the tight embeddings used by N. H. Kuiper and
others). Such a "tightly embedded" L must have its Lλ tightly embedded in
Kuiper's sense. To classify the "tightly embedded" submanifolds, one would
first have to classify all tightly embedded hypersurfaces. So far as we are
aware, this has not been done. Given this classification, those tightly embedded
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hypersurfaces could be investigated to see which of them arise as parallel sur-
faces to a manifold with boundary.
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