A CLASS OF VARIATIONALLY COMPLETE REPRESENTATIONS

LAWRENCE CONLON

Introduction

Let M be a complete Riemannian manifold on which a compact connected Lie group K acts as a group of isometries. If $M=\boldsymbol{R}^{n}$, then K has a fixed point, hence we lose no generality in assuming for this case that the action of K is a linear orthogonal representation.

Bott and Samelson [5] have defined the concept of variational completeness. Roughly speaking, the action of K on M is variationally complete if it produces enough Jacobi fields along geodesics to determine the multiplicities of focal points to the K-orbits. This notion remains interesting and useful for the case $M=\boldsymbol{R}^{n}$ (e.g., cf. [4], [5]).

In [6] we formulated the notion of a " K-transversal domain". This is a closed connected flat totally geodesic imbedded submanifold $T \subset M$ which meets all K-orbits and is orthogonal to every K-orbit at each point of intersection. We showed that the existence of a K-transversal domain implies variational completeness, and deduced strong structure theorems for the singular set, the Weyl group, and the Bott-Samelson K-cycles. For $M=\boldsymbol{R}^{n}$, such a T is evidently a linear subspace.

The theorems of [6], applied to the case $M=\boldsymbol{R}^{n}$, show that those orthogonal respresentations of K which admit a K-transversal domain bear striking resemblances to the isotropy representations associated to compact symmetric spaces (hereafter referred to as s-representations). Indeed, s-representations constitute the principal class of known examples. This suggests that further such analogies should be sought and exploited, the ultimate aim being a complete structure theory and classification.

We will present here three theorems which advance the above program. For this purpose we employ a linear map (due to Kostant)

$$
R: \Lambda^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow \boldsymbol{k}=\text { Lie algebra of } K
$$

which will be called the curvature tensor of the representation. R is defined for an arbitrary orthogonal representation of K, and in the case of an s-representation it will actually coincide with the Riemann tensor [9]. Usually

[^0]we interpret R as an antisymmetric bilinear map on R^{n} and write $R(X, Y)$ for $R(X \wedge Y)$. The precise definition and fundamental properties of R will be reviewed carefully in § 1 .

Definition. A linear subspace V of R^{n} is R-flat if and only if $R(V, V)=0$.
Our first theorem shows that the properly generalized theorem of CartanHunt [7] not only holds, but characterizes our class of representations.

Theorem I. The orthogonal representation of K on \boldsymbol{R}^{n} admits a K-transversal domain if and only if any two maximal R-flat subspaces of \boldsymbol{R}^{n} are conjugate under K. In this case the K-transversal domains are precisely the maximal R-flat subspaces.

For the statement of the second theorem recall from [6] the notion of the Weyl group W. If $T \subset \boldsymbol{R}^{n}$ is a K-transversal domain, then W is the group of transformations of T produced by those elements of K which leave T invariant. By [6, Theorem III] this is a Coxeter group. Indeed, the singular varieties P_{1}, \cdots, P_{r} in T are linear subspaces of codimension one, and W is generated by the reflections of T in these subspaces.

Theorem II. Let $T \subset R^{n}$ be a K-transversal domain, and W the Weyl group. Then K is reducible on \boldsymbol{R}^{n} if and only if W is reducible on T. Indeed, each orthogonal W-invariant decomposition $T=T_{1} \oplus T_{2}$ corresponds to an orthogonal K-invariant decomposition $\boldsymbol{R}^{n}=V_{1} \oplus V_{2}$ such that T_{i} is a K-transversal domain for $V_{i}, i=1,2$.

The curvature tensor R is a useful tool in the proof of this theorem.
Recall from [6, (3.6)] that, corresponding to the singular varieties P_{1}, \cdots, P_{r} in T, there is a direct sum decomposition $\boldsymbol{k}=\boldsymbol{k}_{\boldsymbol{T}} \oplus \boldsymbol{m}_{1} \oplus \cdots \oplus \boldsymbol{m}_{r}$ as vector spaces, where \boldsymbol{k}_{T} is the annihilator of T in $\boldsymbol{k}, \boldsymbol{m}_{i} \perp \boldsymbol{k}_{T}$ for all i, and $\boldsymbol{k}_{T} \oplus \boldsymbol{m}_{i}$ is the annihilator of P_{i} in \boldsymbol{k}.
s-representations are well known to have the following important properties which, however, are not enjoyed by every representation having a K-transversal domain:
(a) $\boldsymbol{m}_{i} \perp \boldsymbol{m}_{j}$ for all $i \neq j$.
(b) If $\boldsymbol{R}^{n}=V_{1} \oplus V_{2}$ is a nontrivial orthogonal decomposition into K invariant subspaces, then there is a decomposition $\boldsymbol{k}=\boldsymbol{k}_{1} \oplus \boldsymbol{k}_{2}$ into nontrivial complementary ideals such that $\boldsymbol{k}_{i}\left(V_{j}\right)=0, i \neq j$.

For purposes of classification, (b) is a desirable property. If anything, (a) is even more desirable. Indeed, we will prove (again with the help of R)

Theorem III. (a) implies (b).
Actually, (a) has a number of pleasant consequences which we hope to discuss in some later paper. For instance, it enables one to use R to define a finite system \Re of linear functions on T whose kernels prove to be the singular varieties P_{i} (for s-representations \Re is the set of "restricted roots"). We conjecture that these systems \Re will classify the representations in question and that interesting new examples will appear.

In § 6 we discuss two examples (announced in [6]) which clearly violate (b),
hence also violate (a). We conjecture, however, that (a) will fail only in a finite number of exceptional cases.

Notations and conventions. Lie groups will be denoted by upper case Roman letters (K, G, K_{T}, etc.) and their Lie algebras by corresponding lower case boldface latters ($\boldsymbol{k}, \boldsymbol{g}, \boldsymbol{k}_{\boldsymbol{r}}$, etc.). We remark, however, that the subspaces \boldsymbol{m}_{i} of \boldsymbol{k} introduced above are not subalgebras.

