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ISOPERIMETRIC INEQUALITIES FOR
MANIFOLDS WITH BOUNDARY

KIT HANES

1. Introduction

It has long been known that if C is a simple closed curve of length L bound-
ing a planar region of area A, then

V - AπΛ > 0 ,

where equality holds if and only if C is a circle. This is the classical isoperi-
metric inequality. In 1939 E. Schmidt [8] proved that if S is the (n — 1)-
dimensional measure of the boundary of a solid body M in Euclidean rc-space,
V is the ^-dimensional measure of M, while σ and v are the corresponding
measures, respectively, for the w-ball of radius 1, then

(S/σ)n - (VIvY-1 > 0 ,

where equality holds if and only if M is an n-ball.
In 1959 W. T. Reid [7] generalized the classical isoperimetric inequality to

regions on a surface. Suppose M is a C2 image on a surface in Euclidean
3-space of a region in the plane bounded by a simple closed curve. Let A be
the area of M, L the length of the boundary dM of M, H the mean curvature
vector on M, and X the position vector to M. If the origin is an arbitrary point
on dM, then

V - AπU + Γ X Hdv) > 0 ,
M

where v denotes 2-dimensional measure on M. In the case of equality, if the
unit normal to M is constant on dM, then dM is a circle of radius L/(2τr). This
result yields a new proof of a theorem originally due to T. Carleman [1]: If
M is a minimal surface, then U — AπA > 0, where equality holds if and only
if dM is a circle and M is the disk determined by dM.
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In 1961 C. C. Hsiung [6] proved that the inequality proved by Reid still
holds when M is a 2-dimensional manifold imbedded in Euclidean w-space
provided dM is diffeomorphic to a circle. In the case of equality if dM is con-
tained in a 2-dimensional subspace, then dM is a circle of radius L/(2π). This
result is used to extend the theorem of Carleman as stated above to Euclidean
fl-sρace.

The purpose of this paper is to present a generalization of the inequalities
of Reid and Hsiung to w-dimensional manifolds with boundary embedded in
Euclidean (n + p)-sρace. The boundaries are not necessarily diffeomorphic to
spheres. This is done with the aid of an integral formula which is a generaliza-
tion of one proved by Hsiung and which yields a new proof of a theorem of
Minkowski.

An example is given which shows that Schmidt's theorem does not directly
generalize to all manifolds with boundary, and which yields some information
about possible further generalizations. Finally, Carleman's theorem is generaliz-
ed to λz-dimensional minimal manifolds.

These results are shown to generalize the theorem of Schmidt only for
certain types of manifolds.

2. Preliminaries

Let M be an π-dimensional orientable compact Riemannian C°° manifold
with boundary dM. Assume that n > 2, and let M be embedded in Euclidean
(n + /?)-space En+P. On each coodinate domain of M let e19 , en9 , en+p

be C°° vector fields such that at each point of M the following are true:

a) e19 , en, , en+p are orthonormal,
b) e19 , en are tangent to M, and the order of the vectors is coherent

with a fixed orientation of M,
c) at each point of dM, en is the outward normal to dM while e19 , en_x

are tangent to dM, and

d) the determinant \e19 , en9 , en+p\ is one.
Each vector field et is regarded as a derivation on C°°(M).

Let X be the position vector from the origin to a general point of M,
ω1, , ωn be the 1-forms on M dual to the vectors el9 , en9 and ωt

j for
each /, / e {1, , n + p} be the connection 1-forms with respect to the basis
fields chosen above for the Riemannian connection D. Then DX and Dβi
are vector valued 1-forms given by

DYX = Σ "£*
1

for each i e {1, , n + p} and each vector Y tangent to M. It follows that
o)ij = —ωf for each pair /, /.
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For each r β {n + 1, . , n + p} the r-th mean curvature vector Hr is defin-
ed by

Hr= - - i ^ 1 ^ ) + ωr\e2) + + ωr (*

Then the mean curvature vector H is defined on M by

•" = = Hn + l^n + i T" ' ' * T~ ttji+p^n+p

Let v and α denote n and n — 1 dimensional measures, respectively. Then
dv = ω1 Λ Λ ω" on M, while da — ω1 Λ Λ ω71"1 on 3M, where Λ
denotes the exterior product of differential forms. The Hodge star mapping of
forms is denoted by *. It is linear, and if a = ωίχ Λ A ωίr then *α? is the
(n — r)-form such that a Λ *ά = dv. Finally, let p be the radius of the
(n — l)-dimensional sphere whose σ measure equals σ(dM).

