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A CLASS OF VARIATIONALLY COMPLETE
REPRESENTATIONS

LAWRENCE CONLON

Introduction

Let M be a complete Riemannian manifold on which a compact connected
Lie group K acts as a group of isometries. If M = Rn, then K has a fixed
point, hence we lose no generality in assuming for this case that the action of
K is a linear orthogonal representation.

Bott and Samelson [5] have defined the concept of variational completeness.
Roughly speaking, the action of K on M is variationally complete if it produces
enough Jacobi fields along geodesies to determine the multiplicities of focal
points to the ^-orbits. This notion remains interesting and useful for the case
M = Rn (e.g., cf. [4], [5]).

In [6] we formulated the notion of a "ϋC-transversal domain". This is a
closed connected flat totally geodesic imbedded submanifold T C M which
meets all J£-orbits and is orthogonal to every £-orbit at each point of intersec-
tion. We showed that the existence of a K-transversal domain implies varia-
tional completeness, and deduced strong structure theorems for the singular
set, the Weyl group, and the Bott-Samelson ^C-cycles. For M = Rn, such a T
is evidently a linear subspace.

The theorems of [6], applied to the case M = Rn, show that those orthogonal
respresentations of K which admit a X-transversal domain bear striking re-
semblances to the isotropy representations associated to compact symmetric
spaces (hereafter referred to as s-representations). Indeed, ^-representations
constitute the principal class of known examples. This suggests that further
such analogies should be sought and exploited, the ultimate aim being a com-
plete structure theory and classification.

We will present here three theorems which advance the above program. For
this purpose we employ a linear map (due to Kostant)

R: Λ\Rn) -> k = Lie algebra of K ,

which will be called the curvature tensor of the representation. R is defined
for an arbitrary orthogonal representation of K, and in the case of an
^-representation it will actually coincide with the Riemann tensor [9]. Usually
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we interpret R as an antisymmetric bilinear map on Rn and write R(X, Y) for
R(X Λ Y). The precise definition and fundamental properties of R will be
reviewed carefully in § 1.

Definition. A linear subspace V of Rn is Λ-flat if and only if R(V, V) = 0.
Our first theorem shows that the properly generalized theorem of Cartan-

Hunt [7] not only holds, but characterizes our class of representations.

Theorem I. The orthogonal representation of K on Rn admits a K-trans-
versal domain if and only if any two maximal R-flat subspaces of Rn are
conjugate under K. In this case the K-transversal domains are precisely the
maximal R-flat subspaces.

For the statement of the second theorem recall from [6] the notion of the
Weyl group W. If T C Rn is a ^-transversal domain, then W is the group of
transformations of T produced by those elements of K which leave T invariant.
By [6, Theorem III] this is a Coxeter group. Indeed, the singular varieties
P19 , Pr in T are linear subspaces of codimension one, and W is generated
by the reflections of T in these subspaces.

Theorem II. Let T c Rn be a K-transversal domain, and W the Weyl
group. Then K is reducible on Rn if and only if W is reducible on T. Indeed,
each orthogonal W-invariant decomposition T = 7\ φ T2 corresponds to an
orthogonal K-invariant decomposition Rn = V1 φ V2 such that Tt is a K-trans-
versal domain for Vu i = 1, 2.

The curvature tensor R is a useful tool in the proof of this theorem.
Recall from [6, (3.6)] that, corresponding to the singular varieties P1 5 , Pr

in T, there is a direct sum decomposition k = kτ φ mι φ φ mr as vector
spaces, where kτ is the annihilator of T in k, nti _[_ kτ for all i, and kτ φ ntt
is the annihilator of Pt in k.

^-representations are well known to have the following important properties
which, however, are not enjoyed by every representation having a J^-transversal
domain:

(a) nti J_ ntj for all i ψ j .
(b) If Rn = Vλ φ V2 is a nontrivial orthogonal decomposition into K-

invariant subspaces, then there is a decomposition k = kx φ k2 into nontrivial
complementary ideals such that ki(Vj) = 0, i Φ j .

For purposes of classification, (b) is a desirable property. If anything, (a) is
even more desirable. Indeed, we will prove (again with the help of R)

Theorem III. (a) implies (b).
Actually, (a) has a number of pleasant consequences which we hope to

discuss in some later paper. For instance, it enables one to use R to define a
finite system 9ί of linear functions on T whose kernels prove to be the singular
varieties P4 (for ^-representations 9ΐ is the set of "restricted roots"). We con-
jecture that these systems 9ΐ will classify the representations in question and
that interesting new examples will appear.