If $X \in \boldsymbol{R}^{n}$, then $K_{X} \subset K$ will denote the connected stabilizer of X in K.
The standard negative definite inner product on \boldsymbol{R}^{n} will be denoted \langle,$\rangle .$ On the Lie algebra so(n) this same symbol will denote the trace form, i.e., the negative definite form $\langle A, B\rangle=\operatorname{tr}(A B), A, B \in \operatorname{so}(n)$.

The standard identification $\Lambda^{2}\left(\boldsymbol{R}^{n}\right)=\boldsymbol{s o}(n)$ will be realized by the formula

$$
\langle A, X \wedge Y\rangle=\langle A(X), Y\rangle, \quad A \in \operatorname{so}(n), X, Y \in R^{n}
$$

Let \mathfrak{N} be the vector space of bilinear forms $Q: \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{s o}(n)$. Then $S O(n)$ is represented on \mathfrak{A} by $(x Q)(X, Y)=x Q\left(x^{-1} X, x^{-1} Y\right) x^{-1}$ for $x \in S O(n)$, $Q \in \mathfrak{U}, X, Y \in \boldsymbol{R}^{n}$. The corresponding Lie algebra representation of $\boldsymbol{s} \boldsymbol{s}(n)$ on \mathfrak{U} takes the form

$$
A(Q)(X, Y)=-Q(A(X), Y)-Q(X, A(Y))-[Q(X, Y), A]
$$

for $A \in \boldsymbol{s o}(n), Q \in \mathfrak{V}, X, Y \in R^{n}$.

1. The curvature tensor

We define the antisymmetric tensor R. The representation of K on \boldsymbol{R}^{n} is a homomorphism $K \rightarrow S O(n)$, hence induces a Lie algebra homomorphism $\boldsymbol{k} \rightarrow \boldsymbol{s} \boldsymbol{o}(n)$. If \boldsymbol{k}_{0} is the kernel of this homomorphism, and \boldsymbol{k}_{*} is the orthogonal complement (under any invariant negative definite inner product) of \boldsymbol{k}_{0} in \boldsymbol{k}, then $\boldsymbol{k}=\boldsymbol{k}_{0} \oplus \boldsymbol{k}_{*}$ is a decomposition into complementary ideals, and we may consider $\boldsymbol{k}_{*} \subset \boldsymbol{s o}(n)$, the inclusion being determined by the given representation. Let $P: \boldsymbol{s o}(n) \rightarrow \boldsymbol{k}_{*}$ be the orthogonal projection relative to \langle,$\rangle .$

In \boldsymbol{k}_{*} we have the negative semidefinite Killing form $\boldsymbol{B}($,$) and the negative$ definite form \langle,$\rangle restricted from that on so(n), hence the negative definite$ form $()=,\langle\rangle+,B($,$) . Let S: \boldsymbol{k}_{*} \rightarrow \boldsymbol{k}_{*}$ be the nonsingular self adjoint linear transformation such that $(A, B)=\langle A, S(B)\rangle, A, B \in \boldsymbol{k}_{*}$.

Definition. $R: \Lambda^{2}\left(\boldsymbol{R}^{n}\right) \rightarrow \boldsymbol{k}$ is the composition

$$
\Lambda^{2}\left(\boldsymbol{R}^{n}\right)=\boldsymbol{s o}(n) \xrightarrow{P} \boldsymbol{k}_{*} \xrightarrow{S^{-1}} \boldsymbol{k}_{*} \subset \boldsymbol{k} .
$$

If $X, Y \in R^{n}$, we write $R(X, Y)$ for $R(X \wedge Y)$, hence R is interpreted as an antisymmetric tensor.

Remarks. This definition seems to be due to Kostant. The S^{-1} in the definition is not essential for our purposes, but is needed if R is to agree with the

Riemann tensor in the case of an s-representation. Kostant shows (unpublished) that the antisymmetric 4-tensor A^{*} defined by

$$
A^{*}(X, Y, Z, W)=\langle R(X, Y) Z+R(Y, Z) X+R(Z, X) Y, W\rangle
$$

for all $X, Y, Z, W \in R^{n}$, can be used to characterise the isotropy representations associated to homogeneous spaces G / K with G compact. Indeed, viewing $A^{*} \in \Lambda^{4}\left(\boldsymbol{R}^{n}\right)$ and remarking that $\Lambda^{*}\left(\boldsymbol{R}^{n}\right)$ can be viewed as an (ungraded) algebra under Clifford multiplication, we can assert

Theorem (Kostant). An orthogonal effective representation of K on \boldsymbol{R}^{n} is equivalent to the isotropy representation for $G / K, G$ being some compact Lie group, if and only if there is $B^{*} \in \Lambda^{3}\left(\boldsymbol{R}^{n}\right)$ whose Clifford square has A^{*} as its 4-component. In this case R is the curvature tensor for Nomizu's canonical connection on the bundle $G \rightarrow G / K$.

Since we are interested in both comparing and contrasting a certain class of representations with the class of s-representations, the following result has potential value for our program.

Theorem (Cartan-Kostant). An orthogonal effective representation of K on \boldsymbol{R}^{n} is equivalent to an s-representation if and only if $A^{*}=0$.
(The author is grateful to the referee for remarking that this theorem is generalized in the work of Nomizu, Amer. J. Math., 1954.)

This second theorem is not too difficult to verify. Indeed, define a negative definite inner product (,) on $\boldsymbol{g}=\boldsymbol{k} \oplus \boldsymbol{R}^{n}$ by demanding $\boldsymbol{k} \perp \boldsymbol{R}^{n}$, letting (,) on \boldsymbol{k} be as already defined, and setting $()=,\langle$,$\rangle on \boldsymbol{R}^{n} . \boldsymbol{g}$ is made into a Lie algebra by defining

$$
\begin{aligned}
& {[A, B] \text { as usual }, \quad A, B \in k,} \\
& {[A, X]=-[X, A]=A(X), \quad A \in \boldsymbol{k}, X \in R^{n},} \\
& {[X, Y]=R(X, Y), \quad X, Y \in R^{n}}
\end{aligned}
$$

The assumption $A^{*}=0$ guarantees the Jacobi identity. The inner product (,) is invariant relative to this Lie structure and is negative definite, so g becomes a Lie algebra of compact type. Since $\left[\boldsymbol{R}^{n}, \boldsymbol{R}^{n}\right] \subset \boldsymbol{k}$, the decomposition $\boldsymbol{g}=$ $\boldsymbol{k} \oplus \boldsymbol{R}^{n}$ is the Cartan decomposition corresponding to a compact symmetric space G / K. For the converse, first cf. [9, Theorem 6] for the proof that R is a multiple of the Riemann tensor. Then $A^{*}=0$ follows from the Bianchi identity for R.

