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ON THE THEORY OF GEOMETRIC OBJECTS

SARAH E. SALVIOLI

Introduction

Since the beginning of this century attempts have been made to define a
concept general enough to include all structures which appear meaningfully in
local differential geometry. Tensors were not general enough, as connections,
very popular since their discovery in 1918, were not tensors. The same applies
to bundles of jets and many other more recent constructions.

The first definitions of these "geometric objects" were published in 1936-1937
by J. A. Schouten and J. Haantjes [14] and by A. Wundheiler [16]. Attempts
to classify geometric objects have been made since; cf. J. Aczel and S. Goίab
[1] for further references. It was not until 1952 that, with A. Nijenhuis' thesis
[8] a quite complete treatment of the theory appeared. In this work the
approach is what we may call classical or numerical: an object at a point P of
a manifold M is a correspondence which assigns to each coordinate system
defined at P a set of N numbers called components. The emphasis is placed on
the fact that if the object is a geometric object, the transformations of its com-
ponents are representations of the groupoid of transformation elements.

New attempts to formulate the theory of geometric objects were made by
Haantjes-Laman (1953) [4] and Kuiper-Yano (1955) [5], with their fiber bundle
approach. In the first paper the space of the object and the group of transfor-
mations operating on it are of primary importance.

We present here a "functorial" approach based on Nijenhuis' "natural
bundle" (1958) [9] and a refinement of it due to E. Calabi. This approach
reflects the observation that most properties of geometric objects are more
easily—and more naturally—deduced from the basic conceptual property of
geometric objects than is possible from the extremely technical coordinate or
bundle definitions in previous literature. This basic property is that fields of
geometric objects (and the "bundles" in which these are sections) are carried
along by local diffeomorphisms. Accordingly, we define a "natural structure"
on a manifold M as a triple (E, π, B) where π: E -> M is the projection map
from the "total" manifold E to M, subject to a number of conditions, the most
important one of which is that B is a functor which "lifts" every local
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diffeomorphism in M to one of E. Initially (E, π) is not a fiber bundle over M,
though local triviality follows easily. If (E, π9 B) is of finite order the structure
group will be a group of jets of diffeomorphisms of the same order, yet our
treatment does not require finite order. Instead, we prove in § 5 that finiteness
of order follows, through only in a certain local sense.

The paper confines itself to the study of Lie derivatives of fields of geometric
objects and thus parallels Chapter II of Nijenhuis' thesis. § 1 gives the basic
definitions related to the lifting of local diffeomorphisms. Calabi's 'continuity'
hypothesis ensures that families of diffeomorphisms in M lift to families in E.
In § 2 we take families of diffeomorphisms generated by families of vector
fields, and obtain a lifting process for families of vector fields on M to families
of vector fields on E. This makes possible the lift of a vector field whose one-
parameter group of diffeomorphisms is unknown but which is known to be an
element of a family of vector fields. That is the case of a bracket of vector
fields whose lift and properties are studied in § 3. In §4 we define the Lie
derivative of a field of geometric objects and prove several properties of it. § 5
deals with linear differential operators between vector bundles with the same
base manifold M. We define two operators Bφ and Lφ for a fixed field φ of
geometric objects with domain U C M, and show that their orders on suitable
open sets of M are finite and equal at every point. Some other properties of
them are proved.

We would like to express our deep gratitude to Dr. Albert Nijenhuis for his
kind encouragement and guidance during the preparation of this paper, and to
thank Dr. Miguel Herrera for his critical reading and many helpful suggestions.

1. Bundle of geometric objects

1.1. Notation, a. The manifolds we use in this work are all differentiable
C°°-manifolds; all maps are also C°°. C°°(M) is the ring of real valued functions
on M. If μ is a fiber bundle, C°°(μ) is the set of sections of μ. If M is the base
manifold of μ and U an open set of M, then C°°(μ \ U) is the set of sections of
μ with domain on U.

b. If M is a manifold, we denote by TmM the tangent space to M at m e M
and TM = U TmM. If /: M — N is a map, its differential is df: TM -> TN.

For curves γ: R —> M we write γ^. instead of dγ.
c. If a = (a19 - - , an) is an n-tuple of nonnegative integers, we put | α | =

a ι + . . . + an and a! — aλ! -an!. If x = (x19 , xn) is an π-tuple of real

numbers, then xa = jcf1- •*?% a n d w e w r i t e D" f o r t h e differential operator:

Da = — .

d. If μ is a differentiable fiber bundle, we denote by Jk

p(μ) the space of
Jfc-jets of μ at p, and by /*(/) the Λ-jet of / at p,f e C°°(μ), ([12], [13]).
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e. If M is a manifold we denote by C{M) the category whose objects are
the open sets of M and whose morphisms are the local diffeomorphisms between
those objects.

