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CRITICAL POINTS OF THE LENGTH OF A
KILLING VECTOR FIELD

V. OZOLS

Introduction

Let M be a complete Riemannian manifold, X a Killing vector field on M,
and ψt its 1-parameter group of isometries of M, and denote by Crit( |Z| 2 )
(resp. Crit (φt)) the critical point set of the function \X\2 (resp. δ2

φt, where δφt(p)
is the distance from p to φt(p)). In this paper we prove that if M is compact,
then there is a number a > 0 such that Crit (|Z|2) = Crit (φt) for every |; | < a.
In the proof we make use of a slight generalization of the period bounding
lemma of ordinary differential equations The only version of this lemma which
we have seen in the literature (see for example [1]) makes a mild transversality
assumption which we eliminate.

1. Period bounding lemma

Let M be a compact Cr(r > 2) manifold of dimension n, and X% τ e ( — τ0, r0)
and τ0 > 0, be a parameterized C r vector field on M. Then X: ( — τ0, τ0) X
M -> ΓM is a C r map such that π(Xτ

p) = p for every (τ, p) € ( — τ0, r0) X M,
where TΓ: TM —* A/ is the projection of the tangent bundle TM of M. Let ψτ

s

be the parameterized flow of Xτ, so that, for each fixed τ € ( — r0, r0), ψj is the
1-parameter group of difϊeomorphisms of M generated by Xτ.

Lemma. For each 0 < τ < r0 ίΛ r̂g w α number a{τ) > 0 .ywcΛ //iα* /or
every | r | < τ each closed orbit of ψτ

s has least period > a(t).
Proof. Suppose the lemma is false. Then there are a sequence Pi^M and

sequences r* e [ —f, ϊ ] , c^ e J? such that the orbit {ψlKPi) \s e R} is closed and
has least period at > 0 with at —> 0 as i —> oo. By choosing subsequences if
necessary, we may assume pt^> p*e M and r* —> r* e [ —f, f]. Then Z ^ ->
Xτ*^ as Ϊ -^ oo. Now either X £ = 0 or X% Φ 0. If Xτ^ Φ 0, then Xτ

v Φ 0 for
all (r, p) near (r^, p^). There is a neighborhood C/ of p% such that for each τ
near r^ there is a coordinate system (*;, -,xτ

n) in t/ satisfying Xτ = d/dX[.
But since the periods of the orbits {ψlKPί) I s £ R} approach 0, these curves
eventually lie in arbitrarily small neighborhoods of /?*, contradicting the fact
that they are level curves of coordinate systems valid in all of U. Therefore
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we may assume Xτ*^ = 0. Now choose a fixed coordinate system (x19 , xn)
in a neighborhood U of p^, and assume pt^U for all i. Thus we may assume
that the parameterized family of vector fields Xτ is defined in a neighborhood
V of 0 in Rn, and pt is a sequence of points of V converging to 0 as / —> oo.
(Identify ^ Ξ 0). Moreover, we may assume the 1-parameter groups ψτ

s of
the Xτ are defined in V. Let γt(s) = ψlKPi) be the i-th orbit in the sequence.
For each /, let Pt be the hyperplane in Rn through pt and orthogonal to γt at
Pi, and let vt = Xτ

P\ be the tangent to γt at pt. Let st e (0, at) be the largest
value such that qi — ftfo) e Pit Then qt is the last point of intersection of γt

with Pi before pί9 and the points γ^s), st < s < a^, lie on the opposite side of
Pt from the vector vt. Let vt = (ψ$*Vi, tangent to γt at sit By the construc-
tion, Vi _L Pi and t^ either lies in Pt or points into the half-space on the other
side of Pi from vt. In any case, the angle between v% and vt is always > ττ/2.
(Clearly, ^ -ψ 0, and z)̂  ^ 0.) By choosing a subsequence if necessary, we
may assume that the sequence of unit vectors Vi/\Vi\ converges to a unit vector
v. Then the sequence of hyperplanes Pt converges to a hyperplane P J_ v
through /?*. Since 0 < st < at and a{ —> 0, we have st —• 0 as z —> oo there-
fore (ψ-;*)* -> id: T^^M -^ Γ^^M as z -^ oo. Consequently, lim GK^O^/I^I)

= v = lim ^ / | ^ | . But the angles <£ (yt/\Vi\, ( Ψ ^ ) * ( ^ / | ^ | ) ) > πβ for all /,

so Ĉ (̂ ? l i m (Ψs )*(^i/I^i|)) Ξ> π/2, which is a contradiction.
i—oo

Remark. This result clearly applies to compact neighborhoods of arbitrary
(i.e., possibly noncompact) manifolds.