In § 6 we discuss two examples (announced in [6]) which clearly violate (b),
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hence also violate (a). We conjecture, however, that (a) will fail only in a finite
number of exceptional cases.

Notations and conventions. Lie groups will be denoted by upper case
Roman letters (K, G, Kτ, etc.) and their Lie algebras by corresponding lower
case boldface latters (k,g,kτ, etc.). We remark, however, that the subspaces
nti of k introduced above are not subalgebras.

If X € Rn, then Kx C K will denote the connected stabilizer of X in K.
The standard negative definite inner product on Rn will be denoted < , >.

On the Lie algebra so(ri) this same symbol will denote the trace form, i.e., the
negative definite form (A, By — tr (AB), A,B e so(ri).

The standard identification Λ\Rn) = so{ή) will be realized by the formula

<Λ,X Λ Y> = <A(X), Y> , A € so(fl)9 X,YεRn .

Let 2ί be the vector space of bilinear forms Q: Rn X Rn —> so(ή). Then
SO(n) is represented on » by (xQ)(X, Y) = xQix'X, x~Ύ)x~ι for x e SO(n),
Q e 3ί, Z , Y e Rn. The corresponding Lie algebra representation of so(ή) on 2ί
takes the form

A(Q)(X, Y) = -Q(A{X), Y) - Q(X,A(Y)) - [Q(X, Y),A]

for A e so(ή), Qζ%X,Yζ Rn.

1. The curvature tensor

We define the antisymmetric tensor R. The representation of K on Rn is a
homomorphism K —• SO(n), hence induces a Lie algebra homomorphism
h —> S0(n). If A:o is the kernel of this homomorphism, and k* is the orthogonal
complement (under any invariant negative definite inner product) of k0 in k,
then k — k0 0 k* is a decomposition into complementary ideals, and we may
consider &* C so(n), the inclusion being determined by the given representa-
tion. Let P: so(ή) —> k* be the orthogonal projection relative to <( , ) .

In &* we have the negative semidefinite Killing form B ( , ) and the negative
definite form < , > restricted from that on so(n), hence the negative definite
form ( , ) = < , > + 5( , ) . Let S: A;* —• £* be the nonsingular self adjoint
linear transformation such that (A,B) = (A,S(B)y,A,B e £*.

Definition. R: /ί2(iΓ) —> A: is the composition

Λ\Rn) = so(n) ~^-> k* - ^ > k*(Zk .

If X, Y € Rn, we write #(X, Y) for R(X Λ Y), hence # is interpreted as an
antisymmetric tensor.

Remarks. This definition seems to be due to Kostant. The S"1 in the defi-
nition is not essential for our purposes, but is needed if R is to agree with the
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Riemann tensor in the case of an ^-representation. Kostant shows (unpublished)
that the antisymmetric 4-tensor A* denned by

A*(X, Y, Z, W) = (R(X, Y)Z + R(Y, Z)X + R(Z, X)Y, W} ,

for all X, Y,Z,W e Rn, can be used to characterise the isotropy representations
associated to homogeneous spaces G/K with G compact. Indeed, viewing
v4* e Λ\Rn) and remarking that A*(Rn) can be viewed as an (ungraded) algebra
under Clifford multiplication, we can assert

Theorem {Kostant). An orthogonal effective representation of K on Rn is
equivalent to the isotropy representation for G/K, G being some compact Lie
group, if and only if there is B* e Λ\Rn) whose Clifford square has A* as its
4-component. In this case R is the curvature tensor for Nomiztfs canonical
connection on the bundle G —> G/K.

Since we are interested in both comparing and contrasting a certain class of
representations with the class of ^-representations, the following result has
potential value for our program.

Theorem (Cartan-Kostant). An orthogonal effective representation of K on
Rn is equivalent to an s-representation if and only if A* = 0.

(The author is grateful to the referee for remarking that this theorem is
generalized in the work of Nomizu, Amer. J. Math., 1954.)