We now verify the elementary properties of R which will be needed.
(1.1) Lemma. $\quad(R(X, Y), B)=\langle Y, B(X)\rangle$, for all $X, Y \in R^{n}$ and all $B \in \boldsymbol{k}_{*}$.

Proof. $\quad(R(X, Y), B)=\left(S^{-1} P(X \wedge Y), B\right)=\langle P(X \wedge Y), B\rangle=\langle X \wedge Y, B\rangle$ $=\langle Y, B(X)\rangle$. q.e.d.

Denote by \mathfrak{A}_{*} the subspace of $Q \in \mathfrak{Z}$ such that $I M(Q) \subset k_{*}$. Then the composition of $K \rightarrow S O(n)$ with the representation of $S O(n)$ on \mathfrak{A} induces a representation of K on \mathfrak{U}_{*}.
(1.2) Proposition. $R \in \mathfrak{A}_{*}$ is invariant under the action of K. Thus also $A(R)=0$ for all $A \in \boldsymbol{k}$.

Proof. Remark that the ideal \boldsymbol{k}_{*} is invariant under $\operatorname{Ad}(K)$. Thus for any $\boldsymbol{B} \in \boldsymbol{k}_{*}$ and $\boldsymbol{x} \in K$ we have

$$
\begin{aligned}
\left(x R\left(x^{-1} X, x^{-1} Y\right) x^{-1}, B\right) & =\left(R\left(x^{-1} X, x^{-1} Y\right), x^{-1} B x\right) \\
& =\left\langle x^{-1} Y, x^{-1} B(X)\right\rangle=\langle Y, B(X)\rangle=(R(X, Y), B)
\end{aligned}
$$

for all $X, Y \in R^{n}$.
(1.3) Proposition. An orthogonal decomposition $\boldsymbol{R}^{n}=V_{1} \oplus V_{2}$ is K invariant if and only if $R\left(V_{1}, V_{2}\right)=0$.

Proof. $\quad\left(R\left(V_{1}, V_{2}\right), \boldsymbol{k}_{*}\right)=\left\langle V_{2}, \boldsymbol{k}_{*}\left(V_{1}\right)\right\rangle$. This is identically zero if and only if $\boldsymbol{k}_{*}\left(V_{1}\right) \subset V_{1}$, hence if and only if $\boldsymbol{k}\left(V_{1}\right) \subset V_{1}$.
(1.4) Proposition. A linear subspace $V \subset \boldsymbol{R}^{n}$ is an R-flat subspace if and only if V is orthogonal to every K-orbit which it meets.

Proof. If $X \in V$, then the tangent space to $K \cdot X$ at X is $T_{X}=\boldsymbol{k}_{*}(X)$. Thus

$$
\left\langle V, T_{X}\right\rangle=\left\langle V, k_{*}(X)\right\rangle=\left(R(X, V), k_{*}\right) .
$$

But V is R-flat if and only if $R(X, V)=0$ for all $X \in V$.

2. Proof of Theorem I

The theorem will be proven in a series of fairly easy propositions and lemmas.
(2.1) Proposition. If every pair of maximal R-flat subspaces of \boldsymbol{R}^{n} are conjugate under K, then every such subspace is a K-transversal domain.

Proof. Let T be a fixed maximal R-flat subspace of \boldsymbol{R}^{n}. Let $Y \in \boldsymbol{R}^{n}$ and let T^{\prime} be a maximal R-flat subspace containing $Y . T^{\prime}$ clearly exists since a one dimensional subspace containing Y is already R-flat. Let $x \in K$ such that $x T^{\prime}$ $=T$. Then, in particular, $x Y \in T$, so T meets every K-orbit. By (1.4), T is orthogonal to each K-orbit at each point of intersection, hence T is a K-transversal domain.
(2.2) Proposition. If $T \subset R^{n}$ is a K-transversal domain, then T is a maximal R-flat subspace.

Proof. $\quad T$ meets every orbit orthogonally, hence by (1.4) T is R-flat. If T is not maximal, let T^{\prime} be an R-flat subspace properly containing T. Let $X \in T$ be a point whose orbit N is principal. By [6, (1.1)] it follows that $\operatorname{dim}\left(T^{\prime}\right)>$ $n-\operatorname{dim}(N)$. But by (1.4), T^{\prime} meets N orthogonally at X, so that $\operatorname{dim}\left(T^{\prime}\right) \leq$ $n-\operatorname{dim}(N)$. This contradiction proves the maximality of T. q.e.d.

Now suppose that $T \subset R^{n}$ is a K-transversal domain. In view of the above, Theorem I will be proven if we can show that any maximal R-flat subspace $T^{\prime} \subset \boldsymbol{R}^{n}$ is conjugate to T under K.

Select $0 \neq Y \in T^{\prime}$ such that the K-orbit of Y has maximal dimension among all the orbits meeting T^{\prime}.
(2.3) Lemma. No generality is lost in assuming $Y \in T \cap T^{\prime}$.

This lemma is an immediate consequence of (1.2) and the fact that T meets all K-orbits.

Let S_{Y} be a slice at Y in the sense of [1, pp. 105-108]. Thus S_{Y} is a small convex open set in the normal space to the orbit of Y at Y, and $X \in S_{Y}$ implies $K_{X} \subset K_{Y}$. Let $U_{Y}=\left\{X \in S_{Y}: K_{X}=K_{Y}\right\}$.
(2.4) Lemma. $\quad T^{\prime} \cap S_{Y} \subset U_{Y}$.