2. Application to Killing vector fields

Suppose M is a complete Riemannian manifold of class C°°, and f:M—*M
is an isometry such that for every p € M there is a unique minimizing geodesic
from p to /(/?); such an isometry is said to have "small displacement". Let
δf: M —• R be defined by: δf(p) = distance from p to f(p), and let Crit (/) be
the critical point set of δ2

f. In [3] we showed that for isometries / of small
displacement δ2

f is C°° so that Crit (/) has meaning, and that p e Crit (/) if and
only if / preserves the minimizing geodesic from p to f(p) (in the sense that /
is a simple translation along this geodesic). In [2], R. Hermann studied the
analogous problem for Killing vector fields, and showed that if X is a Killing
vector on M, then the critical point set Crit (\X\2) of the function \X\2 consists
of those points of M whose orbits by the 1-parameter group of isometries φt

generated by X are geodesies. It is then clear that Crit (|^|2) C Crit (<pt) for
all t such that φt has small displacement, and it is not hard to show that
Crit (|Z|2) = Π Crit (<pt), where t0 is so small that φt has small displacement

0<ί<ί0

if \t\ < t0. We prove here that if M is compact, then there is a number a > 0
such that Crit (|Z|2) = Crit (φt) if 0 < \t\ < a.

From now on, we assume M is a compact Riemannian manifold of class C°°
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and X is a Killing vector field on M. Suppose that there is no number a > 0
such that Crit (\X\2) = Crit (φt) for all 0 < \t\ < a. Then there are sequences
tte R and PieM such that tt > 0, t% —* 0 as i —• oo, and p^ e (Crit (φt.) —
Crit (|X|2)) for all /. We may take tt to be strictly decreasing. Since M is com-
pact, we may assume, by taking a subsequence if necessary, that pt —> p e M
as / —> oo.

Lemma 1. p e Crit (|X|2).
Proof. Let γt be the minimizing geodesic from pt to φt.(Pi). Since the

vector fields tangent to the yi lie in a compact neighborhood in TM (restrict to
the portion of γt between pt and φti(pd) w e c a n assume, by choosing a sub-
sequence if necessary, that the yt converge to a geodesic γ through p. Now γt

intersects the orbit {φt(pt) \ t e R} at the points φ?t(Pi) = φmti(Pί), me Z. We see
that since ^ —> 0, these points approach a dense set of points on γ at which the
orbit φt(p) meets γ. Therefore γ == {^(p) | ί e Λ}, and p € Crit (\X\2). q.e.d.

Now either Z p = 0 or Xp Φ 0. If Xp = 0, then p is a fixed point of all the
<pt, t € R. Also, since /^ $ Crit (\X\2), Pi is not fixed by all <pt, t Φ 0.

Lemma 2. There is a number t > 0 s«c/z //zα/ p^ w not fixed by any

ψt,O<\t\ <t.
Proof. Assume to the contrary that there is a sequence tk —> 0 such that

tk > 0 and /?£ is fixed by ^ίjfc. Then pt is fixed by φ™k = φmtk for all me Z, so
p έ is fixed by ^ for a dense subset of R. Consequently pt is fixed by all
φt,t 6 R, which is a contradiction, q.e.d.

Let Zero (X) = {p\Xp = 0}.
Lemma 3. TΛere is ί > 0 such that Fix (φt) = Zero (X) for all 0 <t <t.
Proof. Suppose the lemma is false. Then there are sequences tt —> 0 and

Pi 6 (¥ix(φti) — Zero (X)). By taking subsequences if necessary, we may
assume pt—>peM. Since φ™(pt) = Pi for all me Z, ^(p) = p f or a dense set
of t e R. Therefore p e Zero (X). We may assume tt > 0 is minimal such that
φt .fa) = pu for if no minimal positive tt exists then pt e Zero (X) by Lemma
2. Now the curves {φt(Pi) \teR} are periodic solutions of the differential equa-
tion X in a neighborhood of p, and their least periods coverage to 0. This
contradicts the period bounding lemma, q.e.d.

Now assuming Xv = 0, we have a sequence Pi—>p with φt.(Pi) Φ pu such
that ψti preserves the minimizing geodesic γt from pt to <pt.(Pi). Since ^
preserves γt and fixes p, the geodesic y% never gets farther away from p than
r< = max {^(p, ̂ t o ) 10 < ^ < p(pi7 φtt(Pi))}9 where ^(p, (?) is the distance from
p to q. Since p* —> p and ̂  —• 0, it is clear that rx —> 0 as z -^ oo. Thus we
have a sequence of geodesies γt which converges to a point; this is impossible.
Therefore Xp Φ 0. Then X Φ 0 in a neighborhood of p, and we may choose
a coordinate system (JC19 , xn) in a neighborhood [/ of p such that jc (̂p) = 0,
1 < i < n, and X = d/dxλ in U. Let g^ = (d/dxi9 d/dxj} be the coefficients
of the Riemannian metric in these coordinates, where <( , ) is the Riemannian
inner product. Then
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XgtJ = <j.d/dxι,d/dxi],d/dxj> + <d/dxi9 [d/dxl9d/dxj]> = 0

for all 1 < i, j < n

because X is a Killing vector field, so the gtj are independent of xλ. Conse-
quently, all the Christoffel symbols Γ\s are also independent of xx. The orbits
{ψt(q)\t £ R) are integral curves of X and therefore have the form:

t *-+ (Xi(q) + t, x2(q), , xn(q)) for all q 6 U .