This second theorem is not too difficult to verify. Indeed, define a negative
definite inner product ( , ) on g = k Θ Rn by demanding k ±_ Rn, letting ( , )
on k be as already defined, and setting ( , ) = < , > on Rn. g is made into a
Lie algebra by defining

[A, B] as usual , A, B <ε k ,

[A,X] = -[X9A] = Λ(X) , Azk,XeRn ,

[X, Y] = R(X, Y) , X,YeRn .

The assumption A* == 0 guarantees the Jacobi identity. The inner product ( , )
is invariant relative to this Lie structure and is negative definite, so g becomes
a Lie algebra of compact type. Since [Rn, Rn] c k, the decomposition g =
k® Rn is the Cartan decomposition corresponding to a compact symmetric
space G/K. For the converse, first cf. [9, Theorem 6] for the proof that R is
a multiple of the Riemann tensor. Then A* = 0 follows from the Bianchi
identity for R.

We now verify the elementary properties of R which will be needed.
(1.1) Lemma. (R(X, Y), B) = <Y, B(X)>, for all X,YeRn and all B e k*.
Proof. (R(X, Y), B) = (S~Ψ(X A Y), B) = (P{X A Y), B} = (X A Y, B>

= <Y,B(X)>. q.e.d.
Denote by 21* the subspace of Q e 2ί such that IM(Q) c k*. Then the com-

position of K —> SO(n) with the representation of SO(n) on SI induces a
representation of K on Si*.
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(1.2) Proposition. R e Sί̂  is invariant under the action of K. Thus also
A(R) = 0 for all A e k.

Proof. Remark that the ideal k* is invariant under Ad (K). Thus for any
B € k* and x e K we have

for all Z , Y e Λ».
(1.3) Proposition. ^4n orthogonal decomposition Rn = Fj 0 F 2 w /£-

invariant if and only if R(V19 F2) = 0.
Proo/. CR(F1? F2), £*) = <F 2, ^ ( F ^ ) . This is identically zero if and only

if A ^ p g C V19 hence if and only if k{Vλ) c F x .
(1.4) Proposition. 4̂ /m^r subspace V C. Rn is an R-flat subspace if and

only if V is orthogonal to every K-orbit which it meets.
Proof. ItXεV, then the tangent space to KX at X is Tx = k*(X). Thus

<F, τxy = <F, * # w> = (Λ(Jr, V), kj .

But F is Λ-flat if and only if i^(Z, F) = 0 for all X € F .

2. Proof of Theorem I

The theorem will be proven in a series of fairly easy propositions and
lemmas.

(2.1) Proposition. / / every pair of maximal R-flat subspaces of Rn are
conjugate under K, then every such subspace is a K-transversal domain.

Proof. Let T be a fixed maximal .R-flat subspace of Rn. Let Y e Rn and
let V be a maximal .R-flat subspace containing Y. T clearly exists since a one
dimensional subspace containing Y is already .R-flat. Let x € K such that xT'
= T. Then, in particular, xY e T, so T meets every X-orbit. By (1.4), T is
orthogonal to each X-orbit at each point of intersection, hence T is a £-trans-
versal domain.

(2.2) Proposition. / / T C Rn is a K-transversal domain, then T is a maxi-
mal R-flat subspace.

Proof. T meets every orbit orthogonally, hence by (1.4) T is jR-flat. If T
is not maximal, let V be an J?-flat subspace properly containing T. Let X eT
be a point whose orbit N is principal. By [6, (1.1)] it follows that dim (TO >
n - dim (N). But by (1.4), V meets N orthogonally at X, so that dim (Γ) <
n — dim (JV). This contradiction proves the maximality of T. q.e.d.

Now suppose that T C Rn is a X-transversal domain. In view of the above,
Theorem I will be proven if we can show that any maximal .R-flat subspace
T C Rn is conjugate to T under K.
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Select 0 Φ Y e T such that the K-oτbit of Y has maximal dimension among
all the orbits meeting V.

(2.3) Lemma. No generality is lost in assuming Y <~ T Π V.
This lemma is an immediate consequence of (1.2) and the fact that T meets

all ^-orbits.
Let Sγ be a slice at Y in the sense of [1, pp. 105-108]. Thus Sγ is a small

convex open set in the normal space to the orbit of Y at Y, and X e Sγ implies
Kx c Kγ. Let Uγ = {X <= Sγ: Kx = Kγ).