Proof. If $X \in T^{\prime} \cap S_{Y}$, then $K_{X} \subset K_{Y}$ and, by the maximality condition on the orbit of $Y, \operatorname{dim}\left(K_{X}\right) \geq \operatorname{dim}\left(K_{Y}\right)$. It follows that $K_{X}=K_{Y}$.
(2.5) Lemma. $U_{Y} \subset T$.

Proof. Let $X \in U_{Y}$. Since $X \in S_{Y}$, [6, (1.3)] shows that there is $x \in K_{Y}$ such that $x X \in T$. But $K_{X}=K_{Y}$, so $x X=X$.
(2.6) Proposition. $T^{\prime}=T$.

Proof. $\quad T^{\prime}$ is R-flat, hence is orthogonal to the orbit of Y. Thus $T^{\prime} \cap S_{Y}$ is an open subset of T^{\prime}. But, by (2.4) and (2.5), $T^{\prime} \cap S_{Y} \subset T$. It follows that $T^{\prime} \subset T$. But T is R-flat and T^{\prime} is maximal R-flat, so $T^{\prime}=T$.
(2.7) Corollary. If \boldsymbol{R}^{n} admits a K-transversal domain, then any two maximal R-flat subspaces are conjugate under K.

This completes the proof of Theorem I.

3. A decomposition of $\boldsymbol{R}^{\boldsymbol{n}}$

As usual, let P_{1}, \cdots, P_{r} be the singular varieties in T and let $\boldsymbol{k}=\boldsymbol{k}_{T} \oplus \boldsymbol{m}_{1}$ $\oplus \cdots \oplus \boldsymbol{m}_{r}$ be the corresponding direct sum decomposition. If \boldsymbol{k}^{i} is the annihilator of P_{i} in \boldsymbol{k}, then $\boldsymbol{k}^{i}=\boldsymbol{k}_{\boldsymbol{T}} \oplus \boldsymbol{m}_{i}$ is an orthogonal decomposition.

Definition. $\quad U_{i}=\boldsymbol{k}^{i}(T)=m_{i}(T) \subset \boldsymbol{R}^{n}$.
(3.1) Lemma. U_{i} is a linear subspace of \boldsymbol{R}^{n} with $\operatorname{dim}\left(U_{i}\right)=\operatorname{dim}\left(\boldsymbol{m}_{i}\right)$.

Proof. Choose $X \in T-P_{i}$. Since $\boldsymbol{m}_{i}\left(P_{i}\right)=0$, we have $\boldsymbol{m}_{i}(X)=U_{i}$. Thus $L: \boldsymbol{m}_{i} \rightarrow \boldsymbol{R}^{n}$ defined by $L(A)=A(X)$ is a linear map with $U_{i}=L\left(\boldsymbol{m}_{i}\right)$. Furthermore, if $L(A)=0$, then $A(T)=0$ and $A \in \boldsymbol{k}_{T} \cap \boldsymbol{m}_{i}=0 . L$ is therefore one-one.
(3.2) Lemma. $\left\langle T, U_{i}\right\rangle=0$.

Proof. Indeed, $U_{i}=\boldsymbol{m}_{i}(X) \subset \boldsymbol{k}(X)=$ tangent space to the K-orbit of X at X. Since T is K-transversal, $\left\langle T, U_{i}\right\rangle=0$.
(3.3) Lemma. If $A, B \in \boldsymbol{k}$ and $X, Y \in T$, then $\langle X, A B(Y)\rangle=\langle X, B A(Y)\rangle$.

Proof. Indeed, $[A, B] \in k$, so $\langle X,[A, B](Y)\rangle \in\langle T,[A, B](Y)\rangle \subset\langle T, k(Y)\rangle$ $=0$. The assertion is immediate.
(3.4) Lemma. $\left\langle U_{i}, U_{j}\right\rangle=0$ if $i \neq j$.

Proof. Let $X \in T-P_{i}$ and $Y \in P_{i}-P_{j}$. Thus $m_{i}(X)=U_{i}, m_{j}(Y)=U_{j}$, $\boldsymbol{m}_{i}(Y)=0$. Let $A \in \boldsymbol{m}_{i}, B \in \boldsymbol{m}_{j}$. Since $A(Y)=0$, we then have

$$
\langle A(X), B(Y)\rangle=-\langle X, A B(Y)\rangle=-\langle X, B A(Y)\rangle=0 .
$$

(3.5) Proposition. $\quad \boldsymbol{R}^{n}=T \oplus U_{1} \oplus \cdots \oplus U_{r}$, an orthogonal decomposition. Proof. By the above lemmas the sum is orthogonal. Furthermore,

$$
\boldsymbol{k}(T)=\sum_{i=1}^{r} \boldsymbol{m}_{i}(T)=\sum_{i=1}^{r} U_{i} .
$$

Let $X \in T$ be a point whose K-orbit is principal. Then $\boldsymbol{k}(X)$ is the orthogonal complement of T in R^{n} by [6, (1.1)]. Since $\boldsymbol{k}(X) \subset \boldsymbol{k}(T)$, we see that the sum of T and all of the U_{i} must equal all of R^{n}. q.e.d.

It would be nice to have $R\left(T, U_{i}\right)=\boldsymbol{m}_{i}$ for all i, but we can only assert this under the hypothesis of (a) (cf. Introduction). Indeed,
(3.6) Proposition. (a) holds if and only if $R\left(T, U_{i}\right)=m_{i}, i=1, \cdots, r$.

