POSITIVELY CURVED COMPLEX SUBMANIFOLDS IMMERSED IN A COMPLEX PROJECTIVE SPACE

KOICHI OGIUE

1. Statement of results

Let $P_{n+p}(\boldsymbol{C})$ be a complex projective space of complex dimension $n+p$ with the Fubini-Study metric of constant holomorphic sectional curvature 1. By a Kaehler submanifold we mean a complex submanifold with induced Kaehler structure.

The purpose of this paper is to prove the following two theorems.
Theorem 1. Let M be an n-dimensional complete Kaehler submanifold immersed in $P_{n+p}(C)$. If every holomorphic sectional curvature of M is greater than $1 / 2$, and the scalar curvature of M is constant, then M is totally geodesic in $P_{n+p}(C)$.

Theorem 2. Let M be an n-dimensional complete Kaehler submanifold immersed in $P_{n+p}(C)$. If every holomorphic sectional curvature of M is greater than $1-\frac{1}{2}(n+2) /(n+2 p)$, then M is totally geodesic in $P_{n+p}(C)$.

It is clear that in the case of $p=1$, Theorem 2 is an improvement of Theorem 1.

2. Preliminaries

Let J (resp. \tilde{J}) be the complex structure of M (resp. $P_{n+p}(\boldsymbol{C})$), let g (resp. \tilde{g}) be the Kaehler metric of M (resp. $P_{n+p}(C)$), and denote by ∇ (resp. $\tilde{\nabla}$) the covariant differentiation with respect to g (resp. \tilde{g}). Then the second fundamental form σ of the immersion is given by

$$
\sigma(X, Y)=\tilde{\nabla}_{X} Y-\nabla_{X} Y
$$

and satisfies $\tilde{J} \sigma(X, Y)=\sigma(J X, Y)=\sigma(X, J Y)$, and the structure equation of Gauss is

$$
\begin{aligned}
g(R(X, Y) Z, W)= & \tilde{g}(\sigma(X, W), \sigma(Y, Z))-\tilde{g}(\sigma(X, Z), \sigma(Y, W)) \\
& +\frac{1}{4}[g(X, W) g(Y, Z)-g(X, Z) g(Y, W)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& +g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)]
\end{aligned}
$$
\]

where R is the curvature tensor field of M. Let $\xi_{1}, \cdots, \xi_{p}, \xi_{1^{*}}, \cdots, \xi_{p^{*}}\left(\xi_{i^{*}}=\right.$ $\tilde{J} \xi_{i}$) be local fields of orthonormal vectors normal to M. We use the following convention on the range of indices: $i, j=1, \cdots, p ; \lambda, \mu=1, \cdots, p, 1^{*}, \cdots$, p^{*}. If we set

$$
g\left(A_{\lambda} X, Y\right)=\tilde{g}\left(\sigma(X, Y), \xi_{\lambda}\right),
$$

then $A_{\lambda}, \lambda=1, \cdots, p, 1^{*}, \cdots, p^{*}$, are local fields of symmetric linear transformations. We can easily see that $A_{i^{*}}=J A_{i}$ and $J A_{i}=-A_{i} J$ so that, in particular, $\operatorname{tr} A_{2}=0$. Moreover, the structure equation of Gauss can be written in terms of A_{2} 's as

$$
\begin{align*}
g(R(X, Y) Z, W)= & \sum\left[g\left(A_{\lambda} X, W\right) g\left(A_{\lambda} Y, Z\right)-g\left(A_{\lambda} X, Z\right) g\left(A_{\lambda} Y, W\right)\right] \\
& +\frac{1}{4}[g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \tag{1}\\
& +g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)]
\end{align*}
$$

Let S be the Ricci tensor of M, and ρ the scalar curvature of M. Then we have

$$
\begin{gather*}
S(X, Y)=\frac{1}{2}(n+1) g(X, Y)-2 g\left(\sum A_{i}^{2} X, Y\right), \tag{2}\\
\rho=n(n+1)-\|\sigma\|^{2}, \tag{3}
\end{gather*}
$$

where $\|\sigma\|$ is the length of the second fundamental form of the immersion so that

$$
\|\sigma\|^{2}=2 \sum \operatorname{tr} A_{i}^{2} .
$$

We can see from (1) that the holomorphic sectional curvature H of M determined by a unit vector X is given by

$$
\begin{equation*}
H(X)=1-2\|\sigma(X, X)\|^{2}=1-2 \sum g\left(A_{\lambda} X, X\right)^{2} \tag{4}
\end{equation*}
$$