(2.4) Lemma. T Π Sγ c Uγ.
Proof. If X € V Π Sγ, then £ x C £ F and, by the maximality condition

on the orbit of Y, dim (Kx) > dim (Kγ). It follows that Kx = Kγ.
(2.5) Lemma. Uγ c Γ.
Proo/. Let Z e t/F. Since X e S r , [6, (1.3)] shows that there is x e Kγ

such that tX € T. But £ x = XF, so xX = X.
(2.6) Proposition. V = Γ.
Proo/. Γ ; is .R-flat, hence is orthogonal to the orbit of Y. Thus V Π 5 F is

an open subset of V. But, by (2.4) and (2.5), r n S F C T. It follows that
V C T. But T is Λ-flat and Γ ; is maximal Λ-flat, so V = T.

(2.7) Corollary. // Rn admits a K-transversal domain, then any two maxi-
mal R-flat subs paces are conjugate under K.

This completes the proof of Theorem I.

3. A decomposition of Rr

As usual, let P1 ? , P r be the singular varieties in T and let k = kτ 0 mx

0 0 mr be the corresponding direct sum decomposition. If kι is the
annihilator of P^ in k, then kl = kτ® mi is an orthogonal decomposition.

Definition. Ut = k%T) = w^Γ) c i?w.
(3.1) Lemma. C/̂  w a linear subspace of Rn with dim (C/f) = dim (/w )̂.
Proo/. Choose Z € T - P t . Since /w^PJ = 0, we have m^X) = Ut. Thus

L: in^ —> Rn defined by L{Λ) — A{X) is a linear map with Ut = L(/w^).
Furthermore, if L(^4) = 0, then y4(Γ) = 0 and 4̂ e kτ ΓΊ m^ = 0. L is therefore
one-one.

(3.2) Lemma. <Γ, ϋ4> = 0.
Proof. Indeed, C/t = m^X) C A:(Z) = tangent space to the X-orbit of X

at X. Since Γ is X-transversal, <Γ, t/<> = 0.
(3.3) Lemma. If A,B e kandX,Y e T, then <Z, AB(Y)) = <Z,5^(Γ)>.
Proof. Indeed, [4, B] € Λ, so <Z, U , B](Y)> e <Γ, U , B](Γ)>C<T, Λ(Y)>

= 0. The assertion is immediate.
(3.4) Lemma. <C/i, ^ > = 0 // / Φ ].
Proof. Let X e T - P, and Y e Pi - Pj. Thus m^X) = Ui9 ntj(Y) = t/^,

m^y) — 0. Let A z nti,B e mό. Since A(Y) = 0, we then have

- o .



COMPLETE REPRESENTATIONS 155

(3.5) Proposition. Rn = Γ© [^0 Θ Ur9 an orthogonal decomposition.
Proof. By the above lemmas the sum is orthogonal. Furthermore,

k(T) = Σ m * ( D =ΣUt.
i = l ί = l

Let X € T be a point whose K-orbit is principal. Then k{X) is the orthogonal
complement of T in Rn by [6, (1.1)]. Since k(X) c ft(Γ), we see that the sum
of T and all of the \]i must equal all of Rn. q.e.d.

It would be nice to have R(T, Ut) = mi for all /, but we can only assert
this under the hypothesis of (a) (cf. Introduction). Indeed,

(3.6) Proposition, (a) holds if and only if R(T, Ut) = mu i = 1, , r.
Proof. First remark that (R(T, t/<), kτ) = (Ui9 kτ(T)} = 0 and, if i φ /,

<t/4, Uj> - 0 .

Now assume (a). Then R(T, U^ C /ŵ  is immediate from the above relations.
Take ZeT — Pi and define a linear map /: t/* -> /n* by /(Z) =
Writing Z = ^4(Z) for some A e nti, we get

which vanishes if and only if X = 0. Thus / is one-one. Then, by (3.1), / must
be onto, hence R(T, Ui) = mt.

For the converse, suppose R(T, Ui) = nii. Then, if i Φ j ,

(mi9 mj) = (R(T, Ui), ms) = (Ui9 m,(Γ)> = (Ui9 Uj} = 0.

4. Proof of Theorem II

Assume that W is reducible on T and write T = T10 Γ2, an orthogonal
decomposition into nontrivial ίF-invariant subspaces.

(4.1) Lemma. // W\Tl = identity, then K\Tl = identity.
Proof. By the structure theory of W, we must have Tλ C P ί ? / = 1, , r.