Proof. First remark that $\left(R\left(T, U_{i}\right), \boldsymbol{k}_{T}\right)=\left\langle U_{i}, \boldsymbol{k}_{T}(T)\right\rangle=0$ and, if $i \neq j$,

$$
\left(R\left(T, U_{i}\right), m_{j}\right)=\left\langle U_{i}, m_{j}(T)\right\rangle=\left\langle U_{i}, U_{j}\right\rangle=0 .
$$

Now assume (a). Then $R\left(T, U_{i}\right) \subset \boldsymbol{m}_{i}$ is immediate from the above relations. Take $Z \in T-P_{i}$ and define a linear map $J: U_{i} \rightarrow m_{i}$ by $J(X)=R(Z, X)$. Writing $X=A(Z)$ for some $A \in \boldsymbol{m}_{i}$, we get

$$
(J(X), A)=(R(Z, X), A)=\langle X, A(Z)\rangle=\langle X, X\rangle
$$

which vanishes if and only if $X=0$. Thus J is one-one. Then, by (3.1), J must be onto, hence $R\left(T, U_{i}\right)=m_{i}$.

For the converse, suppose $R\left(T, U_{i}\right)=\boldsymbol{m}_{i}$. Then, if $i \neq j$,

$$
\left(\boldsymbol{m}_{i}, \boldsymbol{m}_{j}\right)=\left(R\left(T, U_{i}\right), \boldsymbol{m}_{j}\right)=\left\langle U_{i}, \boldsymbol{m}_{j}(T)\right\rangle=\left\langle U_{i}, U_{j}\right\rangle=0 .
$$

4. Proof of Theorem II

Assume that W is reducible on T and write $T=T_{1} \oplus T_{2}$, an orthogonal decomposition into nontrivial W-invariant subspaces.
(4.1) Lemma. If $\left.W\right|_{T_{1}}=$ identity, then $\left.K\right|_{T_{1}}=$ identity.

Proof. By the structure theory of W, we must have $T_{1} \subset P_{i}, i=1, \cdots, r$. Thus $\boldsymbol{k}^{i}\left(T_{1}\right)=0, i=1, \cdots, r$. It follows that $\boldsymbol{k}\left(T_{1}\right)=0$. q.e.d.

In the above case we set $V=T_{1}^{\perp}$ and pass to $\left.K\right|_{V}$ as the only interesting part. We therefore assume from here on that W has no nonzero fixed point in T.
(4.2) Lemma. For each singular hyperplane P_{i} in T, either $T_{1} \subset P_{i}$ or $T_{2} \subset P_{i}$.

Proof. Let $w_{i} \in W$ be the reflection in P_{i}. w_{i} has exactly a one dimensional -1 eigenspace. Since $\left.w_{i}\right|_{T_{1}}$ and $\left.w_{i}\right|_{T_{2}}$ are involutions, the -1 eigenspace must either be in T_{1} or in T_{2}, and w_{i} is the identity on the other. q.e.d.

We may suppose that P_{1}, \cdots, P_{q} is the set of singular hyperplanes in T such that $T_{1} \subset P_{i}$, hence that P_{q+1}, \cdots, P_{r} is the set such that $T_{2} \subset P_{i}$.
(4.3) Lemma. $\quad T_{1}=P_{1} \cap \cdots \cap P_{q}$ and $T_{2}=P_{q+1} \cap \cdots \cap P_{r}$.

Proof. $\quad T_{1} \subset P_{1} \cap \cdots \cap P_{q}$. If equality does not hold, find nonzero X in this intersection such that $X \perp T_{1}$. Thus $X \in T_{2} \subset P_{q_{+1}} \cap \cdots \cap P_{r}$. This makes $X \neq 0$ a fixed point of W contrary to our assumption. T_{2} is treated similarly. q.e.d.

Let U_{1}, \cdots, U_{r} be as in (3.5). Set

$$
V_{1}=T_{1} \oplus U_{q+1} \oplus \cdots \oplus U_{r}, \quad V_{2}=T_{2} \oplus U_{1} \oplus \cdots \oplus U_{r}
$$

so that $\boldsymbol{R}^{n}=V_{1} \oplus V_{2}$ is an orthogonal decomposition by (3.5). We will show that V_{1} and V_{2} are K-invariant.
(4.4) Lemma. $\quad T_{2} \oplus V_{1}=\left\{Y \in \boldsymbol{R}^{n}: R\left(Y, T_{2}\right)\right\}=0$, and similarly $T_{1} \oplus V_{2}$ $=\left\{Y \in \boldsymbol{R}^{n}: R\left(Y, T_{1}\right)\right\}=0$.

Proof. Indeed, $T_{2} \oplus V_{1}=T \oplus U_{q_{+1}} \oplus \cdots \oplus U_{r}$ and $R\left(T, T_{2}\right)=0$. If $q+1 \leq i \leq r$, then $\left(R\left(T_{2}, U_{i}\right), \boldsymbol{k}^{i}\right)=\left\langle U_{i}, \boldsymbol{k}^{i}\left(T_{2}\right)\right\rangle=0$ since $T_{2} \subset P_{i}$, and, if $j \neq i$,

$$
\left(R\left(T_{2}, U_{i}\right), \boldsymbol{k}^{j}\right)=\left\langle U_{i}, \boldsymbol{k}^{j}\left(T_{2}\right)\right\rangle \subset\left\langle U_{i}, U_{j}\right\rangle=0
$$

Since the \boldsymbol{k}^{j} 's linearly span \boldsymbol{k}, we have $R\left(T_{2}, U_{i}\right)=0$. Thus $R\left(T_{2}, T_{2} \oplus V_{1}\right)=0$.
On the other hand, choose $Z \in T_{2}-\left(P_{1} \cup \cdots \cup P_{q}\right)$. Then $\boldsymbol{k}^{j}(Z)=U_{i}$, $1 \leq i \leq q$. If $A_{i} \in \boldsymbol{k}^{i}$ and $Y=\sum_{i=1}^{q} A_{i}(Z) \neq 0$, then some $A_{i_{0}}(Z) \neq 0$ and

$$
\begin{aligned}
\left(R(Z, Y), A_{i_{0}}\right) & =\sum_{i=1}^{q}\left(R\left(Z, A_{i}(Z)\right), A_{i_{0}}\right)=\sum_{i=1}^{q}\left\langle A_{i}(Z), A_{i_{0}}(Z)\right\rangle \\
& =\left\langle A_{i_{0}}(Z), A_{i_{0}}(Z)\right\rangle \neq 0
\end{aligned}
$$

Thus $R(Z, Y) \neq 0$ for every nonzero $Y \in U_{1} \oplus \cdots \oplus U_{q}$. Since $Z \in T_{2}$, it follows that $R\left(T_{2}, Y\right)=0$ if and only if $Y \in T_{2} \oplus V_{1}$.