1.2. Definition. A "natural structure" on a manifold M is given by a triple
(E, 7r, B) where: E is a manifold, E Φ&\ TΓ : E -+ M is a C°°-map (projection)
B: C{M) -* C(£) is a covariant functor called "natural functor" satisfying:

i) if U e Ob (C(M)), then B(U) = j r^ϋ) e Ob (C(E)),
ii) if / e Mor (C(M)) with /: U-+U', then £(/): TΓ" 1 ^) — π~W), where

Ob stands for object, Mor for morphism, and B(f) 6 Mor (C(E)) and satisfies:
a. if f(x) = y, then £(/)(*" X*)) = π~\y), i.e., ^ ( / ) = fπ,
b. if ψ e Ob (αAί)), W dU, then £(/) | r W ) = B(f \ W)
iii) if N is any manifold and fn: M —* M is a difϊeomorphism for every

neiV such that the map

H: N X M >ΛT X M

(n,m) —--> (n,fn(m))

is also a difϊeomorphism, then the map

# * : Λί X E >N X E

is a difϊeomorphism.
1.2.1. Remark. The projection π and the fibers over every point of M, in

the definition above, have the following properties:
A. π is surjective. It is obvious from condition ii) and the fact that we can

always get a local diίϊeomorphism which sends any point of M to any other
point of M.

B. The fibers over every point of M are not empty (by property A) and
isomorphic to each other.

C. dπ is surjective. It follows from the fact that if vm e ΓmM, there always
exists a vector field v defined in a neighbourhood U of m, with local one-
parameter group of diffeomorphisms {/J such that v(m) = vm. Then by con-
dition ii), {B(ft)} is a local one-parameter group of diffeomorphisms on π~\U)
such that if b is any element of π~ι(m) and h e Cζ{π~\U)), then

V(b)(h) = A-
dt

hB((ft)(b)

is a tangent vector of E at b. The projection dπ(V(b)) is vm by condition ii a).
D. As a consequence of the fact that dπ is surjective it is possible to get a

C°°-manifold structure on π~ι(m) for every mzM such that if /: π~\M) —> E
is the identity map, {π~\m), ί) is a submanifold of E with dim π~\m) —
d i m £ - dimM, [15].
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1.3. Definition. A manifold M together with a "natural structure" (E, π, B)
is a bundle of geometric objects denoted (M E,π,B). A section φ of π: E —> M
with domain on an open set U of M is a /ze/d 0/ geometric objects on C/ and
for every xeU, φ(x) is a geometric object at c.

1.4. Given an element /<= Mor (C(M)), /: U->U', and a field 0 of
geometric objects with domain on U, we define a new field φ* of geometric
objects on V by

0*(*) = B(f)φ(t\x)) , * e C/' .

That 0* is a field of geometric objects on JJr follows from the following com-
mutative diagram:

U -^U π-\U)

W • πW

We say that 0* is induced by φ by means of /.
1.5. Examples of bundles of geometric objects. Later we shall make use

of some bundles of geometric objects derived from a given one, say
(M; E, π, B), and therefore it seems to be useful to study them now.

A. Tangent bundle of M. It is obviously a bundle of geometric objects
where the functor

Bf. am -> aτ(M))

is given by
i) if ϋ 6 Ob (C(M)), then B\U) = TU,

ii) if / e Mor (C(M)), then B'(f) = df.
Clearly df satisfies ii a) and ii b) of Definition 1.2. We shall see that it also
satisfies iii). Let

H: N X M-+N X M

with H(n, m) — (n, fn(m)), be a diίϊeomorphism where N is any manifold and
fn\ M —» M is also a diίϊeomorphism for every n e N. Then dfn: TM —> TM
is a diffeomorphism and so is dH: T(N x M) -> Γ(N X M). Therefore the
map

H*: iV X TM -> iV X TM

which can be factored as follows:



THEORY OF GEOMETRIC OBJECTS 261

N XTM > TN X TM > TN X TM > TN x TM

(n,v(m)) —-> (0(/ι), v(m)) —-> (0(n), dfnv(m)) —-> (n,dfnv(m)) ,

is a diffeomorphism.
B. If the projection π*: TE-+M be such that π*(ve) = τr(V), and the

functor £ * : C(M) -> C(TE) be such that
i) Λ*(ϋ) = Π Γ-Kt/)), t/ 6 Ob (C(M)),

ii) #*(/) = dB(f), f e Mor (C(Λί)),
then (M; ΓZs, TΓ*, 5*) is a bundle of geometric objects.