Thus φt: (x,(q), 9xn(q)) •-* (x^q) + t, x2(q)9 -9xn(q)). Now let γt(s) =
(xi(s), , xl

n(s)) be the minimizing geodesic from pt to φti(Pi) with arc length
s. Since φt. preserves γu we have φtji(s) = γ^s + ^ ) for some constant at > 0
and all ^ € /?. Since at = p(pt, φti(Pi)), we see that at —> 0 as i —» oo. (Note
that since tt —•> 0, there is a sequence m^ e Z such that m^ —> oo as / -^ oo, and
φ%t(Pt) e U for all |Λ| < m^.) In local coordinates, the equation φtiU(s) =
Tί(s + ««) becomes:

Thus x\{s) + ti = x{(s + (Xi), and the x)(s), 2 < j < n, are periodic of period
at. Then the functions x{(s) = x[(s) — (ti/a^s, x)(s) = xfa), 2 < j < n, are
all periodic of period at. Since the functions x), 1 < j < n, satisfy the differ-
ential equations for a geodesic:

•"#2 -yi, Ύl /7"V*̂  ft Ύ

^rr+ Σ n«^?- ^r- = ° ' i<k<n,

dsL ι,m=i ds ds

the functions x\ satisfy the system:
Σas2- ι,m=i as as

( J Y = 0

Here Γk

lm is a function of x\(s)9 , xiis) alone, since it is independent of xx.
Equivalently, we have the first-order system:

dxl/ds = y\ ,

( * } *f + t n M + 2(Λ-)± rtym + nJΛ-Y = o.
ds ί,m=i \ ad / ™=i \ at I

The system (*) is autonomous for each /. Assume now that X is normalized
so that the parameter t of φt is the arc length along the geodesic γ{t) = φt(p),
i.e., \XrW\ = l f o r a l l ί .
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Lemma 4. lim
l - . o o

= 1.

Proof. Let Q(ί) = φt(Pi) be the orbit of pt. Since pt —> /?, we know that
Ci(t) —> γ{t) uniformly in some compact neighborhood of p. Since the sequence
of geodesies γt also has this property, we see that lim (L(Q)/L(^)) = 1,

where L{Ct) (resp. L(^)) is the length of

= I \XCi{t)\dt = t^Xc.fa] for some 0 < 1i <

UCt)

(resp. Yi). Now L(^) = ai9 and

U 1
so

Since /? as z 1, and the lemma is

proved, q.e.d.
Now consider the following autonomous system with parameter r, defining

a parameterized vector field Yτ in a neighborhood of 0 in R2n:

dxk/ds =

(**) 2(1 - o .

If 1 + Γi = ti/aί9 then we see that the sequence of functions rf = (x\, , xΊ,
yi> ' '' 9 yϊ) which we constructed earlier satisfies (**) with parameter values r*.
Moreover, τt —> 0 as i —> oo since ti/ai—* 1, and the solution 5f is periodic of
period α^ approaching 0 as / —> oo. This contradicts the period bounding
lemma. Therefore our original assumption that the number a > 0 does not
exist is false. Hence we have proved:

Theorem. Let M be a compact Riemannίan manifold of class C°°, X a
Killing vector field on M, and φt the 1-parameter group of isometries generated
by X. Then there is a number a > 0 such that Crit (\X\2) — Crit (φt) for\t\<a.

Example. We construct a simple example of a (noncompact) manifold M
and a 1-parameter group of isometries ψt of M such that Crit (\Xf) Φ Crit (φto)
for some t0 > 0, where X is the Killing vector field associated to ψt. Let M
= Rδ with the usual metric, and define

/I

x5) =
cos ί sm /

— sin ί cos t
0

\

0
cos 2ί sin 2t

— sin It cos2ί

φt is clearly a 1-parameter group of isometries, and the only geodesic of Rb

which is preserved by ψt for all t is the line 11-> (t, 0, , 0). Crit (|^|2) there-
fore equals this line. The set Crit (<pπ) of points lying on geodesies preserved
by φπ is: {(xl9 0, 0, *4, *5)}, and Crit (φ2π) = Λ5.
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