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THE CONTACT OF SPACES WITH CONNECTION

IVAN KOLAR

E. Cartan [1] investigated the contact of a space with projective connection
with the corresponding projective space. His definition of contact of order r is
based on the developments of individual curves by means of a connection, and
can be easily extended to the case of two arbitrary "generalized" spaces with
connection of the same type. In this paper, we first show the existence of an-
other natural point of view from which the problem of contact may be studied
based on the developments by means of successive prolongations of a con-
nection according to Ehresmann [3]. Since the second condition is stronger,
we speak of strong and weak contacts of generalized spaces with connection.
The comparison of these two points of view leads us to the definition of γ-
equivalence of semi-holonomic jets. To treat this problem we introduce an
invariant symmetrization of some special semi-holonomic jets. Further, we
remark that one can also distinguish between strong and weak deformations of
order r for generalized spaces with connection. Finally, we pose a natural
generalization of the original problem of E. Cartan by studying the contact of
a space with Cartan connection with the corresponding homogeneous space.
We treat both strong and weak contacts. Our Propositions 8 and 9 give
generalizations of the results of E Cartan [1, pp. 189, 193]. We hope that
these results together with the corresponding methods illustrate clearly the
fact that prolongations of a connection of first order can be applied to the
solution of some natural problems in the general theory of spaces with con-
nection. Further results in this direction can be found in [5] and [6].

We intend to carry out our investigations in a direct geometric form. That
is why we introduce a connection of first order on the groupoid associated with
a principal fibre bundle and not on a principle fibre bundle itself. Standard
terminology and notation of the theory of jets are used throughout the paper
see, e.g., [9]. In addition, /* means the canonical projection of r-jets onto s-
jets, s < r. Our considerations are carried out in the category C°°.

1. Preliminaries

Let P(B, G, π) be a principal fibre bundle, and PP~ι the groupoid associated
with P. An element of a connection of first order on P P " 1 at x e B can be in-
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troduced as a 1-jet at x of a local mapping of B into PP'1 of the form p(y)u~\
where p is a local cross section of P, and p(x) = u. Denote by Q}(PP~ι) the
fibre bundle over B of all elements of the connection of first order on PP~ι. A
connection (of first order) on PPι is a cross-section C: B —> Q\PP~l) cf. [3].

Consider a fibre bundle £ ( 5 , F, G, P) associated with P. Let Cl9 C2 be two
connections on PP~\ and ©1? ©2 be two local cross sections of E over a
neighborhood of x. Roughly speaking, we shall say that the pairs (C1? ©x) and
(C2, ©2) have contact of order r at x, if the development of ©x into ^ by
means of Cx coincides up to order r with that of ©2 into JE^ by means of C2.
Since there are two natural points of view here, starting from the ideas of
E. Cartan we can say that (C1? ©x) and (C2, ©2) have contact of order r with
respect to curves or weak contact of order r, if for every curve γ on B with
f(0) = x we have

( 1 ) /in = tih >

where ft denotes the development of the curve 6 i ° ] ' into Ex by means of the
connection Ci9 i = 1,2. On the other hand, according to Ehresmann [3] the
(r — l)-th prolongation C^"^ of Ct is a semi-holonomic connection of order
r on PP" 1 . (For connections of higher order, see [7].) The prolongation of the
partial composition law (θ, z) ι-> θ z, θ € PP~\ z e E, determines the develop
ment of ©$ into E^ by means of the semi-holonomic element Qr~υ(jc) of con-
nection of order r, which is a semi-holonomic r-jet Q r"1 )~1(^)(© i) of 5 into Ex,
[5]. (Note that Ehresmann [3] has used the term "the absolute differential of
©£ with respect to Cf-^C*)" for C^-^OOC©*).) This point of view suggests

Definition 1. If

( 2) Cl'-»-Kx)(<5ύ - Cr^Wί©*) ,

then the pairs (C^ ©x) and (C2, ©2) are said to have the strong contact of order
r at x.

Using the idea of prolongations of a connection, we can restate (1) in the
following form, which will be more convenient for our later investigations. We
recall that T{{B) denotes the fibre bundle of all lr-velocities on B, i.e., of all
r-jets of R into B with source 0.