C. Let (M E, TΓ, 5) be a bundle of geometric objects. By Remark 1.2.1 we
know that for every x e M, π~\x) has a unique manifold structure such that
(π'ι(x), ί) is a submanifold of E (i: the inclusion map). Moreover if dim E =
ra, dimM = n, then dim TΓ" 1^) = m — n. Obviously Γ(TΓ~1(JC)) is also a
2(ra — π)-dimensional manifold. Therefore

Z = U TXTΓ-K*))

is a (2m — «)-dimensional closed submanifold of TE. We may then build a
new bundle of geometric objects on M with the data (X, π', B'), where:

satisfies π\ve) = π(e). This means that π! is the composition of the restriction
of p': TE —• E to X and π, both of which are C°°-maps.

B':C(M)->C(X)

is a covariant functor which satisfies:
i) if U 6 Ob (C(M)), then B'(U) = ̂ ^(C/) = U Π ^ W ) ,

ii) if / e Mor (C(M)), then Λ'C/) = dB(f).
Conditions ii a) and ii b) of Definition 1.2 are obviously satisfied. We have to
prove that condition iii) is also satisfied. Let N be any manifold and let

JΪ:JγχM.-*JVχM

be a diffeomorphism such that H(n,x) = (n,fn(x)) with fn: M —> M a diffeo-
morphism for every n € N. Therefore, as (M; E, π, B) is a bundle of geometric
objects,

H*: N XE-+N XE

with #*(tt, e) = (n, B(fn)(e)) is a diffeomorphism and so is dH*. Then the map

H**:N XX-+N XX

with H**(n, ve) = (π, dB(fn)(ve)), which can be factored as follows:
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dH*

N XX • N XTE — > TN X TE • TN X TE

> N XTE • Λ ί χ l

(n, ve) -—• (n, ve) •> (0n, ve) •> (0n, dB(fn)ve)

—-> (w, dB{fn)ve) —-> (n,dB(fn)ve)

is a diffeomorphism. Therefore (M; X, TΓ', Z?') is a subbundle of geometric
objects of (M; TE, TΓ*, 5*).

2. The lift of a family of vector fields in a bundle

of geometric objects

2.1. Let W be an open set of R x M, where R is the real line and M is
a manifold. A family {vj of vector fields on π2(W) c M i s a map [10]

v: W-+T(π2(W))

with v(t, x) = ^ί(jc), C1 at ί and C°° at x, which makes commutative the follow-
ing diagram:

M

where p is the projection of TM —» M.
The theory of differential equations says that every pair (s, y) ζ.W determines

an integral curve cs>y of {vt} defined for every t of an open neighbourhood of
s e R, such that

( 0 ) vt(cStV(t)) = cStV*(d/dr) and cStV(s) = y ,

where d/dr is the unit vector at the origin of R. These integral curves have,
among others, the following properties:

a. each integral curve belongs to a maximal integral curve;
b. two integral curves have a point of W C R X M in common if and only

if they are joinable (if they have the same value at a common point of their
domains they have the same value at every point of the intersection of their
domains, and the union of the curves is the curve defined on the union of those
domains).

The family {vt} of vector fields defines also a map

f: R X RX M-+M

given by
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f(s, t, y) = cStV(t) ,

where s ε πx(W) C R and t <~ dom cSty (maximal). For each fixed pair (s, t), f
defines a local diίϊeomorphism on M

f(s, t, y) = fgιt(y)

and, for each fixed s, a family {/J of local difϊeomorphisms on M, which we
say is generated by the family {vt}. The map / has the following properties:

c) hAfsΛy)) = Ur(y),

, 7,
e) fss = id for every s.
If the family {vt} of vector fields does not depend on the parameter t it

becomes a unique vector field v — vt for all t, defined on an open set U of M,
and therefore the family {/J of local difϊeomorphisms generated by {vt} satisfies
the condition

fs,t = fθ,t-s '

In fact, as the curve cQtV is a reparametrization of cStV, both curves are solutions
by y of the same differential equation because vt = vt_s. Then

If w e p u t ft = /o,t, t h e family {/J satisfies:

c θ fsft = ίsΛ-t f ° r a l l J» ̂  s u c π Λ a t 5 + ί € d o m (c0 x)9xeU,
dθ /-S-/Λ
eθ /o = id.
Therefore, when the family {vj consists of a unique element v which does

not depend on ί, it generates a one-parameter group {/J of local diffeo-
morphisms.