3. The integral formula

The following integral formula yields equation (2.14) of [6] as a special
case.

Theorem 1. Γ X-endσ = n\v(M) + Γ X Hdvl .
dM M

Proof. From Green's formula,

(1) J en(X X)dσ = J Δ(X X)dv ,
BM M

where Δ is the Laplace-Beltrami operator given by

n Γ n "1

Δφ = *d*dφ = Σ\ ^fe(0) + Σ ^(^ω/fe) .
i=i L i=i J

(See [5, pp. 386-393].) For each /,

(2) et(X X) = 2(DeiX X) = 2(erX) ,

so

Hence
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Then

J(ΛΓ Z) = l\n + Σ if (*-e><W| + Σ Σ 2(*.«

(3) = l\n + Σ ("if (X ejWίeJ - Σ (X c>/
L ί = l \ j = l j = l

= 2Ϊn + n "if (AΓ β ^ l = 2n(l + ΛΓ fl) .
L 7=π+l J

Therefore, by combining (1), (2), and (3),

f Z eBdσ = J «(1 + X H)dv = «Γv(M) + Γ Z fljJ . q.e.d.
33f M M

An immediate consequence of this theorem is the following theorem of
Minkowski.

Theorem 2. // M is a closed manifold, then

= - Γ
M

X Hdv .

4. An eigenvalue problem

Before taking up the isoperimetric inequality it is necessary to consider an
eigenvalue problem on dM. Let ( , ) denote the inner product on p-forms on
dM defined by

(a,β) = J<*Λ *β .
dM

If / 6 C-(9Af), then

"<*/ = Σ e ^ ' . grad / = Σ et(f)et .
ί l ί l

Σ
ί=l

Note that if / € C°°(dM) then, since ω* Λ *ωJ' = 0 when ί ^ /,

( 4) WΛ rf/) = / Σ 1 teiWydσ = J |grad ffdσ .
dM dM

Consider now the eigenvalue problem
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( 5 ) Δψ + λψ = 0

for functions φ e C°°(dM), where Δ is the Laplace-Beltrami operator on dM.
The following theorem describes the solutions to this problem. (See [9, p. 685].)

Theorem 3. The eigenvalues for the above problem are nonnegative and
form a discrete set whose only limit point is oo. The eigenfunctions are ortho-
normal with respect to the inner product ( , ), and span L\dM). The only
eigenfunctions corresponding to the eigenvalue 0 are the constant functions.

Since the eigenvalues form a discrete set with no finite limit point, let λ de-
note the smallest positive eigenvalue. The proof of the next theorem is standard
and depends upon the completeness of the eigenfunctions and the existence of
λ.

Theorem 4. // / is any nonconstant function in C°°(dM), then

(df,df)>λ(f,f),

where equality holds if and only if f = cφ, c being a constant and φ an eigen-
f unction corresponding to λ.

5. The isoperimetric inequality

One of the aims of this paper is to establish the following inequality for
selected values of c:

( 6) σ(dM) - cn\v(M) + J X Hdvl > 0 ,
M

where c is a parameter depending upon dM.
If c = 1/ρ and p = 0, then in the notation of the introduction (6) becomes

S — nV/p > 0. Since S = pn~ισ and σ = nv, it follows that this last inequality
is just that proved by Schmidt for solid bodies. If c = 1/ρ, n = 2 and the
origin is a point of dM, then in the notation of the introduction p =. L/(2π)
and nc = 4π/L. In this case, when p = 1 the inequality (6) becomes that
proved by Reid, and when p is arbitrary it becomes that proved by Hsiung.

By means of Theorem 1, (6) is readily seen to be equivalent to the following
inequality:

(7) J d -cX-en)dσ>0.
dM

Suppose the origin is P, a point on dM. Then define

δP = (d\X\,d\X\)/(\X\,\X\), δ = mm{δP:PedM} .

