
J . DIFFERENTIAL GEOMETRY
7 (1972) 473-478

CHERN CLASSES AND PROJECTIVE GEOMETRY

KALYAN K. MUKHERJEA

1. Introduction

Classical projective geometry is rich in relations between the extrinsic in-
variants (e.g., order, double tangents, number of nodes, triple points, •)
associated with an algebraic map / : M —• CPN of a projective algebraic mani-
fold M. It has also long been known that these extrinsic invariants may be
sometimes used to define birational or intrinsic invariants of the manifold.

For example, the Pliicker formulas for an algebraic plane curve may be
interpreted as a definition of the 1st Chern class of an algebraic manifold of
dimension 1, or the postulation formula as the arithmetic genus in terms of
the projective characters of an algebraic surface.

The object of this note is:
(a) to obtain descriptions of the Chern classes of an algebraic manifold in

terms of the extrinsic invariants associated with an algebraic map / : M —> CPN

which is nonsingular of order 1, i.e., the derivative of / has maximal rank
everywhere,

(b) to show how the Chern classes affect well-known geometric invariants,
associated with an imbedding satisfying the above condition.

2. The bundle of tangent spaces of a variety

Let / : M -> CPN be an algebraic map which is nonsingular of order 1, and
let dim M = n.

Definition. The tangent projective space to / at x e M is the unique linear
space P, of dimension n, of CPN, which passes through f(x) such that

Im(Df(x) (TxM)) = Tf(x)P

where TXM is the tangent space of M at x, and Tfix)P is the tangent space of
Pat/Ot).

Given an algebraic map / : M -> CPN, as above, we shall call / a cusp-free
algebraic variety. The set of tangent spaces of cusp-free algebraic variety forms
a fibre bundle (with fibre CPn) over M, and, in fact, may be realised as an
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algebraic variety by the construction sketched below. (For details see Pohl
[2], [3].)

Let Gn>N be the Grassmann manifold of linear π-spaces of CPN, and

π
En,N > GUyN the tautologous bundle over Gn>N, with fibre CPn. Let

τ: En>N > CPN be the map which takes a point x in an ̂ -linear space P of
CPN to JC.

Now there is a map f: M > Gn>N called the dual map, associated with

a cusp-free variety which associates to each x e M, the tangent projective space
at x.

Then the pull-back:

P, = QTEn>N JU En,N

Gn>N

yields a CPn-b\mdle Pf, over M, which is obviously in (1-1) correspondence
with the set of points of the set of tangent projective spaces of M.

Pf is called the bundle of tangent-spaces of /, and the map τof; Pf-+ CPN

realises this manifold as an algebraic variety. Pf is a CPw-bundle associated
to a holomorphic vector bundle Ef —> M of fibre dimension n + 1. Moreover,
Ef is topologically, though not analytically, isomorphic to the bundle f*lN 0
(TM (x) f*ϊN), where lN -> CPN is the tautologous line bundle. Also, (τ o f)*ϊN

is the tautologous line bundle ΐf over Pf. Let lN —> CPN and lf -> Pf be the
line bundles conjugate to ΪN -> CPN and / 7 —> P 7 respectively. Then by the
Leray-Hirsch theorem, the map1

φ: H*(M) ® H*(CPn) -+ H*(Pf)

defined by

φ(a (x) xm) = πf(a) U f}

is an isomorphism of #*(M)-modules, where x e H2(CPn) is the Poincare dual
of a hyperplane, and χf is the 1st Chern class of lf: χf e H2(Pf).

Moreover, in H2n+2(Pf) we have

71+1

where cs is the -th Chern class.

1 Here, as in what follows, we use rational coefficients for all cohomology groups.
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3. Chern classes of varieties

Let E —> X be a complex vector bundle of dimension r, and let us factorise
formally the polynomial

1 + cxt + - + crt
r = (1 + ft*) - (1 + γrt

r) ,

where cn = cn(E) is the rc-th Chern class of E. Then the polynomial

χq(r) = Σ r r/
oti>0

is clearly symmetric, and can thus be expressed in terms of the Chern classes.
We denote this polynomial by $ββ(J5). For example, %(E) — cl9 ψ2(E) = c? — c2,
φ s (£) = c\ - 2qc2 + c3.

Theorem 1. Lei /: M —> CPΛ- δe tf cusp-free algebraic variety, N > 2n, Aj
be the set of points of M such that the tangent projective n-space at x e Δj
meets a generically situated CPN_j C CPN {Δj is a subvariety of M), and δj
be the Poincare dual of Δj. Then for n < j < 2n,

δj = %j_n(Ef) .

Proof. Δj = πj(τ f)-ί(PN_j)), PN_j being generic. Now the genericity as-
sumption implies that τ-f: Pf —> CPN is transversal to PN_j. Hence the fun-
damental class of (τ-fΎι(PN_j) is given by

where S) P / : H*(Pf) —• H^(Pf) is the Poincare duality isomorphism. Hence

where (πf)ι: H*(PfM) —> H*(M) is the "umkehrungshomomorphismus" or
more simply "integration over the fibre". Hence ^ is the coefficient of χ7} in
χ} written as a polynomial in Cj(Ef) and χ^, where the degree of the χ^terms
are < n.