Then, given a family {vt} of vector fields with domain on an open set U of
a manifold M, and given a function k ε C°°(l/), we can write, by (0),

which we shall write omitting s when it does not lead to confusion. Moreover,
considering that ftoM = id and ftOtt = fsj~]o, we obtain the more convenient
formula:

vt0{x){k) =-?L
dt

or omitting s
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d

dί
kftf70\x) .

If the family {vt} does not depend on the parameter t, the above formula
becomes:

v(ft(x))(k) =
dt

or

( 2 ) v(x)(k) = 4 - */«(*)

2.2. Let (M E, π, B) be a bundle of geometric objects, {vt} a family of
vector fields defined on an open subset U of M, and {/J the family of local
difϊeomorphisms generated by {vt}. It is possible, by means of the functor B,
to define a new family {B(ft)} of local difϊeomorphisms with domain on the
open subset π~ι(JJ) of E. This family defines in turn a family of vector fields
on π~ι(U), given by

( 3 ) B(v)tQφ)(h) =
dt

hB(ftΰtt)(b) =
dί

hB(ft)B(fr*Xb) ,

where, in the third member, the parameter s has been omitted, h β C°°(π~ι(U)),

and b 6 TΓ^C/).

If the family {vt} does not depend on the parameter ί, formula (3) becomes
(as we saw in Remark 1.2.1)

( 4 ) B{v)(b){h) = A

2.3. Lemma. ΓΛe family {B(v)t} of local diffeomorphisms on π~\U) defined
above has the following properties:

a) // {vt} and {vf

t} are two families of vector fields on U, then

B(v + v')t = B(v)t + B(v')t .

b) // a: R —> R is a C°°-function, and {vt} a family of vector fields on U,
then

B(a v)t = a(t) B(y)t .

Proof, a) If {/J and {ft} are the families of local diffeomorphisms generated
by {vt} and {vf

t} respectively, and k e C°°(U), we have:
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dt ί=ίo
- A-

dr

Then by putting /,„/„,, = f*,£,

*/?„•(*)

and applying formula (3) of § 2.2, we have for b e JT^C/) and Λ e

(φ + v%(b)(h) = A-
at

at

A
dr

hB{jtjB(i'tJib)
0

hB(ft.tt)(b) + 4~\ Wtjtb)

b) Let α: R —» i? be a C°°-function. It can be considered as a vector field
on R, which defines a one-parameter group of local diffeomorphisms {gt} such
that

and in particular

Let A: e C°°(U), and let {/J be the family of local diffeomorphisms generated

by {vt}. Then

d

dt

d

— - dt

= (cc v)tΰ(x)(k) .

This result and formula (3) of § 2.2 lead us to the following expression, where

b € π'\U) and A € C^π

B(a v)t0(bXh) = A-
dt
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d

= a(QB(v)tQ(b) .

2.4. We claim that the family {B(v)t} is well defined, that is, if {vt} and
{v't} are two families of vector fields with domain U such that v0 = v'o on an
open subset V C t/, then B(v)0 = ί(v')o o n ^ ( F ) . Or> considering the
properties of {B(v)t} proved above, if the element vQ of {vt} is null on V C t/,
then 2f(iOo = 0 on π~\V). In order to prove it, we need the following lemma.

2.4.1. Lemma. Let M be a manifold, and {vt} be a family of vector fields
defined on an open subset U of R x M such that

v(t, x) = vt(x) for each fixed t ,

and

v(0, x) = vQ(x) = 0 /or all x € ^2(t/) .

Then there exists another family {wt} of vector fields with the same domain of
{vt} such that

vt(x) = twt(x) for each t .

(for the proof see [11, p. 8]).
Therefore, returning to our claim, we see that there is a family of vector

fields {wt} with domain on V such that {vt} = {twt}9 and in particular vQ — O w0

= 0. Then, putting

{vt} = {twt} = {(id w)t},

by property b) of Lemma 2.3 we have

{B(v)t} = {B(idw)t} = {tB(w)t} ,

3. The lift of a bracket of vector fields in a bundle
of geometric objects

3.1. Let (M; E, π, B) be a bundle of geometric objects, and let u and v
be two vector fields defined on an open subset U of M. If {gj and {/J are the
one-parameter groups of local diίϊeomorphisms generated by u and v respec-
tively, it is possible to define a family of local difϊeomorphisms on U, by putting
for each t:
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The family {ht} generates a family {wt} of vector fields on U, where w0 =
[v, u], [2, p. 18]. That is, if A: 6 C°°(C/), considering formula (1) of § 2.1 and
the fact that Λo = id we have

wo(x)(k) = 4 - kht(x) = [v, «](*)(*) .
dt

Then formula (3) of § 2.1 gives, for k' e C"(π-'(ί/)) and b e JTX

k'B{h)t{b)
dt

r ) (i)