Thus ^(Γj) = 0, i = 1, , r. It follows that k(Tλ) = 0. q.e.d.
In the above case we set V = T^ and pass to K\v as the only interesting

part. We therefore assume from here on that W has no nonzero fixed point
inΓ.

(4.2) Lemma. For each singular hyperplane Pi in T, either Tί C Pt or
T2 C P^

Proof. Let wt^W bt the reflection in Pt. wt has exactly a one dimensional
— 1 eigenspace. Since Wi\Tl and Wi\T2 are involutions, the —1 eigenspace must
either be in 7\ or in T2, and wt is the identity on the other, q.e.d.

We may suppose that P19 ,Pq is the set of singular hyperplanes in T
such that TxcPi9 hence that Pq+l9 , Pr is the set such that T2 d Pt.
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(4.3) Lemma. 7\ = P, Π Π Pq and T2 = Pq+ι Π Π P r .
Proof. Tj C Fj ίl Π Pg. If equality does not hold, find nonzero X in

this intersection such that X J_ 7\. Thus X € Γ2 C P 9 + 1 Π Π Pr. This
makes I ^ O a fixed point of W contrary to our assumption. T2 is treated
similarly, q.e.d.

Let Uv -,Ur be as in (3.5). Set

VX = TX® Uq+1 © Θ Ur , F2 = T 2 Θ £A Θ Θ Ur

so that Rn = Fj 0 F2 is an orthogonal decomposition by (3.5). We will show
that Vx and V2 are X-invariant.

(4.4) Lemma. T2@Vί = {YeRn: R(Y, T2)} = 0, α/id similarly 7\ 0 F2

Proo/. Indeed, Γ J F ^ T θ t/β+1 © 0 Ur and R(T, T2) = 0. If
q + 1 < i < r, then (#(Γ2, J74),**) = <Dr

<,*'(Γ2)> = 0 since T2 C P,, and,
if 7 ̂  Ϊ,

(R(τ2, UtW) = <uuv(τ2)y c <uu Uj> = o .

Since the kps linearly span k, we have #(T2, t/<) = 0. Thus R(T2, T 2 0 Vx) = 0.
On the other hand, choose Z 6 T2 - (Px U \JPq). Then A:̂ (Z) = t/f,

1 < i < Q. If At £ kι and Y = Σ At(Z) φ 0, then some AU(Z) Φ 0 and
i = l

(R(Z, Y),AJ = Σ (R(Z,Ai(Z)),Ai0) = Σ <Λt{Z), Ata(Z))

Thus R(Z, Y) φ 0 for every nonzero Y € U, 0 0 Uq. Since Z e T29 it
foUows that R(T2, Y) = 0 if and only if y € Γ2 0 F x.

Similarly, R(Tly Y) = 0 if and only if y e Γx 0 F2.
(4.5) Proposition. Vί and V2 are K-invariant.
Proof. Let Kj be the connected subgroup of K corresponding to the Lie

algebra kj. Then K is generated by K\ , Kr. Let g € A>. Either Tj c P^ or
T2 C P^ . If 71! C P, , then g|Γl = identity. By (4.4) and the .K-invariance of
R, we must have g(Tx 0 V2) = Tλ® V29 hence g(V2) = V2. Therefore also
g(Vλ) = Fx. An entirely parallel argument holds if T2 C Pj. Thus K(Vλ) = Fx

and X(K2) = F2. q.e.d.
By (1.3) we also know
(4.6) Corollary. R(V19 V2) = 0.
The hardest part of Theorem II is given by (4.5). The remainder is given

by the following.
(4.7) Proposition. // Rn = Vx 0 V2 is an orthogonal decomposition into

two K-invariant subspaces, and T C Rn is a K-transversal domain, then for
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i = 1, 2, Ti = Γ Π Vi is W-invariant with T — TX®T2 and is aK-transversal
domain in Vt.

Proof. Clearly Tλ and T2 are W-invariant. Since T meets every K-orbit in
Rn orthogonally, it is immediate that Tt has these same properties for Vi9

i = 1,2. Thus we have orthogonal decompositions Vi = Ίt © k{Tt), i = 1,2,
hence an orthogonal decomposition Rn = Tλ © Γ2 0 /MX) 0 jfc(Γ2). But Λ(Γ<)
C k(T) _j_ Γ, i = 1, 2, so necessarily Γ = Γx 0 Γ2.