Thus the groundwork has been laid for the following theorem.
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Theorem 5. Let n and p be arbitrary, and P be on dM. Then the inequal-

ities (6) and (7) hold where c is any constant such that c < 2VδP. Further-

more, if equality holds for some fixed c < 2Vδ and each P e dM, then dM is

an (n — l)-sphere with radius 1 \c.

Proof. Since

we have

XX = Σ (X etγ + (X en)
1

so

0 + (X eπy/(X X)+ Σ (X ej
1 n + l

Since grad \X\ = J] e^X^ = J] (X-eJlXDe^ we have |grad |Z| |2

1 1

Σ(x-eiyκχ.χ),so
1

(8) 1 = |grad|Z|f + (X.enY/(X X) + "f (X-e^/iX-X) .
n + l

Now

/ r \2 r2

< A ew X X) = (A T̂O) — C(JL ew) (A A) + (A A)Z ,

SO

(9) (X.eJ/iX X) - c(X en) = (Z βn - |-J

Using (8) and (9) the left side of (7) becomes

L -cX-en)dσ

ί
dM

j (|grad|ΛΓ||2 - ^-X-X^jda = (d\X\,d\X\) —^-(\X\,\X\) > 0 .

|grad|Z||2 - — X X +
1 5 ' M 4 XX XX
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The last equality holds in view of (4), while the last inequality holds because
c < 2VδP in view of the definition of δP.

Now suppose that equality holds for c < 2<s/δ and all P <= dM. Then X-en

— ±Lχ. X — 0 for all P e dM and X e dM. Let N = en at some point Po e dM.

Let A = —N/c, assuming the origin is at Po. Then X = P and — X is the
vector from P to Po. Hence (-X) N - (c/2)(-Z) ( - Z ) = 0, i.e., (c/2)X X
= -X-N. Then

\χ _ A\2 = XX - 2XA + A A = X-X + IX-Njc + N N/c2 = 1/c2 .

Therefore dM is contained on a sphere Γ with center A = —N/c and radius
1/c. Furthermore, since equality holds in the inequality, X-βj = 0 for all
X e dM and / e {w + 1, , n + p}. For each / let Nj = e3 at Po. Then
(-X) Nj = 0. Thus P lies in a hyperplane normal to Nj and passing through
Po. This is true for each of the mutually orthogonal vectors Nn+19 , Nn+P,
so dM lies in an n-dimensional subspace F of En+P. Then 9M (Z F Π T, and
F Π Γ is an (n — l)-sρhere. Since 9M is (n — l)-dimensional and d(dM) = 0,
it follows that dM = F Π T. The radius of F Π Γ is 1/c since ^ ί e F . q.e.d.

It follows from Theorem 4 that λ < δP for each P € 3Af, hence λ < δ. For
each P e dM Theorem 5 gives two specific versions of the isoperimetric ine-
quality, one for c = 2VI and one for c = 2VδP. If c = 2y7, then Theorem
5 can be strengthened.

Corollary 1. // c = 2 VI α«d equality holds in either (6) or (7) for each
P e 9M, then not only is dM an (n — \)-spere of radius 1/c but also n = 2.

Proof. Equality holds in (6) and (7) only if equality holds in Theorem 4
where / = \X\, i.e., only when \X\ is an eigenfunction for problem (5). Sup-
pose P is a point on the unit sphere, and φ is the angle with vertex at the center
of the sphere subtending X. Then a calculation shows that

I-XΊ = 2 sin (φ/2) , Δ \X\ = (n - 2) cot φ cos (φ/2) - £ sin (φ/2) .

Clearly, \X\ is an eigenf unction if and only if n — 2 = 0. q.e.d.
Finally, Theorem 5 gives information about upper bounds for the first eigen-

value for problem (5).
Corollary 2 Let P e dM be fixed. If N is any n-dimensional orientable

compact Riemannίan manifold with boundary dN such that dN = dM and HN

is the mean curvature vector on N, then

λ < σ(dM)2 lUn2(v(]N) + Γ XΉNdv\λ .

Proof. This inequality is obtained by solving (6) where c = 2*Jλ.
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6. Further versions

If n = 2, and dM is diffeomorphic to a circle, then 2\/Λ = l/p. This
together with Theorem 4 is one way of stating Wirtinger's inequality (see,
for example, [4, p. 185]). Thus Theorem 5 gives an isoperimetric inequality
when c = l/p = 2\l~l and n — 2. This is essentially the inequality proved by
Hsiung.

