AN INDEX THEOREM FOR WIENER-HOPF OPERATORS ON THE DISCRETE QUARTER-PLANE

L. A. COBURN, R. G. DOUGLAS & I. M. SINGER

1. Introduction

Let T^j be the *j*-dimensional torus, represented as *j*-tuples of complex numbers with modulus equal to one. Letting $L^2(T^j)$ be the usual Hilbert space of squareintegrable complex functions on T^j with respect to normalized Haar measure, we consider the subspace $H^2(T^j)$ consisting of functions in $L^2(T^j)$ which are boundary values of analytic functions in the *j*-disc $\{(z_1, \dots, z_j) : |z_k| < 1\}$. It is well-known that $\{z_1^{n_1} \dots z_j^{n_j} : n_k \ge 0\}$ forms an orthonormal basis for $H^2(T^j)$. We denote by P^j the orthogonal projection from $L^2(T^j)$ onto $H^2(T^j)$. Note that $P_r^{j} \equiv P^j \oplus \dots \oplus P^j$ (*r* times) is the orthogonal projection from $L^2(T^j)$ (*r* times).

Now for $\phi(z_1, \dots, z_j)$ a $r \times r$ matrix-valued complex continuous function on T^j , we define a bounded operator on $H^2(T^j)_r$ by

$$W_{\phi}f = P_r^{j}(\phi f)$$
.

These are the Wiener-Hopf operators. We note that the Fourier transform takes $L^2(T^j)_r$ onto $L^2(Z^j)_r$ and $H^2(T^j)_r$ onto $L^2((Z^+)^j)_r$. Hence, the W_{ϕ} are unitarily equivalent via the Fourier transform to certain matrix convolution operators on the discrete semigroup $(Z^+)^j$.

In this paper, we consider the C*-algebra $\mathscr{A}_r{}^j$ of operators on $H^2(T^j)_r$ generated by all the W_{ϕ} . Our main result is a "canonical form" for the case j = 2 which gives the index of A whenever A is a Fredholm operator in $\mathscr{A}_r{}^2$.

Our analysis depends upon the fact the structure of \mathscr{A}_r^1 is rather completely understood [1], [3]. In particular, W_{ϕ} in \mathscr{A}_r^1 is Fredholm if and only if determinant $(\phi) \neq 0$ and

index $(W_{\phi}) = -$ winding number (determinant (ϕ)).

The situation in \mathscr{A}_r^2 is quite different. It was shown in [4], [7] that a W_{ϕ} in \mathscr{A}_1^2 is a Fredholm operator if and only if ϕ is non-vanishing and homotopic in $C(T^2, \mathbb{C} - 0)$ to the constant 1 (here, $C(X, Y) = Y^X$ denotes the space of continuous functions from X to Y with the appropriate matrix supremum norm

Research supported by grants of the National Science Foundation. The second author was a Fellow of the Alfred Sloan Foundation.

topology). Hence, the index of Fredholm W_{ϕ} in \mathscr{A}_1^2 is always zero. On the other hand, there are Fredholm operators in \mathscr{A}_1^2 , not of the form W_{ϕ} , which have arbitrary index [4]. The situation in \mathscr{A}_r^2 for $r \ge 2$ is again distinctive. We shall see that there are Fredholm W_{ϕ} in \mathscr{A}_2^2 with arbitrary index.

2. Preliminary results

Henceforth, we restrict our attention to T^j for j = 1, 2. Let \mathscr{K}_r^j be the algebra of all compact operators on $H^2(T^j)_r$. Further, let G_r be the group of invertibles in \mathscr{K}_r^1 , and let K_r be the group of all elements in G_r which have the form I + K for K in \mathscr{K}_r^1 . Finally, for GL_r the complex $r \times r$ general linear group, let H_r be the subgroup of GL_r^T whose elements have determinants with winding number zero.

We recall that in \mathscr{A}_1^{j} [2], $||W_{\phi}|| = ||\phi||_{\infty}$ and $W_{\phi}^* = W_{\phi}$. It follows that W_z and W_w generate \mathscr{A}_1^2 . We also recall that $\mathscr{A}_r^1 = \{W_{\phi} + K : \phi \text{ continuous}, K \in \mathscr{K}_r^1\}$ and the map

$$\sigma(W_{\phi} + K) = \phi$$

gives a *-homomorphism from \mathscr{A}_r^1 onto the algebra M_r^T of $r \times r$ matrix-valued continuous functions on T. The kernel of σ is precisely \mathscr{H}_r^1 .