Therefore

( 5 )

4. The Lie derivative of a field of geometric objects

4.1. Let v be a vector field defined on an open subset U of a manifold M.
We may consider v as the element v0 of a family j ^ } of vector fields such that
if {ft} is the family of local diffeomorphisms generated by {vt}, then /0 = id.
In fact, if v is the element vtQ of a family {vt} which generates a family {/J of
local diffeomorphisms, we define a new family {gt} of local diffeomorphisms by
putting for each t

which implies g0 = id. Let {v't} be the family of vector fields which generates
{gt}. Then for each jceί/we have VQ(X) — vu(x) = v(x).

4.2. Let v be a vector field defined on an open subset U of a manifold M,
the base of a bundle of geometric objects (M; E, π9 B), and suppose that v is
the element i;0 of a family {t J of vector fields on U which generates a family
{/J of local diffeomorphisms on U with f0 = id. If 0 is a field of geometric
objects on U, and for x e U, Ux C U is a neighbourhood of c such that for
some ε > 0

ft(Ux) C C/ for |/| < e ,

then we may define the curve

given by
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γx(t) = Bijϊ^φf^x) £ π~\x) .

The curve γx is a C°°-curve because it is the composition of the following
C°°-maρs:

(-ε, ε) • (-ε, ε) X ϋ • (-ε, ε) X π'\ϋ)

- ^ (-ε, ε) X π~\U) > π~\U) ,

where the map c is C°° due to condition iii) in the definition of B.
4.3. Definition. Let φ be a field of geometric objects, and let v be a vector

field, both defined on an open subset U of the base manifold M of a bundle of
geometric objects such that they satisfy the conditions established in § 4.2. The
Lie derivative at x e U of a field φ of geometric objects with respect to a vector
field v is given by

( 6 ) Lφx(h)= d

dt

where h ζ. C°°(π~ι(U)). If v is an element vto of a family {vt} of vector fields,
by §4.1, (1) becomes

( 7 )

4.4. The Lie derivative L φx of a field φ of geometric objects with respect

to a vector field v is well defined. That is, if there are two families of vector

fields {vt} and {v[} such that v = v0 = v'o, then

( 8 ) Lφx = Lφx .

In order to prove this, we need the following lemma in the theory of families
of vector fields, [2], [9]:

4.4.1. Lemma. Let {vt} and {ut} be two families of vector fields defined on
an open subset U of a manifold M such that they generate the families {ft} and
{ft1} °f local diffeomorphisms, respectively. Then the following equality holds

( 9 ) vt= -dftut .

Proof. It follows from § 2.1 that the family {vt} of vector fields defines a
map f: R X R x M -> M by/O, t, y) = cs>y(t). If we fix s and omit it, as we
have been doing up to now, we may consider / as a map
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f:R XM-+M ,

which for every fixed t is given by

269

Therefore, if we put gt — fo1 for \t\ < ε, e determined by {vt}, then the maps

/ : ( - e , β ) X £ / - > £ / ,

g: (-e,e) XU-^U ,

df: Γ((-e,e) X ϋ) -» TU ,

dg: Γ((-e,e) X U) ̂  TU

satisfy

and, in particular,

g(ί, f(t, m)) = m ,

= v{m) ,

Therefore

0 m = dg{(r, t), df((r, t), (m, 0))) = dg{{r, t), (/r(m), tvr))

= dg((r, 0), (fr(m), tvr)) + dg((r, t), (fr(m), 0))

+ tur{gr{Um))) ,

which implies

dgr{vr(ίr{m))) = -ur(m) ,

or

= -ur{m) .

Returning to our claim we see that if {ft} and {#} are families of the local

difϊeomorphisms generated by {vt} and {v't} respectively, what we have to prove

is that for h € C~(π-KU)),

J_
dt

dt

But the left hand side of this equality can be written as
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dt dt 4dt

and the right hand side can be written in a similar way. If, as in the above
lemma, {ut} and {u't} are the families of the vector fields which generate {f;1}
and {ff1} respectively, then we have

(10) dt

(11) dt

hB(f;ι)φft{x) = B(uQ)φx + dφvo(x) (by the lemma)
0

= dφvQ(x) - B(vQ)φx ,

φfiw = B{υ$φx + dφvo(x) (by the lemma)

= dφvfa) - B{v'0)φx .