It is known that the second fundamental form σ satisfies a differential equation which gives

Lemma 1 [2]. We have

$$
\begin{aligned}
\frac{1}{2} \Delta\|\sigma\|^{2}= & \left\|\nabla^{\prime} \sigma\right\|+\sum \operatorname{tr}\left(A_{\lambda} A_{\mu}-A_{\mu} A_{\lambda}\right)^{2} \\
& -\sum\left[\operatorname{tr}\left(A_{\lambda} A_{\mu}\right)\right]^{2}+\frac{1}{2}(n+2)\|\sigma\|^{2}
\end{aligned}
$$

where Δ denotes the Laplacian, and ∇^{\prime} the covariant differentiation with respect to the connection (in tangent bundle) \oplus (normal bundle).

3. Proof of theorems

Since M is complete and every holomorphic sectional curvature of M is bounded from below by a positive number, M is compact.

First we prove Theorem 1. Since $1 / 2<H \leq 1$ and ρ is constant, Theorem 2 in [1] implies that H is constant. This, combined with the corollary to Theorem 3 in [4] and Theorem 1 in [3], implies that M is totally geodesic.

Next we prove Theorem 2. From (4) we can see that if every holomorphic sectional curvature of M is greater than $1-\delta$, then the square of every eigenvalue of A_{λ} must be smaller than $\delta / 2$. Therefore we have

$$
\begin{equation*}
\operatorname{tr}\left(A_{\lambda}^{2} A_{\mu}^{2}\right) \leq \frac{\delta}{2} \operatorname{tr} A_{\lambda}^{2} \quad \text { for all } \lambda \text { and } \mu \tag{5}
\end{equation*}
$$

Lemua 2. If $H>1-\delta$, then

$$
\begin{equation*}
\sum \operatorname{tr}\left(A_{\lambda} A_{\mu}-A_{\mu} A_{\lambda}\right)^{2}+2 p \delta\|\sigma\|^{2} \geq 0 \tag{6}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \sum \operatorname{tr}\left(A_{\lambda} A_{\mu}-A_{\mu} A_{)^{2}}\right)^{2} \\
&=-2 \sum^{\operatorname{tr}\left(A_{\lambda}^{2} A_{\mu}^{2}-\left(A_{\lambda} A_{\mu}\right)^{2}\right)} \\
&=-2\left[\sum_{i \neq j} \operatorname{tr}\left(A_{i}^{2} A_{j}^{2}-\left(A_{i} A_{j}\right)^{2}\right)+2 \sum \operatorname{tr}\left(A_{i}^{2} A_{i^{*}}^{2}-\left(A_{i} A_{\left.\left.i^{*}\right)^{2}\right)}\right.\right.\right. \\
&\left.\quad \quad+\sum_{i \neq j} \operatorname{tr}\left(A_{i}^{2} A_{j^{*}}^{2}-\left(A_{i} A_{j^{*}}\right)^{2}\right)+\sum_{i \neq j} \operatorname{tr}\left(A_{i^{*}}^{2} A_{j^{*}}^{2}-\left(A_{i^{*}} A_{j^{*}}\right)^{2}\right)\right] \\
&=-4\left[\sum_{i \neq j} \operatorname{tr}\left(A_{i}^{2} A_{j}^{2}-\left(A_{i} A_{j}\right)^{2}\right)+2 \sum \operatorname{tr} A_{i}^{4}+\sum_{i \neq j} \operatorname{tr}\left(A_{i}^{2} A_{j}^{2}+\left(A_{i} A_{j}\right)^{2}\right)\right] \\
&=-8\left[\sum_{i \neq j} \operatorname{tr} A_{i}^{2} A_{j}^{2}+\sum \operatorname{tr} A_{i}^{4}\right]=-8 \sum \operatorname{tr}\left(A_{i}^{2} A_{j}^{2}\right) .
\end{aligned}
$$