Now to each element of \mathscr{A}_r^2 by the analysis of [4] there corresponds a pair $(\sigma_1(z), \sigma_2(z))$ in $C(T, \mathscr{A}_r^1) \oplus C(T, \mathscr{A}_r^1)$ satisfying

(*)
$$\sigma[\sigma_1(z)](w) = \sigma[\sigma_2(w)](z) .$$

Further, it is easy to check that *any* pair $(\sigma_1(z), \sigma_2(z))$ satisfying (*) corresponds to an element of \mathscr{A}_r^2 . Finally, the map constructed in [4] which sends A to $(\sigma_1(A)(z), \sigma_2(A)(z))$ is a *-homomorphism from \mathscr{A}_r^2 onto

$$\sum_{r} = \{(\sigma_1(z), \sigma_2(z)) \text{ in } C(T, \mathscr{A}_r^{-1}) \oplus C(T, \mathscr{A}_r^{-1}) \colon (*) \text{ holds}\}$$

with kernel \mathscr{K}_r^2 . We recall that if W_w, W_z are the generators of \mathscr{A}_1^2 , then the map $A \to (\sigma_1(A)(z), \sigma_2(A)(z))$ is determined by

$$\sigma_1(W_w)(z) = S$$
, $\sigma_2(W_w)(z) = zI$;
 $\sigma_1(W_w)(z) = zI$, $\sigma_2(W_z)(z) \equiv S$,

where S is the "unilateral shift" generating \mathscr{A}_1^1 . Note that S is just " W_z in \mathscr{A}_1^1 ", an unfortunate notational ambiguity.

By our previous remarks, an element A of \mathscr{A}_r^2 is a Fredholm operator (i.e., A has closed range and finite-dimensional kernel and cokernel) if and only if $(\sigma_1(A)(z), \sigma_2(A)(z))$ is in $C(T, G_r) \oplus C(T, G_r)$. The main result of this paper expresses the index of Fredholm A in \mathscr{A}_r^2 in terms of $(\sigma_1(A)(z), \sigma_2(A)(z))$. Recall that

AN INDEX THEOREM

index
$$(A)$$
 = dimension (ker A) – dimension (coker A)

is a continuous homomorphism from the semigroup of Fredholm operators in \mathscr{A}_r^2 to Z.

We require some preliminary observations. Notice that

$$\{1\} \longrightarrow K_r \xrightarrow{i} G_r \xrightarrow{\sigma} H_r \longrightarrow \{1\} .$$

is an exact sequence of topological groups and $G_r \xrightarrow{\sigma} H_r$ is a principal fibre bundle with fibre K_r . Now noting that K_r , G_r , H_r are all arcwise connected, the homotopy exact sequence for bundles gives

$$\cdots \longrightarrow \pi_2(H_r) \longrightarrow \pi_1(K_r) \xrightarrow{i_{\sharp r}} \pi_1(G_r) \xrightarrow{\sigma_{\sharp r}} \pi_1(H_r) \longrightarrow 0 ,$$

where the group $\pi_n(X)$ is the set of path components of X^{S^n} [5], with S^n the *n*-dimensional sphere.

Lemma. For $(\sigma_1(z), \sigma_2(z))$ invertible in \sum_r we have

$$\sigma_{*r}[\sigma_i(z)]_{G_r} = [\sigma(\sigma_i(z))]_{H_r} = 0 .$$

Proof. It suffices to show that $\sigma[\sigma_i(z)](w)$ is homotopic to 1 in $GL_r^{T^2}$. Now suppose $(\sigma_1(z), \sigma_2(z))$ is invertible in \sum_r . Then

$$f_i(z, w) = \text{determinant } \sigma[\sigma_i(z)](w)$$

has winding number zero for each fixed z. But

$$f_1(z,w)=f_2(w,z) ,$$

so $f_i(z, w)$ has winding number zero for each fixed w. An easy argument now shows that f_i is homotopic to the constant 1 in $C(T^2, C - 0)$.

Let SL_r be the subgroup of GL_r consisting of matrices with determinant identically one. Consider the exact sequence

$$\{1\} \longrightarrow SL_r^{T^2} \longrightarrow GL_r^{T^2} \xrightarrow{\operatorname{det}} (C-0)^{T^2} \longrightarrow \{1\} \ .$$

Since det (determinant) has an obvious cross-section, it is only necessary to check that $SL_r^{T^2}$ is arcwise-connected. But this is an easily established topological fact.