Definition 2. The pairs (C^ ©J and (C2,©2) are said to have weak con-
tact of order r at x, if

( 3 ) Q'-v-KxK^X) - C?-»-Kx)(<52X)

for every X e T[{B), βX = x.
Obviously, (2) implies (3) justifying our terminology,
Definition 3. Let V and W be two manifolds, and let Yl9 Y2 e Jr(V, W),

aY1 — aY2 = v. The jets Y19 Y2 are said to be equivalent with respect to curves
or ^-equivalent, if YλX = Y2X for every X e T{{B) with βX = v.
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Thus we can say that the pairs (C1? ©x) and (C2, ©2) have weak contact
of order r at x if and only if the semi-holonomic jets C^'^^ix)^) and
C^- 1 ) ~ 1 (Λ:)(© 2 ) are /--equivalent. It is easy to see that two holonomic jets are γ-
equivalent only if they coincide. In particular, if the connections Q and C2 are
integrable, then there is no difference between strong and weak contacts. How-
ever, in general, we have another situation for arbitrary semi-holonomic jets.

2. ^-equivalence of some semi-holonomic jets

Let V and W be two manifolds, and put

( 4 ) Jr>r-ι(V, W) = {X € Jr(V, W) }r
r-

xX € Jr-KV, W)} .

Then we have the following exact diagram of vector bundles over V X W:

0 0

( 5 )

o <— Jr~\v, w)

The tensor symmetrization gives a splitting s0: T(W) <g) (x)r T*(V) -> T(W) (x)
5 r Γ*(F), and s0 determines canonically a splitting s: Jr>r-\V, W) -> Jr(V, W).
Indeed, in any exact diagram

0 0

BΓSΓ°
+ Q < C2 < 0

a splitting s2: C2—> 5 2 determines a splitting s :̂ Q —> Bλ as follows. For any
x € Cλ, take an element j e ^ satisfying ?̂(y) = ψ(x). Then Λ: — z'Cy) € C2, and
we define s^x) = y + s2(x — z(y)).

Definition 4. For every X e / r ' r ~ 1 (F , IRK), the holonomic r-jet s(X) is called
the symmetrization of X.

Proposition 1. Ev^rj 4̂ e / r ' r ~ 1 (F , WO is γ-equivalent to its symmetrization
s(A).

Proof. The assertion is proved by means of the corresponding expressions
in some local coordinates. So we may suppose directly that A is a jet of Rn

into Rm with source, target 0 and some coordinates

ψ
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ah > flix. .ir-u aϊχ...ir > α = 1, , m , and ΐ, /1? = 1, , n ,

where α?lί2, , aa

iχ...ir_x are symmetric in all subscripts. Then the coordinates
of s(A) are a", *, a^..^^, a"ilm..ir), where the parenthese denote symmetri-
zation. Let x{, , x\ be the coordinates of a lr-velocity X on Rn at 0, and
let y;, , ya

r be the coordinates of AX. Then it is easy to see that the only
expression containing aa

iχ...ir in the formula for ya

r is αJ1...irJtί1 x{r. Hence
Λ(X = s(A)X follows from aa

ix...irx^ > x{r = a"il...ir)Xi1 * ϊ r .

Proposition 1 gives a sufficient condition for a semi-holonomic r-jet to be γ-
equivalent to a holonomic r-jet. In general, this condition is not necessary.
Since / 2 } 1 (F, W) = J2(V, W), every semi-holonomic 2-jet is ^-equivalent to a
holonomic 2-jet. For r = 3, 4 we have the following two propositions.

Proposition 2. A semi-holonomic 3-jet X is γ-equivalent to a holonomic 3-
jet if and only if j\X is holonomic.

Proposition 3. A jet A e Z4 ίW with coodinates α", a"j9 a"jk, a"jkl is -(-equiva-
lent to a holonomic 4-jet if and only if

( 6 ) <Γi3 = a°jt , aa

ω)k = a°k(ij) .

Proof of Propositions 2 and 3. We shall start with proving Proposition 3
by direct calculation, since we shall deduce Proposition 2 as an auxiliary result.
Suppose that A is ^-equivalent to a holonomic 4-jet B with coordinates b", b%j9

b"jk, b"jkl symmetric in all subscripts. Then for every l4-velocity X = (x1, yl, z%
f) on Rn at 0 we have AX = BX, and therefore from the definition of the
composition of semi-holonomic jets it follows easily that the underlying 3-jets
)\A and fβ are ^-equivalent if and only if

aϊjxW + a\yl = b jxW + b-y1 ,

aa

ίjkxVxk + la-jyW + a-μψ + αjz*

= ba

ijkx
ίxjxk + 36?^*^ + bizί -

We find directly that (7) is equivalent to a\ — b", aΛ

i5 — b^ , aa

(ίjk) = ba

ίjk, thus
proving Proposition 2. Assume that (7) is satisfied. Then A is ^-equivalent to
B if and only if aa

ίjklx
ixjxkxι + aa

iύky
ιχiχ% — a^tpcWy* = ba

ίjklx
ίxjxkxι, which

proves Proposition 3.