As v0 = v'o, it follows, by § 2.4., that (10) and (11) imply (8).
4.5. We obtain two important conclusions from §§4.3 and 4.4.:

a) Formulas (6) and (7) show that L φx is a tangent vector to the curve

γx C π~\x) at the point φx. This means that Lφx e TφxE. Moreover, by observ-

ing that L φx(h) = 0 for each function h e C°°(E), which is constant on TΓ" 1 ^),

we conclude that

LφxeT(π-\x)) .

Therefore L φx is, at each point where it is defined, a geometric object of the

bundle (M; X,π\B') (see § 1.5 C) and a subobject of (M; ΓE,τr*,J5*) (see

§1.5 B).
b) Formula (10) is an important result in the theory of the Lie derivative

of a geometric object, which can be generalized by means of Lemma 4.4.1
and formula (7). As we shall make frequent use of it, it will be useful to
establish the following proposition.

4.5.1. Proposition. Let v be a vector field defined on an open subset U of
the base manifold of a bundle of geometric objects, and φ be a field of
geometric objects defined on U. Then for every x e ί/ we have

x = dφ(v)(x)- B(v)φx .(12)

If v is an element vla of a family {vt} of the vector fields which generates the
family {ft} of local difjeomorphisms on U, we have

(13) Lφx =
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4.6. Proposition. Let (M; E, π, B) be a bundle of geometric objects, φ be
a field of geometric objects defined on an open subset U of M, /: U —• f(U) C
M a diffeomorphism, and v be a vector field on U. Then the following expres-
sion is satisfied:

dB(f)Lφx = LυB(f)φx.

Proof. Assume that v is the element v0 of a family of vector fields such
that the family {/J of local diίϊeomorphisms generated by v satisfies the condi-
tion /0 = id. Then, for h e C°°(π-ι(U)),

dt

= L(φf)f.1(X)(hB(f)) = (dB(f)LφxXh) .

4.7. Corollary. // the diffeomorphism f of the above proposition is an
element ft of the one-parameter group of diffeomorphisms generated by the
vector field v, then, for any h e C°(π

dB(f_t)Lφ/t(x)(h) = L (B(f_t))φft(x)(h) =
dt

't(X) '

Proof.

dt
hB(ί_t)φ/tm = ±-

ds
hB{1_s)B(i-t)Φf,ftW

= dB(f_t) L φfax) ,

because (,dftv)(x) = v(x) for each /.
4.8. Proposition. Let φ be a field of geometric objects defined on an open

subset U of a manifold M, and let v,u be two vector fields with domain on U.
Then for any pair (α, b) of real numbers the following expression is satisfied:

Proof. It is obvious from Proposition 4.5.1, the linearity of dφ, and the

operator v —» B(v).
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4.9. Definition. Let (M; E,π,B) be a bundle of geometric objects, and
{ft} a family of local diffeomorphisms defined on an open set ( —ε, ε) X U C
R X M. A field φ of geometric objects is invariant under the deformation {ft}
if:

a. dom (ft) C dom (φ), im (ft) c im (0) for each | ί | < ε,

b. B(ft)φx = φft(x) for each x e U and \t\ < ε.

4.9.1. Corollary. // a field of geometric objects is invariant under {ft}, it
is also under {/j"1}.

4.10. Proposition. Let (M; E, π, B) be a bundle of geometric objects, and
{vt} be a family of vector fields on an open subset U of M generating a family
{ft} °f diffeomorphisms. Then a field φ of geometric objects defined on U is
invariant under the deformation {ft} if and only if L φx = 0 for each x e U and
\t\<ε.

Proof. If φ is invariant under the deformation {ft}, it is invariant under
{/Γ1}. Thus, if h € C~(π-\U)), we have

hφx = 0 .
t=ί0 at

Conversely, if L φx = 0 for each x e U and \t\ < ε, then L φft (x) = 0 for

\to\<ε and, by linearity, dB(j^) L φftoix) = 0. Therefore for any h e C^iπ'^U))

we have

0 = vLφ/ttWίhB(ffl)

d

dt

at |ί=«o

which implies that the curve γx(t) = B(f^^ft{x) has vanishing tangent at each
point. Thus the curve is constant so that

B(f;^ft{x) = φΛ, or φft{x) = B(ft)φx .

4.11. Lemma. Let (M; E, π, B) be a bundle of geometric objects, and φ
a field of geometric objects on an open subset U of M. If the families of the
vector fields {vt} and {ut} satisfy the condition

for each x € U and \t\ < ε, and {ft} is the family of local diffeomorphisms
generated by {vt}, then we have
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L φa = 0 jor\t\ < β , | i | < β ,
ajsUt

and, in particular, L φx = 0 for \t\ < e, \s\ < ε.