Similarly, $R\left(T_{1}, Y\right)=0$ if and only if $Y \in T_{1} \oplus V_{2}$.
(4.5) Proposition. V_{1} and V_{2} are K-invariant.

Proof. Let K^{j} be the connected subgroup of K corresponding to the Lie algebra \boldsymbol{k}^{j}. Then K is generated by K^{1}, \cdots, K^{r}. Let $g \in K^{j}$. Either $T_{1} \subset P_{j}$ or $T_{2} \subset P_{j}$. If $T_{1} \subset P_{j}$, then $\left.g\right|_{T_{1}}=$ identity. By (4.4) and the K-invariance of R, we must have $g\left(T_{1} \oplus V_{2}\right)=T_{1} \oplus V_{2}$, hence $g\left(V_{2}\right)=V_{2}$. Therefore also $g\left(V_{1}\right)=V_{1}$. An entirely parallel argument holds if $T_{2} \subset P_{j}$. Thus $K\left(V_{1}\right)=V_{1}$ and $K\left(V_{2}\right)=V_{2}$. q.e.d.

By (1.3) we also know
(4.6) Corollary. $\quad R\left(V_{1}, V_{2}\right)=0$.

The hardest part of Theorem II is given by (4.5). The remainder is given by the following.
(4.7) Proposition. If $R^{n}=V_{1} \oplus V_{2}$ is an orthogonal decomposition into two K-invariant subspaces, and $T \subset R^{n}$ is a K-transversal domain, then for
$i=1,2, T_{i}=T \cap V_{i}$ is W-invariant with $T=T_{1} \oplus T_{2}$ and is a K-transversal domain in V_{i}.

Proof. Clearly T_{1} and T_{2} are W-invariant. Since T meets every K-orbit in \boldsymbol{R}^{n} orthogonally, it is immediate that T_{i} has these same properties for V_{i}, $i=1,2$. Thus we have orthogonal decompositions $V_{i}=T_{i} \oplus k\left(T_{i}\right), i=1,2$, hence an orthogonal decomposition $\boldsymbol{R}^{n}=T_{1} \oplus T_{2} \oplus \boldsymbol{k}\left(T_{1}\right) \oplus \boldsymbol{k}\left(T_{2}\right)$. But $\boldsymbol{k}\left(T_{i}\right)$ $\subset \boldsymbol{k}(T) \perp T, i=1,2$, so necessarily $T=T_{1} \oplus T_{2}$.

5. Proof of Theorem III

Let $\boldsymbol{R}^{n}=V_{1} \oplus V_{2}$, a nontrivial orthogonal K-invariant decomposition. Assume that (a) holds.
(5.1) Lemma. $\quad \boldsymbol{k}_{i}=R\left(\Lambda^{2}\left(V_{i}\right)\right)$ is an ideal in $k, i=1,2$.

Proof. $\quad R\left(\Lambda^{2}\left(V_{i}\right)\right)$ is a linear subspace of \boldsymbol{k}. Let $A \in \boldsymbol{k}, X, Y \in V_{i}$. Then by (1.2),

$$
0=A(R)(X, Y)=-R(A(X), Y)-R(X, A(Y))-[R(X, Y), A]
$$

hence $\left[R\left(\Lambda^{2}\left(V_{i}\right), \boldsymbol{k}\right] \subset R\left(\Lambda^{2}\left(V_{i}\right)\right)\right.$.
(5.2) Lemma. $k_{i}\left(V_{j}\right)=0, i \neq j$.

Proof. As usual we can write

$$
V_{1}=T_{1} \oplus U_{q+1} \oplus \cdots \oplus U_{r}, \quad V_{2}=T_{2} \oplus U_{1} \oplus \cdots \oplus U_{q}
$$

By (3.6), $R\left(T_{1}, V_{1}\right) \subset m_{q+1} \oplus \cdots \oplus m_{r}$, hence $R\left(T_{1}, V_{1}\right)\left(T_{2}\right)=0$. Since $T_{1} \oplus T_{2}$ is maximal R-flat, (1.3) and Theorem I imply that $T_{1} \oplus y T_{2}$ is maximal R-flat for any $y \in K$. By Theorem I there is $x \in K$ such that

$$
x T_{1} \oplus x T_{2}=x\left(T_{1} \oplus T_{2}\right)=T_{1} \oplus y T_{2}
$$

so $x T_{1}=T_{1}$ and $x T_{2}=y T_{2}$. Thus

$$
\begin{aligned}
R\left(T_{1}, V_{1}\right)\left(y T_{2}\right) & =R\left(x T_{1}, x V_{1}\right)\left(x T_{2}\right)=x x^{-1} R\left(x T_{1}, x V_{1}\right)\left(x T_{2}\right) \\
& =x R\left(T_{1}, V_{1}\right)\left(T_{2}\right)=0
\end{aligned}
$$

by (1.2). But V_{2} is the union of all $y T_{2}$ as y ranges over K, so $R\left(T_{1}, V_{1}\right)\left(V_{2}\right)$ $=0$. Finally, if $x \in K$ is arbitrary,

$$
\begin{aligned}
R\left(x T_{1}, V_{1}\right)\left(V_{2}\right) & =R\left(x T_{1}, x V_{1}\right)\left(x V_{2}\right)=x x^{-1} R\left(x T_{1}, x V_{1}\right)\left(x V_{2}\right) \\
& =x R\left(T_{1}, V_{1}\right)\left(V_{2}\right)=0
\end{aligned}
$$

and V_{1} is the union of all $x T_{1}$. Thus $R\left(V_{1}, V_{2}\right)\left(V_{2}\right)=0$, hence $\boldsymbol{k}_{1}\left(V_{2}\right)=0$. Similarly $\boldsymbol{k}_{2}\left(V_{1}\right)=0$.
(5.3) Lemma. $\boldsymbol{k}_{*}=\boldsymbol{k}_{1} \oplus \boldsymbol{k}_{2}$, an orthogonal decomposition.