5. Proof of Theorem III

Let Rn = Vx 0 V2, a nontrivial orthogonal ^-invariant decomposition.
Assume that (a) holds.

(5.1) Lemma. kt = R{Λ\V^f) is an ideal in k, i = 1, 2.
Proof. R(Λ2(Vi)) is a l i n e a r s u b s p a c e of k. L e t A ^ k , X , Y ^V^ T h e n b y

( 1 . 2 ) ,

0 = A(R)(X, Y) = -R(A(X), Y) - R(X,A(Y)) - [R(X, Y)9A] ,

hence [R(Λ2(Vt),k] c
(5.2) Lemma. ^ ( F ^ ) = 0, i ^ /.
Proof. As usual we can write

Vλ = Tλ © t/ ί + 1 0 0 Ur , F 2 = Γ2 © t/x © 0 Uq .

By (3.6), Λ(Γ15 KJ C mq+ι φ φ mr, hence ^ ( Γ 1 ? Vλ)(T2) = 0. Since
Γj φ T2 is maximal i^-flat, (1.3) and Theorem I imply that Tx φ yT2 is maxi-
mal i?-flat for any y € K. By Theorem I there is x ζ K such that

^ 0 xT2 = x{Tx © Γ2) = Tx © >;T2 ,

so Λ ΓJ = Tx and xT2 = }̂ Γ2. Thus

= xRCΓ19 Vλ){T2) = 0

by (1.2). But V2 is the union of all yT2 as y ranges over ϋC, so R(Tί9 Vλ)(V2)
— 0. Finally, if x e K is arbitrary,

R(xTλ, VX){V2) =

and Vx is the union of all xTx. Thus /?(F1 ? F2)(F2) = 0, hence kx{V2) = 0.

Similarly k2{Vx) = 0.
(5.3) Lemma, k* = kγ © &2, an orthogonal decomposition.
Proof. (R(Vl9 F x), *,) = <F 1 5 ̂ ( F ^ ) - 0, hence kx ]_ k2. But also k* =

R(Λ2(Rn)) = R{Λ\VX)) + R(Λ\V2)) = kx + k2 since R(VX, V2) = 0. q.e.d.



158 LAWRENCE CONLON

These three lemmas give Theorem III as an immediate consequence. Indeed,
if k = kQ Θ k* with kQ Φ 0, then replace kx by Λr0 Θ k19 an ideal in k annihilat-
ing V2, and obtain the desired decomposition of k.

6. Examples

In [6] we announced two representations with K-transversal domains of
dimension two, neither of which is an ̂ -representation. We give the details here.

Recall that the Dynkin diagram for Spin (8) has the form

and hence has symmetry group isomorphic to the symmetric group J]3. By
[8, p. 46] we can represent Σ3 faithfully as the group of automorphisms of
Spin (8) which leaves pointwise fixed a principal three-dimensional subgroup.
Let t,s e Σ 3 be elements of order 3 and 2 respectively, t is called a triality
automorphism of Spin (8). It is fairly well known that the fixed point set of /
is the compact exceptional group G2 C Spin (8) and that of s is Spin (7) C
Spin (8). Indeed, these groups are seen to be the identity components of the
respective fixed point sets by a fairly straightforward application of [8, Chapter
II, § 3, and Chapter III, § 1], while the connectedness of these fixed point sets
is guaranteed by [2, pp. 224-225]. Let st = tst~\ the fixed point group of
this automorphism being Spify (7) = /(Spin (7)).

The following two lemmas are well known, at least to experts, but for the
sake of completeness we give proofs here.

(6.1) Lemma. Spin (7) Π Sρin£ (7) = G2, and the natural left action of
Spin, (7) on Spin (8)/Spin (7) = S7 is transitive.

Proof. sst = stsΓ1 = t by the multiplication table for Σ3, hence G2 is the
fixed point group for sst. Thus Spin (7) Π Spi^ (7) c G2. But this intersection
is the stabilizer in Spi^ (7) for the base point o <= Spin (8)/Spin (7). The
Spin; (7)-orbit of o has dimension < 7 and dim (Spify (7)) = 21, so

dim (Spin (7) Π Spi^ (7)) > 14 = dim (G2) .

All assertions follow.
(6.2) Lemma. Let G2 c Spin (7) as above and let Spin (6) C Spin (7) be

the standard imbedding. Then G2 Π Spin (6) = SI/(3) and the natural left
action of G2 on Spin (7)/Spin (6) = S6 is transitive.