Proof. If L φx = 0 for each t € £/ and |ί| < ε, and 0 is invariant under

the deformations {/J and {fϊ1}, then

= dB(js) L B(j;')φίίfτHx)

= dB(f.) Lφ/rUx} = 0 .

4.12. Lemma. Let (M E, π, B) be a bundle of geometric objects, and ξ
the tangent bundle of M: ξ — (TM; p,M). If φ is a field of geometric objects
defined on an open subset U of M, then the set

G(U,φ) = {v;vζ C"(ξI £/), Lφx = 0, for each « ί / }

is a vector subspace of C°°(ξ | U), and the set

9(U,φ,e) = {{ft}; {ft} generated by {vt}; vt e G(V,φ), \t\<ε}

is a group under the_composition {ft} {gt} = {ft St}, 1*1 < e
Proof. 1. a) OeG(U,φ).
b) If v 6 G(U, φ), then -v s G(ί7, ^).
c) If v, u e G(E/, ?5) and a,bzR, then αv + fc« e G(£7, φ).
2. a) The family {/(} with /( = id for each t belongs to &(U, φ, e) because

dzG(U,φ).
b) If {/,} e 9{Ό, φ, β), then {/r1} € 9{ϋ, φ, β).
c) Let {/J and {gj be elements of &(XJ, φ, ε) such that there exists the

composition ft gt for |ί | < ε. If k 6 C°°(t/) and |ίo| < e, then

dt

r=t 0

= vh(x)(k) + (dft<ίutΰ)(x)(k) = (vtΰ + dfhut0){x)(k)

From the first part of this lemma and Lemma 4.11,

vt, + dfhut0 € G(U, φ) ,

so that {ft gt} is an element of @(U,φ,e).
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5. The linear differential operators Bφ and Lφ

5.1. Definition. Let M be a manifold, and μ, ω be two vector bundles over
M. A linear differential operator from μ to ω is a C-linear map

such that

(14) supp (P(s)) C supp 0)

for any s e C°°(μ).
The operator P is of order k if k is the smallest integer (k < oo) such that

for each ra € M and each / 6 C°°(μ) (see §1.1),

Uf) = 0 implies P(/)(m) = 0 .

5.2. We shall now recall Narasimhan's rewording [7] of a theorem due to
Peetre: Let M be a manifold, μ and ω be two vector bundles over M, and P
be a linear differential operator from μ to ω. Then every mzM has a neigh-
bourhood £/ diffeomorphic to an open set Ω in JRW such that μ \ U and ω | £/ are
trivial and the induced operator from μ \ U to ω \ U over Ω has the form

( 1 5 )

 |β|§<ββflβ(#n)Z)« ,

where if s, r are the ranks of μ and ω respectively, then the αα(m)'s are s X r
matrices.

Remark. The theorem of Peetre says that for every m e M there is an open
neighbourhood U of m where the order /: of the operator is finite. Therefore
the order will be finite in every relatively compact open set of M.

5.3. Let (M E, π, B) be a bundle of geometric objects, and φ a field of
geometric objects defined on an open set U of M. If (TE, p', E) is the tangent
bundle of E, then its restriction to π~\U) is a new vector bundle, and the pull
back of this vector bundle by φ [5, pp. 38, 39]

is a vector bundle μ

where ώ*Q/) = πpf

P i
U — —

μ=(\J Tφχ(π-KU)
\x<zU

with the corresponding

Γ

0, wp, £/) ,

restrictions.
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If ξ is again the tangent bundle of M:

ς = (TM,p,M) ,

we may define the operator

Bφ: C-(£|C/)->C-0f)

by

Bφ(v)(x) = B(v)φx

satisfying:
i) Bφiv) is a section of μ,

ii) Bφ is a linear differential operator:
a) it is linear by Lemma 2.3,
b) it satisfies condition (14) of Definition 5.1. In fact, since supp (v)

= Cl {x e dom (v) v(x) Φ 0}, the complement of supp (v) is open, and if
z belongs to it there is a neighbourhood Uz of z such that Uz Π supp (v) = 0.
Then ^Cy) = 0 for every y € C/2, and

£0(i;)(z) = B(v)φz = 0

by § 2.4 (z cannot be a frontier point).
Therefore the operator Bφ defined above is a linear differential operator,

and by § 5.2 for each x e U C M, there is an integer 0 < k < oo such that

(16) Bφ(v){x) = Σ ba{x)D«(y){x)
||

with the identifications ξx — Rn, μx ~ Rm (n = dim M, m = dim E).
We saw in § 1.5 C that the set

X= u Γ^

is a closed submanifold of ΓE, so that the vector bundle (X, p\ E) is a vector
subbundle of (TE, p', E). If φ is a field of geometric objects on an open set U
of M, the pull back of (X, p', E) by φ:

Φ*<j>')\ \pf

U — Φ - ^ E

is a new vector bundle ω, where φ*(p') — πp' = π' with the corresponding
restrictions,
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ω = U Tφx{π-\x)), π', U) .
\χeu I

Therefore it is possible to define a new operator

L0:C-(£|C/)-C-(ω)

by

Lφ(v)(x) — Lφx.