Proof. $\quad\left(R\left(V_{1}, V_{1}\right), \boldsymbol{k}_{2}\right)=\left\langle V_{1}, \boldsymbol{k}_{2}\left(V_{1}\right)\right\rangle=0$, hence $\boldsymbol{k}_{1} \perp \boldsymbol{k}_{2}$. But also $\boldsymbol{k}_{*}=$ $R\left(\Lambda^{2}\left(\boldsymbol{R}^{n}\right)\right)=R\left(\Lambda^{2}\left(V_{1}\right)\right)+R\left(\Lambda^{2}\left(V_{2}\right)\right)=\boldsymbol{k}_{1}+\boldsymbol{k}_{2}$ since $R\left(V_{1}, V_{2}\right)=0$. q.e.d.

These three lemmas give Theorem III as an immediate consequence. Indeed, if $\boldsymbol{k}=\boldsymbol{k}_{0} \oplus \boldsymbol{k}_{*}$ with $\boldsymbol{k}_{0} \neq 0$, then replace \boldsymbol{k}_{1} by $\boldsymbol{k}_{0} \oplus \boldsymbol{k}_{1}$, an ideal in \boldsymbol{k} annihilating V_{2}, and obtain the desired decomposition of \boldsymbol{k}.

6. Examples

In [6] we announced two representations with K-transversal domains of dimension two, neither of which is an s-representation. We give the details here.

Recall that the Dynkin diagram for Spin (8) has the form

and hence has symmetry group isomorphic to the symmetric group \sum_{3}. By [8, p. 46] we can represent \sum_{3} faithfully as the group of automorphisms of Spin (8) which leaves pointwise fixed a principal three-dimensional subgroup. Let $t, s \in \sum_{3}$ be elements of order 3 and 2 respectively. t is called a triality automorphism of Spin (8). It is fairly well known that the fixed point set of t is the compact exceptional group $G_{2} \subset \operatorname{Spin}(8)$ and that of s is $\operatorname{Spin}(7) \subset$ Spin (8). Indeed, these groups are seen to be the identity components of the respective fixed point sets by a fairly straightforward application of [8, Chapter II, § 3, and Chapter III, § 1], while the connectedness of these fixed point sets is guaranteed by [2, pp. 224-225]. Let $s_{t}=t s t^{-1}$, the fixed point group of this automorphism being $\operatorname{Spin}_{t}(7)=t($ Spin (7)).

The following two lemmas are well known, at least to experts, but for the sake of completeness we give proofs here.
(6.1) Lemma. $\operatorname{Spin}(7) \cap \operatorname{Spin}_{t}(7)=G_{2}$, and the natural left action of $\operatorname{Spin}_{t}(7)$ on $\operatorname{Spin}(8) / \operatorname{Spin}(7)=S^{7}$ is transitive.

Proof. $\quad s s_{t}=s t s t^{-1}=t$ by the multiplication table for \sum_{3}, hence G_{2} is the fixed point group for $s s_{t}$. Thus $\operatorname{Spin}(7) \cap \operatorname{Spin}_{t}$ (7) $\subset G_{2}$. But this intersection is the stabilizer in Spin_{t} (7) for the base point $o \in \operatorname{Spin}$ (8)/Spin (7). The $\operatorname{Spin}_{t}(7)$-orbit of o has dimension ≤ 7 and $\operatorname{dim}\left(\operatorname{Spin}_{t}(7)\right)=21$, so

$$
\operatorname{dim}\left(\operatorname{Spin}(7) \cap \operatorname{Spin}_{t}(7)\right) \geq 14=\operatorname{dim}\left(G_{2}\right)
$$

All assertions follow.
(6.2) Lemma. Let $G_{2} \subset \operatorname{Spin}$ (7) as above and let Spin (6) $\subset \operatorname{Spin}$ (7) be the standard imbedding. Then $G_{2} \cap \operatorname{Spin}(6)=S U(3)$ and the natural left action of G_{2} on $\operatorname{Spin}(7) / \operatorname{Spin}(6)=S^{6}$ is transitive.
Proof. $G_{2} \cap$ Spin (6) is the isotropy group in G_{2} for the basepoint $o \in \operatorname{Spin}(7) / \operatorname{Spin}$ (6). Let H denote the identity component of $G_{2} \cap \operatorname{Spin}$ (6). The orbit $G_{2} \cdot o$ has dimension ≤ 6 and $\operatorname{dim}\left(G_{2}\right)=14$, so $\operatorname{dim}(H) \geq 8$. Thus H cannot be trivial nor of rank one, so that by [3] the only possibilities for H
are (in local notation): $T^{2}, T^{1} \times A_{1}, A_{1} \times A_{1}, A_{2}, G_{2}$. Dimensional considerations rule out all possibilities except A_{2} and G_{2}.

If $H=G_{2}$, then $G_{2} \subset \operatorname{Spin}$ (6) and G_{2} has codimension one in Spin (6). At the Lie algebra level, there is an orthogonal decomposition spin (6) $=\boldsymbol{g}_{2} \oplus \boldsymbol{R}$. Then $\left[\boldsymbol{g}_{2}, \boldsymbol{R}\right] \subset \boldsymbol{R}$ and $[\boldsymbol{R}, \boldsymbol{R}]=0$, so \boldsymbol{R} is a proper nontrivial ideal, contradicting the fact that spin (6) is simple. Thus $H=A_{2}$.