Proof. G2 Π Spin (6) is the isotropy group in G2 for the basepoint
o e Spin (7)/Spin (6). Let H denote the identity component of G2 Π Spin (6).
The orbit G2o has dimension < 6 and dim (G2) = 14, so dim (H) > 8. Thus
H cannot be trivial nor of rank one, so that by [3] the only possibilities for H
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are (in local notation): T\ T1 X A1,Aί x Aλ, A2, G2. Dimensional considera-
tions rule out all possibilities except A2 and G2.

If H = G2, then G2 C Spin (6) and G2 has codimension one in Spin (6). At
the Lie algebra level, there is an orthogonal decomposition spin (6) = g2 © R.
Then [g2, R] C R and [R, R] = 0, so I? is a proper nontrivial ideal, contra-
dicting the fact that spin (6) is simple. Thus H = A2.

Since dim (H) = 8, dim (G2 o) = 6 and soG 2 o = 56. The exact sequences

0 = πάGt o) -> ;ro(G2 Π Spin (6)) — ττo(G2) = 0 ,

0 = τr2(G2.0) -• π,(G2 Π Spin (6)) -» πx(G2) = 0

show that G2 Π Spin (6) is connected and simply connected, hence this group
is SU(3). q.e.d.

Using the above we will produce two representations satisfying the hypotheses
of the following proposition.

(6.3) Proposition. Let orthogonal representations of K on Rn and Rm be
given such that K is transitive on the unit sphere Sn~ι of Rn and such that, if
X <ε Sn~\ then Kx is transitive on the unit sphere of Sm~l of Rm. Then the direct
sum of these two representations has a K-transversal domain T C Rn+m of
dimension two.

Proof. Let Lλ = RX and let L2 c Rm be any one dimensional subspace.
Given (A, B) e Rn 0 Rm = Rn+m, some element of K moves this to a point
(A', Bf) e Lj © Rm. Kx fixes Lx pointwise and is transitive on Sm~\ hence some
element of Kx moves 04', B') to a point on T = Lλ 0 L2. Thus every X-orbit
meets T. R(T, T) = 0 is an immediate consequence of (1.3), hence, by (1.4),
T is a ^-transversal domain, q.e.d.

Let r^r2 be the orthogonal representations of Spin (8) on R8 induced
respectively by

Spin (8) - ^ > Spin (8) -J-* SO(8) , Spin (8) - ^ > SO($)

where p is the double covering. Let qx be the orthogonal representation of
Spin (7) on R8 induced by

Spin (7) - U Spin, (7) c Spin (8) -^-> SO(8) ,

and let q2 be the representation on R7 induced by the double covering Spin (7)
->SO(7). By (6.1), (6.2), and (6.3) we conclude

(6.4) Theorem. rλ 0 r2 is an orthogonal representation of Spin (8) on Rw

having a two-dimensional Spin (&)-transversal domain, and qλ © q2 similarly
represents Spin (7) on Rιδ with a two-dimensional Spin (Ί)-transversal domain.

Remark that the r 1 in the definition of rx is essential. r2 © r2 does not admit
a Spin (8)-transversal domain.
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In both cases the singular varieties in T are the subspaces Lγ and L2 in the

proof of (6.3). Thus the Weyl group W = Z2 Θ Z2.

In the case of rx © r2, the group Kτ is Spin (7) Π Spin, (7) = G2, &
1 =

Spin, (7), K2 = Spin (7), and so K*/Kτ = S7 as predicted by [6, Theorem IV].

The principal orbits of Spin (8) in R16 have the form

K/Kτ = Spin (8)/G2 = S7 χS7 .

In the case of q1 0 q29 Kτ = G2 Π Spin (6) = SU(3), Kι = G2, £
2 = Spin (6)

= 5t/(4), hence

X 7 X Γ = G2/SU(3) = 56 , £ 2 / £ Γ = S£/(4)/St/(3) = 57 ,

K/XΓ = Spin (7)/SU(3) = S« X S7 .

Qι Θ ^ 2

 c ^n be seen to be equivalent to the isotropy representation for

Spin(9)/Spin ί(7) = 515.

It is evident that (b) fails for both of these examples, hence so does (a). The

fact that (a) fails for rx 0 r2 is also easy to see using the triality automorphism.
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