3. Main theorem

We can now prove the main result.

Theorem. Let A be a Fredholm operator in \mathscr{A}_r^2 with symbol pair $(\sigma_1(z), \sigma_2(z))$. Then there is a path $(\sigma_1(z)_t, \sigma_2(z)_t)$ of invertible elements in \sum_r such that $\sigma_1(z)_0 = \sigma_1(z), \sigma_2(z)_0 = \sigma_2(z)$ and such that

L. A. COBURN, R. G. DOUGLAS & I. M. SINGER

$$\sigma_{1}(z)_{1} = \begin{pmatrix} z^{m} & & \\ & 1 & 0 \\ & \ddots & \\ 0 & & 1 \\ & & \ddots \end{pmatrix}, \qquad \sigma_{2}(z)_{1} = \begin{pmatrix} z^{n} & & & \\ & 1 & 0 \\ & \ddots & \\ 0 & & 1 \\ & & \ddots \end{pmatrix}$$

for integers n and m, and the index of A is given by index A = -(m + n).

(Note: In general the path $(\sigma_1(z)_t, \sigma_2(z)_t)$ is not unique and, for r > 1, neither *m* nor *n* is uniquely determined.)

Proof. By the Lemma, $\sigma_{\sharp\tau}[\sigma_1] = 0$. Hence, there is a homotopy $\sigma_1(z)_t$ in G_r with $0 \le t \le \frac{1}{2}$ such that $\sigma_1(z)_0 = \sigma_1(z)$ and $\sigma_1(z)_{1/2}$ is in $C(T, K_r)$. Consider $\sigma[\sigma_1(z)_t](.)$, which is a homotopy between $\sigma[\sigma_1(z)](.)$ and 1 in $C(T, H_r)$. Now $C(T, H_r) \subset C(T^2, GL_r)$, so $\sigma[\sigma_1(.)_t](.)$ is a homotopy between $\sigma[\sigma_1(.)](.)$ and 1 in C(T, C - 0) joining det $\sigma[\sigma_1(.)](z)$ to 1. Hence, the winding number of det $\sigma[\sigma_1(.)_t](z)$ is 0 for each z, and so $\sigma[\sigma_1(.)_t](z)$ is in $C(T, H_r)$.

Now we have $\sigma[\sigma_2(z)](w) = \sigma[\sigma_1(w)](z)$ by (*) so that $\sigma[\sigma_2(z)](.) = \sigma[\sigma_1(.)_0](z)$. The "second covering homotopy theorem" [9] now applies to give the existence of an arc $\sigma_2(z)_t$ in $C(T, G_r)$ such that $\sigma_2(z)_0 = \sigma_2(z)$ and

$$\sigma[\sigma_2(z)_t](.) = \sigma[\sigma_1(.)_t](z) .$$

Thus, $(\sigma_1(z)_t, \sigma_2(z)_t)$ is a path of invertible elements in \sum_r such that $\sigma_1(z)_0 = \sigma_1(z)$, $\sigma_2(z)_0 = \sigma_2(z)$ and $\sigma_1(z)_{1/2}$ is in $C(T, K_r)$. Hence

$$1 \equiv \sigma[\sigma_{1}(z)_{1/2}](w) \equiv \sigma[\sigma_{1}(w)_{1/2}](z) \equiv \sigma[\sigma_{2}(z)_{1/2}](w)$$

implies that $\sigma_2(z)_{1/2}$ is in $C(T, K_r)$ as well.

Each element of $C(T, K_r)$ is homotopic in $C(T, K_r)$ to an element of the form

$$egin{pmatrix} z^m & & & \ & 1 & 0 \ & & \ddots & \ 0 & 1 & \ & & \ddots & \ & & & \ddots \end{pmatrix}$$

[8]. This is the construction which shows that $\pi_1(K_r) = Z$. Further, any pair of elements in $C(T, K_r)$ automatically satisfies (*). The construction of the desired path is now obvious.