Since $\operatorname{dim}(H)=8, \operatorname{dim}\left(G_{2} \cdot o\right)=6$ and so $G_{2} \cdot o=S^{6}$. The exact sequences

$$
\begin{aligned}
& 0=\pi_{1}\left(G_{2} \cdot o\right) \rightarrow \pi_{0}\left(G_{2} \cap \operatorname{Spin}(6)\right) \rightarrow \pi_{0}\left(G_{2}\right)=0 \\
& 0=\pi_{2}\left(G_{2} \cdot o\right) \rightarrow \pi_{1}\left(G_{2} \cap \operatorname{Spin}(6)\right) \rightarrow \pi_{1}\left(G_{2}\right)=0
\end{aligned}
$$

show that $G_{2} \cap \operatorname{Spin}(6)$ is connected and simply connected, hence this group is $S U(3)$. q.e.d.

Using the above we will produce two representations satisfying the hypotheses of the following proposition.
(6.3) Proposition. Let orthogonal representations of K on \boldsymbol{R}^{n} and \boldsymbol{R}^{m} be given such that K is transitive on the unit sphere S^{n-1} of \boldsymbol{R}^{n} and such that, if $X \in S^{n-1}$, then K_{X} is transitive on the unit sphere of S^{m-1} of \boldsymbol{R}^{m}. Then the direct sum of these two representations has a K-transversal domain $T \subset \boldsymbol{R}^{n+m}$ of dimension two.

Proof. Let $L_{1}=\boldsymbol{R} \cdot X$ and let $L_{2} \subset \boldsymbol{R}^{m}$ be any one dimensional subspace. Given $(A, B) \in \boldsymbol{R}^{n} \oplus \boldsymbol{R}^{m}=\boldsymbol{R}^{n+m}$, some element of K moves this to a point $\left(A^{\prime}, B^{\prime}\right) \in L_{1} \oplus \boldsymbol{R}^{m} . K_{X}$ fixes L_{1} pointwise and is transitive on S^{m-1}, hence some element of K_{X} moves (A^{\prime}, B^{\prime}) to a point on $T=L_{1} \oplus L_{2}$. Thus every K-orbit meets $T . R(T, T)=0$ is an immediate consequence of (1.3), hence, by (1.4), T is a K-transversal domain. q.e.d.

Let r_{1}, r_{2} be the orthogonal representations of Spin (8) on \boldsymbol{R}^{8} induced respectively by

$$
\text { Spin (8) } \xrightarrow{t^{-1}} \operatorname{Spin}(8) \xrightarrow{p} S O(8), \quad \text { Spin }(8) \xrightarrow{p} S O(8)
$$

where p is the double covering. Let q_{1} be the orthogonal representation of Spin (7) on \boldsymbol{R}^{8} induced by

$$
\operatorname{Spin}(7) \xrightarrow{t} \operatorname{Spin}_{t}(7) \subset \operatorname{Spin}(8) \xrightarrow{p} S O(8),
$$

and let q_{2} be the representation on \boldsymbol{R}^{7} induced by the double covering Spin (7) $\rightarrow S O(7)$. By (6.1), (6.2), and (6.3) we conclude
(6.4) Theorem. $r_{1} \oplus r_{2}$ is an orthogonal representation of $\operatorname{Spin}(8)$ on \boldsymbol{R}^{16} having a two-dimensional Spin (8)-transversal domain, and $q_{1} \oplus q_{2}$ similarly represents Spin (7) on \boldsymbol{R}^{15} with a two-dimensional Spin (7)-transversal domain.

Remark that the t^{-1} in the definition of r_{1} is essential. $r_{2} \oplus r_{2}$ does not admit a Spin (8)-transversal domain.

In both cases the singular varieties in T are the subspaces L_{1} and L_{2} in the proof of (6.3). Thus the Weyl group $W=\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$.

In the case of $r_{1} \oplus r_{2}$, the group K_{T} is $\operatorname{Spin}(7) \cap \operatorname{Spin}_{t}(7)=G_{2}, K^{1}=$ $\operatorname{Spin}_{t}(7), K^{2}=\operatorname{Spin}(7)$, and so $K^{i} / K_{T}=S^{7}$ as predicted by [6, Theorem IV]. The principal orbits of Spin (8) in \boldsymbol{R}^{16} have the form

$$
K / K_{T}=\operatorname{Spin}(8) / G_{2}=S^{7} \times S^{7}
$$

In the case of $q_{1} \oplus q_{2}, K_{T}=G_{2} \cap \operatorname{Spin}(6)=S U(3), K^{1}=G_{2}, K^{2}=\operatorname{Spin}(6)$ $=S U(4)$, hence

$$
\begin{aligned}
K^{1} / K_{T} & =G_{2} / S U(3)=S^{6}, \quad K^{2} / K_{T}=S U(4) / S U(3)=S^{7} \\
K / K_{T} & =\operatorname{Spin}(7) / S U(3)=S^{6} \times S^{7}
\end{aligned}
$$

$q_{1} \oplus q_{2}$ can be seen to be equivalent to the isotropy representation for $\operatorname{Spin}(9) / \operatorname{Spin}_{t}(7)=S^{15}$.

It is evident that (b) fails for both of these examples, hence so does (a). The fact that (a) fails for $r_{1} \oplus r_{2}$ is also easy to see using the triality automorphism.

References

[i] A. Bcrel et al., Seminar on transformation groups, Annals of Math. Studies, No. 46, Princeton University Press, Princeton, 1960.
[2] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. 13 (1961) 216-240.
[3] A. Bcrel \& J. de Siebenthal, Sur les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949) 200-221.
[4] R. Bctt \& H. Samelsen, The cohomology ring of G / T, Proc. Nat. Acad. Sci. U.S.A. 41 (1955) 490-493.
[5] -, Applications of the theory of Morse to symmetric spaces, Amer J. Math. 80 (1958) 964-1029.
[6] L. Conlon, Variational completeness and K-transversal domains, J. Differential Germetry 5 (1971) 135-147.
[7] G. A. Hunt, A theorem of Élie Cartan, Proc. Amer. Math. Soc. 7 (1956) 307-308.
[8] J. de Siebenthal, Sur les groupes de Lie compacts non connexes, Comment. Math. Helv. 31 (1956-57) 41-89.
[9] J. Sim^ns, On the tran itivity of holonomy systems, Ann. of Math. 76 (1962) 213-234.

[^0]: Communicated by H. Samelson, November 2, 1970.