Let W be the class of those manifolds M for which l/p < 2<Jδ. Then for
each M ζW Theorem 5 gives an isoperimetric inequality where c = l/p. As
mentioned in the last section if p = 0, M is a solid body, and c = l/p, then
Schmidt has proved that M belongs to W.

Suppose M is the n-ball of radius p. If P e 3M, then a calculation shows that
δP—l/{Ap2). Consequently, if N is any compact w-dimensional orientable
Riemannian C°° manifold such that dN — dM while N is tangent to M every-
where on dM, then, with respect to N, l/p = 2^δP = Vδ, and N belongs to
W.

In addition to the manifolds with spherical boundary just discussed there
are other manifolds which belong to W.

Theorem 6. Suppose dM lies in an n-dimensional subspace of En+P. Sup-
pose N, a convex compact orientable n-dimensional Riemannian manifold with
boundary dN, lies in the subspace containing dM and dN = dM. Then (6) and
(7) give an isoperimetric inequality for M when c — l/p, andM belongs to W.

Proof. N is flat, so HN = 0. Then Theorem 1 gives

X fdσ = nv(N) > 0 ,

where / is the outward unit vector tangent to N and normal to dM. According
to the isoperimetric inequality of Schmidt,

0 < σ(dM) - ~nv(N) = f (l - —X f)dσ .

Suppose that the origin is at P e dN. Then X-f > 0 for all X € dM. Since en is
normal to dM while en and / are both unit vectors, it follows that X-en < X-f
everywhere on dM. Therefore

so M e W. q.e.d.
Do all manifolds of the type considered in this paper belong to WΊ The fol-

lowing example shows that the answer must be negative.
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Let n = 2, p = 1, and let M be a surface whose boundary consists of two
circles d and C2. P lies on C2, and | Z | = α for each X <= d M is such that
e2 = XI\X\ on d , while e2 X = 0 on C2. Let Lx = σ(Cλ) and L2 = <y(C2).
Then

J
dM

This expression is negative provided α < [(Lx + L2) /LJp where p =
(Lx + L2)/(2τr). For such α, M <£ W.

7. Minimal manifolds

A manifold M is minimal provided H = 0. The results obtained thus far
can be interpreted for this case.

Theorem 7. Let M be a minimal manifold, and P any point on dM. Then

(10) σ(9M) - cnv(M) > 0 ,

where c < 2*J~δ^. If M is an n-ball and c = 2\ίδP, then c = 1/p and equality
holds. If equality holds and c < 2\l δ, then M is an n-ball and c = l/p = 2</Ίf.

Proof. The inequality is obtained from Theorem 5 by letting H = 0 in (6).
The calculation in the previous section shows that if M is an w-ball, then
2\/<5p = 1 Ip and equality holds for this value of c. Now suppose that equality
holds. Then it holds for each P e dM since neither P nor X appears in (10).
Then from Theorem 5 it follows that dM is an (n — l)-sρhere with radius
p = 1 /c. It remains to be shown that M is the n-ball determined by dM. The
proof given by Hsiung [6] may be generalized. Since et(X) = ei9 we have

Substitution into the expression for Δ gives

=t Γίf
i=i L y=i

f= Σ f Σ / ) ^ if Σ
y=i \ΐ=i / .7 = 71+1 ΐ=i

since ω^fo) + ω/(βi) = 0. Since H = 0, AX = 0. Now let Z = (JC1? , jcn+p)
where the functions xt are the components of X relative to some fixed ortho-
normal frame in En+P. Since dM lies in an ^-dimensional subspace F of En+P,
it may be supposed that xn+1 = = Λ:w+ί, = 0 on M. Since AX = 0, we
have Jx n + 1 = = Axn+P = 0 on M. Thus ^ n + 1 , , Λ Λ + P are functions



534 KIT HANES

which are harmonic on M and vanish on dM. They must then vanish on all of
M. Consequently M lies in F, and so M must be the π-ball bounded by dM.
Finally, the calculation in the previous section shows that lip = 2\l δ. q.e.d.

This result was obtained by Carleman for the case n = 2 and p = 1, and
was extended by Hsiung for the case n = 2 and p arbitrary.
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