3. Strong and weak deformations of spaces with connection

An exact definition of a space with Cartan connection was first given by
Ehresmann [2]. Some further problems in differential geometry suggest to us
the following more general

Definition 5. Let P(B, G) be a principal fibre bundle, E(B, F, G, P) a fibre
bundle associated with P, C a connection (of first order) on FP" 1 , and © a
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cross section of E. Then the quadruple & = <¥(P(B, G), F, C, ©) is called a
generalized space with connection.

If the structure group acts transitively on the standard fibre, then our
definition is equivalent to that of a space with connection given by Svec [8].

An element z € E determined by a pair (u,s), uεP, s e F, is denoted by
z = {(«, s)}. If P(B, G) and P(B, G) are two principle fibre bundles with the
same structure group, then the associated bundles E(B, F, G, P) and E(B, F,
G, P) is said to be of the same type. A difϊeomorphism f:Ex—>Es is called
an isomorphism, if there exist some elements u ePx and ΰ € Px such that / =
ΰu~ι, where u and U are considered as a mapping u: F —> Ex, s «-• {(w, s)} and
a mapping ΰ: F -+EX9 s*-* {(ΰ, s)} respectively. Further, let (ψ, ψ 0 ): P(B, G)
-»P(B, G) be an isomorphism of principle fibre bundles (we shall also say
that ψ is an isomorphism over ψ0). Then ψ induces a mapping ψ: E—> E given
by φ({u,s)}) = {(ψ(u),s)}, u e P, s ς. F. Moreover, if C is a connection on
PP~\ then ψ*C will denote the induced connection of PP'1.

We should remark that there are two natural definitions of the deformation
of order r of the generalized spaces with connection. If G acts on F transitively,
then the weak deformation coincides with the deformation introduced by Svec
[8].

Definition 6. Let S?(P(B, G, π), F, C, ©) and y(P9 (B,G,τt),F,C, ©) be
two generalized spaces with connection of the same type. A diίϊeomorphism
φ0: B —• B is called a strong (or weak) deformation of order r, if there exists
a principal fibre bundle isomorphism φ: P —> P over <p0 such that <p& = © and
that the pairs (C, ©) and (<p*C9 ©) have strong (or weak) contact of order r at
every x e B.

4. The problem of contact

Analogously, we can introduce
Definition 7. Let if and P be two generalized spaces with connection of

the same type. Sf and S? are said to admit strong (or weak) contact of order
r at x € B and x e B, if there are some neighborhoods U of x and Ό of
x and a principal fibre bundle isomorphism (φ, φ0): π~ι(Ό) —> π~ι(JJ) such
that the pairs (C, ©) and (<p*C, φ~ί(B) have strong (or weak) contact of order
r at x.

We recall the definitions of the semi-holonomic contact elements. Let V
and W be two manifolds, and let dim V = n, X g / r ( F , Ψ), α Z = v, βX =
w. By the contact element Λ(Z) of the first kind determined by X we mean
the set XhLr

n of nr-velocities h e Hr

υ{V) on Ψ at w. (For comparison, by the
contact element 3tf{X) of the second kind determined by X we mean the set
XhLr

n of nr-velocities h e Hr

v(V) on W at w.) Every nr-velocity of k(X) is
called a representative of k(X). Further, let M be a manifold. Then two r-jets
X e / r (M, Ex) and X e / r (M, E^) are said to be congruent if there exists an
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isomorphism f:Ex—> Ex such that fX = X, and two contact elements on Ex

and Es are said to be congruent if some of their representatives are congruent.
Proposition 4. Two generalized spaces with connection Sf and P admit

strong contact of order r at x and x if and only if the contact elements
kiO'-v-KxX®)) and k(C^-l)-\x)(&)) of first kind are congruent.

Proof. Our assertion is a simple consequence of the following
Lemma. Let ^ be a generalized space with connection, and (φ, φ0): P(B, G)

—• P(B, G) be a principal fibre bundle isomorphism, so that f(x) = φ(u)u~ι,
u € Px, is a well-determined isomorphism of Exonto Es for every x e B, where
x = <po(x), and E = E(5,F,G,P). Let C = (φ'ψC be the induced con-
nection, and let @ = φ(&, Φ(x) = jr

xφ0. Then

for every r and every x e B.
Proof. If C(x) = fxipiy)!*'1), where p(y) is a local cross section of P, and

p(x) = u, then we can express ©(y) in the form (&(y) = {(ρ(y), s(y))}, and we
have C-1 (*)(©) = jxu(s(y)). On the other hand, C(x) = jx(<p0(y) •->
ψ{p{y))ψ{uY'), ®(φQ(y)) = {φ(p(y)), s(y))} and C~\x)m = Uφo(y) ^ φ(u)(sy)))
= (p(u)u~l}l

x((pQ{y) ι-> u(s(y))), which proves our lemma for r = 1. For r > 1,
our lemma is a simple consequence of the recurrence formula C(r"1)~1(x)(©)
= C- 1(JC)(C ( '- 2 )- 1G0(©)) obtained in_[5, Corollary 1].