By Proposition 4.5.1 we know that

Lφx = d^O) — Λ ( v ) ^

so that there exist (n X m)-matrices aa such that

(17) ^ ^ = Σ aa(x)Da(v)(x) .

From (17) it is clear that Lφ is a linear differential operator which has the same
order as Bφ at every xeϋ.

5.4. Suppose that φ and φf are two fields of geometric objects defined on
an open set U of M with φXo = $.o for some x0 6 U, and assume that for some
open set W,xoζW C E/, there exist & and kf such that, for * e JF,

J ( * = Σ ba(x)Da(v)(x) ,

B{v)φ'x = Σ b'£x)D°{v){.x) .
\a\£k'<oo

As φXo = φXo, we have B{v)φXo = B{v)φXQ and therefore

for each or, |α | < Λ = Λr.
5.5. Lemma. Let Lφ: C°°(f 11/) -+ C°°(ω) fc^ ί/zβ /mβαr differential operator

defined in § 5.3. // the order of Lφ is k < oo on an open set W C U, and
f: U —> /(C/) a M is a diffeomorphism, then the order of LB(f)φ is also k.

Proof. If the order of Lφ on W is k, then ft is the samallest integer such
that for any v eC°°(ξ\U) and x 6 W,

jl(v) = 0 implies L0(V)(JC) = 0 .

But being / a diffeomorphism, if ueC°°(ξ\f(U))9 then /*u)(w) = 0 implies
^u) = 0, and, by hypothesis.

0 = dLluφ(x) = dLluB(j-ι)B(j)φ(x) - dΛtf-1) L (B(f)φ)(f(x)) .
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Therefore by linearity,

?nx)(u) = 0 implies L (B(f)φ)(f(x)) = 0 ,

where k is the smallest integer which satisfies this condition. If there is an
integer k' < k which satisfies the condition, it will be the order of Lφ.

5.6. Let, as before, ξ = (TM, p, M), and let U be an open set of M such
that U is homeomorphic to Rn and ξ | U is trivial. It is possible to introduce a
topology on C°°(ξ \ U) defining a fundamental system of neighbourhoods for
every v e C°°(ξ \ U) as follows [6]:

@(m,v,k,ε) = {ueC~(ξ\U); \\u - v\\* < e} ,

where m is an arbitrary positive integer, K runs over all compact subsets of U
and ε over all positive real numbers. We recall that the norms are given by

N l £ = Σ - V S UPP \DaV(*)\ (=oo itSφ compact) ,
\a\<,m a: xes

where u € C°°(ξ\ U) and 5 C U. This topology satisfies:
a) if has a countable basis,
b) {Vi\ —* v if and only if DaVι —> Dav uniformly on compact sets for all a

with I a I < k (all a if k = oo),
c) it is metrisable,
d) it is complete.
5.7. Now let W be an open subset of M, homeomorphic to an open subset

of Rn such that ξ\W and ω\W, as defined in § 5.3, are trivial and

Lφ(v)(x) = Σ aa(x)D"(v)(x)
\«\<,k<oo

for x e W and v € C°°(£| W). By Peetre's theorem such W exists.
5.7.1. Lemma. Let {Vi}ieI be a sequence of vector fields of C°°(ξ \ W), such

that {Vi}ieI —> v uniformly on each compact subset S C W. If Lφx = 0 for

some field φ of geometric objects defined on W,x e W and every i e I, then

Lφx = 0.

Proof. Clearly from property b) of the topology of C°°(?| W).
5.7.2. Lemma. Let W and φ be the same elements defined above. Then

G(W, φ) = {v,ve C°°(ξ I W), L φx = 0 for each xzW)

is a closed vector subspace of C°°(£| W).
Proof. G(W, φ) is a vector subspace of C°°(ξ\W) by Lemma 4.12. If {vt}

is a sequence such that vt € G(W, φ) for every / e /, and {v^ —> v, then
v e G(W, φ) by Lemma 5.7.1.
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