From (5) it follows that

$$
\sum \operatorname{tr}\left(A_{i}^{2} A_{j}^{2}\right) \leq \frac{p \delta}{2} \sum \operatorname{tr} A_{i}^{2}=\frac{p \delta}{4}\|\sigma\|^{2} .
$$

which implies (6) immediately.
Lemma 3. If $H>1-\delta$, then

$$
\begin{equation*}
\sum\left[\operatorname{tr}\left(A_{\lambda} A_{\mu}\right)\right]^{2} \leq n \delta\|\sigma\|^{2} . \tag{7}
\end{equation*}
$$

Proof. Let $\Lambda=\operatorname{tr}\left(A_{\lambda} A_{\mu}\right)$. Then Λ is a local field of symmetric $(2 p, 2 p)$ matrix. Since $\sum\left[\operatorname{tr}\left(A_{\lambda} A_{\mu}\right)\right]^{2}=\operatorname{tr} \Lambda^{2}, \sum\left[\operatorname{tr}\left(A_{\lambda} A_{\mu}\right)\right]^{2}$ is a geometric invariant,
i.e., it does not depend on the choice of ξ_{1}, \cdots, ξ_{p}. Therefore it suffices to show that the inequality holds for a suitable choice of ξ_{1}, \cdots, ξ_{p} at each point of M. Since $\Lambda=\operatorname{tr}\left(A_{2} A_{\mu}\right)$ is a real representation of the Hermitian matrix $\Lambda_{0}=\left(\operatorname{tr}\left(A_{i} A_{j}\right)+\sqrt{-1} \operatorname{tr}\left(A_{i} A_{j^{*}}\right)\right)$, it can be diagonalized by a unitary transformation at each point of M. In other words, at each point of M, Λ can be assumed to be diagonal for a suitable choice of ξ_{1}, \cdots, ξ_{p}, that is,

$$
{ }^{t} U \Lambda U=\left[\begin{array}{ccccc}
\operatorname{tr} \tilde{A}_{1}^{2} & & & & \\
& \ddots & & 0 \\
& & \operatorname{tr} \tilde{A}_{p}^{2} & & \\
& & \operatorname{tr} \tilde{A}_{1}^{2} & \\
& 0 & & \ddots & \\
& & & & \operatorname{tr} \tilde{A}_{p}^{2}
\end{array}\right]
$$

for (real representation of) some unitary matrix U. Therefore we obtain
(8) $\sum\left[\operatorname{tr}\left(A_{\lambda} A_{\mu}\right)\right]^{2}=\operatorname{tr} \Lambda^{2}=\operatorname{tr}\left({ }^{t} U \Lambda U\right)^{2}=2 \sum\left(\operatorname{tr} \tilde{A}_{i}^{2}\right)^{2} \leq 4 n \sum \operatorname{tr} \tilde{A}_{i}^{4}$,
by using the general fact that a symmetric $(2 n, 2 n)$-matrix A satisfies $\left(\operatorname{tr} A^{2}\right)^{2}$ $\leq 2 n \operatorname{tr} A^{4}$. (8), together with (5), hence implies (7). q.e.d.

From Lemmas 1, 2 and 3 it follows that

$$
\frac{1}{2} \Delta\|\sigma\|^{2} \geq\left[\frac{1}{2}(n+2)-(n+2 p) \delta\right]\|\delta\|^{2} .
$$

Since $\delta=\frac{1}{2}(n+2) /(n+2 p)$, we have $\Delta\|\sigma\|^{2} \geq 0$. Thus by the well-known Bochner's lemma, $\|\delta\|^{2}$ is constant, and so is ρ due to (3). Since 1 $\frac{1}{2}(n+2) /(n+2 p) \geq \frac{1}{2}$, Theorem 1 implies that M is totally geodesic.

Bibliography

[1] R. L. Bishop \& S. I. Goldberg, On the topology of positvely curved Kaehler manifolds. II, Tôhoku Math. J. 17 (1965) 310-318.
[2] K. Ogiue, Differential geometry of algebraic manifolds, Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 355-372.
[3] - On Kaehler immersions, Canad. J. Math. 24 (1972) 1178-1182.
[4] B. O'Neill, Isotropic and Kaehler immersions, Canad. J. Math., 17 (1965) 907915.

Michigan State University
Tokyo Metropolitan University

[^0]: Received August 5, 1971. Work done under partial support by the Matsunaga Science Foundation.