Two contact elements on Ex and Ex are said to be ^-congruent, if there are
some of their representatives X and X and an isomorphism f:Ex-*Es such
that X and fX are ^-equivalent. Quite analogously to Proposition 4, we can
obtain

Proposition 5. Two generalized spaces with connection £f and P admit
weak contact of order r at x and x if and only if the contact elements

and ΛίC^^OcX©)) of first kind are γ-congruent.

5. The contact of a space with Cartan connection with the
corresponding homogeneous space

We have remarked in [6] that a space with Cartan connection can be in-
troduced as a generalized space with connection satisfying the following ad-
ditional conditions:

a) G acts on F transitively,
b) d im£:=dimis
c) C^OtX©) is regular for every x e B.

The homogeneous space F can be endowed with a canonical structure of a
space with Cartan connection [4] this space is denoted by ^.

Proposition 6. A space ^(P(B, G), F, C, ©) with Cartan connection
admits at x e B strong contact of second order with 3F if and only if the torsion
form τ{x) of Sf at x vanishes.
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Proof. Theorem 1 of [5] asserts that C/~1(x)((S) is holonomic if and only
if τ(x) vanishes. Since G acts on F transitively, k(C~\x)((S)) is congruent
with a contact element of second order determined by the identity transfor-
mation of F if and only if it is holonomic. Applying Proposition 4. we thus
obtain our assertion.

The isotropic group Hr

x of order r of Ex at <B(x) is defined by

Hr

x = {g e Gx %{x)g = feix) id* J ,

where Gx is the group of all isomorphisms of Ex. The curvature form Ω(x) of
C at x e B can be considered as an element of QX (X) Λ2T*(B), [5], and we have
introduced in [6] the torsion form τr(x) of order r of £f at x as the projection
of Ω(x) into (Qx/φx) <g> Λ2T*(B), τ\x) = τ(x) being the usual torsion form of
Sf (naturally, QX and ψx denote the Lie algebras of Gx and Hr

x respectively).
By Theorem 1 of [6], we obtain immediately a sufficient condition for strong
contact of &> with SF.

Proposition 7. // the torsion form of order r — 1 of Sf vanishes in a
neighborhood of x € B, and the torsion form of order r of £f vanishes at x,
then 9 admits at x strong contact of order r + 2 with 2F.

Corollary. A space with Cartan connection without torsion (of order 0)
admits at x strong contact of third order with the corresponding homogeneous
space if and only if its torsion form of first order at x vanishes.

Further, we shall treat weak contact. By Propositions 1, 2 and 5, we deduce
immediately

Proposition 8. A space with Cartan connection admits at every point weak
contact of second order with the corresponding homogeneous space. A necessary
and sufficient condition for S? to admit at x weak contact of third order with ϊF
is that the torsion form (of order 0) of ̂  at x vanish.

Proposition 9. Let ^(P(B, G), F, C, ©) be a space with Cartan connection
without torsion (of order 0). Then Sf admits at x weak contact of fourth order
with SF if and only if the torsion form of first order of £f at x vanishes.

Proof. If τ\x) = 0, then C"-\x)(®) = i\C"-ι(x)((g) is holonomic by
Theorem 1 of [6]. By Proposition 1, C///~1(x)((B) is ^-equivalent to a holonomic
4-jet, and we conclude by Proposition 5 that Sf admits at x weak contact of
fourth order with J*\ Conversely, let Cf"-\x)((&) be ̂ -equivalent to a holonomic
4-jet, and let af, af , afJk9 af-kl be its coordinates in some local coordinate systems
on B and Ex. Then (6) holds.

Moreover, since £f has no torsion, C/~ί(y)((S) is holonomic for every y e B.

Let C(x) - tp(y)u-\ Then, by [5, Corollary 1], C"-\x)((S) = jxΣ(y), where

Σ(y) = up^iyXC'tyX®)) is a local cross section of J2(B,EX), which implies

O aijk — ajik
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From (6) and (8) we deduce easily that afjk are symmetric in all subscripts.

Hence C"~ι(x)(<&) is holonomic and, in our case, this is equivalent to τι(x) = 0.
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