The result follows from an easy calculation, q.e.d.
The Chern classes of Ef may be computed by well-known formulas (see

Hirzebruch [1, p. 64] for example) in terms of the Chern classes of M, and
ξ z= /*(#) where ξ is the class dual to a generic hyperplane section of /. We
may then use these to compute the δ/s successively from j = n + 1, , In.
These expressions for δj can now be inverted to obtain expressions for Cj(M),
the Chern classes of M, in terms of ξ and δj. The actual computations are
complicated so we give some examples:

Theorem 2A. Let f: M —> CPN,N > 4, be a cusp-free algebraic surface
(i.e., dim c M = 2). Then
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cγ{M) = 3? - δ, , c2(M) = 3ζ2 - 2ξ 33 + δl - δ4 ,

where ξ, ^ are as above.

Theorem 2B. Let f: M-> CPN (N > 6) be a cusp-free variety dim M = 3.

= 4ζ - δ, ,

c3(Λί) = 4f3 - 3f2 34

Remarks. Our method is of course not the first attempt at a geometric
formulation of the Chern classes. Indeed Chern classes were first introduced,
in the Chow ring of a nonsingular variety by Todd and Eger using the so-called
"canonical systems".

Our result is certainly more "geometric"-the classes δj are far more intuitive
then Todd's canonical classes, which are pullbacks of Schubert cycles under
the dual map. Also our method yields results in arbitrary codimensions, pro-
vided the singularities of the variety are generic, i.e., those which would arise
when a nonsingular variety of dimension n in CP2n+k is projected to a CPm

(n < m). In such a case the classes δά may be reinterpreted in terms of other
geometric invariants. For example, suppose a surfaced in CP3 arises from a
generic projection of F: M —> CPb onto CPZ, F being a cusp-free variety. Then
<54 clearly does not make sense for S. However, δA(F) is the Poincare dual of
the set of "pinch-points" in the double-curve of S. (See, Semple and Roth [4,
p. 202]).

4. Chern classes and extrinsic invariants

In this section we show how the Chern classes of an algebraic manifold M
affect the extrinsic invariants of a cusp-free variety f:M-+ CPN. We discuss
only algebraic surfaces, where the computations are still reasonable and yet
there are a great wealth of results.

Let /: M —» CPn be an algebraic surface; n > 5.
Definition. The projective characters of / are defined as follows:
The order μ0 is the number of points at which a generic CPn_2 meets f.ltΓ

is the curve cut out on M by a generic hyperplane section, the rank μι is the
number of tangents of Γ which meet a generic CP n _ 2 . The class μ2 is the num-
ber of hyperplanes belonging to a generic pencil which are tangent to /. The
ceto or type v2 is the number of tangent planes which meet a generic CPn_A.

Theorem 3. Let f: M —> CPn, n > 5, be a cusp-free surface, ξ 6 H\M) be
the class dual to a hyperplane section, and c19 c2 be the 1st and 2nd Chern
classes of M. Then
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μQ = <£* [

v2=.<6ξi-4ξ c1 + cl-c2,[M]} ,

where [M] is the fundamental class, and < , > the Kronecker pairing.
Proof. The formula for μ0 is trivial, and that of v2 obvious, since v2 .=

<<54, [M]>. To obtain the formulas for μ19 μ2 we use the following result, which
is very easy to prove (see Semple and Roth [4, p. 194] for example):

Let P, Pf be two 3-codimensional linear spaces generically situated with res-
pect to /, and J 3 , J3 be the algebraic varieties (defined in §3) which arise from
P and P\ Then these are algebraic curves, μγ is the number of points of inter-
section of J 3 with a generic hyperplane, and {μι + v2) is the number of points
of intersection of J 3 and Δf

z. Thus

lh = <*,/*(©*•«> = <£,SV3 3 > = <ξ,8

= <£ U (3f - q) , [M]> = <3f2 - ξ c19

lh = <̂ s U δ3, [M]> - v2

- 6ξCι + cj, [M]> - <6f2 - 4f + c\ - c2,

. q.e.d.

Using these and the Cayley-Zeuthen relations, we can obtain the geometrical
invariants of a generic surface in CP3. (See [4].) Let /: M —> CPZ be a generic
surface, i.e., a cusp-free variety with Γ as double curve on which there are t
triple-points which are also triple points of Γ, and with v points on Γ at which
the two tangent planes coincide.

Let ε0 be the order of Γ, i.e., the number of intersections with a generic
plane, and εx the class of ε, i.e., the number of tangents with meet a generic
line. Then

- <2f2 - ξ .c19 [Λf]> ,

- <f2, [M]> <f .cl9

t =

13f -c, + Icl - lc2, [Af]

and the number d of bitangents passing through a fixed point is
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d = 12(<f2, [M]>) ^ (<?, [M]> - 2j

Remark. It is instructive to note how radically different (and more com-
plicated) these formulas are compared to the case of immersions in Euclidean
space. For example, the number of triple points of an immersion of a compact
4-manifold in E6 is simply the topological index of the manifold-a topological
invariant. This certainly is not so in projective geometry.
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