To prove the index theorem, we recall that by a standard result for Fredholm operators, A has the same index as *any* Fredholm operator with symbol pair $(\sigma_1(z)_1, \sigma_2(z)_1)$. The desired result then follows from the facts that the index of

590

a product of Fredholm operators is the sum of the indices and that the operator $W_w + (I - W_w)W_zW_z$ is Fredholm with index -1 and symbol pair

$$\sigma_1(z) = I \;, \qquad \sigma_2(z) = egin{pmatrix} z & & & \ & 1 & & 0 \ & & \ddots & \ & 0 & & 1 \ & & & \ddots \ & & & \ddots \ \end{pmatrix}$$

4. Some examples

We consider some particular Wiener-Hopf operators in \mathscr{A}_2^2 . Letting

$$\phi(z,w) = \begin{pmatrix} z^n & -w^m \\ \overline{w}^m & \overline{z}^n \end{pmatrix}$$

it follows from the criterion of [4] discussed above that W_{ϕ} , which has symbols

$$\sigma_1(z) = egin{pmatrix} z^n I & -S^m \ S^{*m} & ar{z}^n I \end{pmatrix}, \qquad \sigma_2(z) = egin{pmatrix} S^n & -z^m I \ ar{z}^m I & S^{*n} \end{pmatrix},$$

is a Fredholm operator. In fact, W_{ϕ} is just the "smash product" of S^n with S^{*m} described in [6]. It can be seen by direct computation that this operator has index -mn. However, it is instructive to follow the proof of the Theorem.

It is easy to see that σ_1 and σ_2 are both homotopic to 1 in $C(T, G_2)$. We write down the homotopies

$$\sigma_{1}(z)_{t} = \begin{cases} \begin{pmatrix} z^{n}I & -(1-2t)S^{m} \\ (1-2t)S^{*m} & \bar{z}^{n}I \end{pmatrix} & 0 \leq t \leq \frac{1}{2} \\ z^{n}I\cos 2\pi(t-\frac{1}{2}) & I\sin 2\pi(t-\frac{1}{2}) \\ -I\sin 2\pi(t-\frac{1}{2}) & \bar{z}^{n}I\cos 2\pi(t-\frac{1}{2}) \\ (I\sin 2\pi(t-\frac{3}{4}) & I\cos 2\pi(t-\frac{3}{4}) \\ -I\cos 2\pi(t-\frac{3}{4}) & I\sin 2\pi(t-\frac{3}{4}) \\ -I\cos 2\pi(t-\frac{3}{4}) & I\sin 2\pi(t-\frac{3}{4}) \end{pmatrix} & \frac{3}{4} \leq t \leq 1 \\ \sigma_{2}(z)_{t} = \begin{cases} \begin{pmatrix} (1-2t)S^{n} & -z^{m}I \\ \bar{z}^{m}I & (1-2t)S^{*n} \\ I\sin \pi(t-\frac{1}{2}) & -z^{m}I\cos \pi(t-\frac{1}{2}) \\ \bar{z}^{m}I\cos \pi(t-\frac{1}{2}) & I\sin \pi(t-\frac{1}{2}) \end{pmatrix} & \frac{1}{2} \leq t \leq 1 \\ \end{cases}$$

Note that for t > 0, in general, $\sigma[\sigma_1(z)_t](w) \neq \sigma[\sigma_2(w)_t](z)$ so the pair $(\sigma_1(z)_t, \sigma_2(z)_t)$ is not the "symbol" of any operator in \mathscr{A}_2^2 .

Our theorem implies that there is a $\tilde{\sigma}_2(z)_t$ so that $\tilde{\sigma}_2(z)_0 = \sigma_2(z)$ and $\tilde{\sigma}_2(z)_t$ is in $C(T, G_2)$ for all $t, 0 \le t \le 1$ with

$$\sigma[\tilde{\sigma}_2(z)_t](w) = \sigma[\sigma_1(w)_t](z) ,$$

so that $(\sigma_1(z)_t, \tilde{\sigma}_2(z)_t)$ is the "symbol" of some Fredholm operator A_t in \mathscr{A}_2^2 for $0 \le t \le 1$. We now explicitly construct $\tilde{\sigma}_2(z)_t$ as follows: Let P_n be the projection on the kernel of S^{*n} . Then, with $Q_n = I - P_n$,

$$\tilde{\sigma}_{2}(z)_{t} = \begin{cases} \begin{pmatrix} S^{n} & -z^{m}P_{n} \\ 0 & S^{*n} \end{pmatrix} + \begin{pmatrix} 0 & -(1-2t)z^{m}Q_{n} \\ (1-2t)\bar{z}^{m}I & 0 \end{pmatrix} \\ & 0 \le t \le \frac{1}{2} \\ \\ \begin{pmatrix} S^{n}\cos 2\pi(t-\frac{1}{2}) & -z^{m}P_{n} + Q_{n}\sin 2\pi(t-\frac{1}{2}) \\ \\ -I\sin 2\pi(t-\frac{1}{2}) & S^{*n}\cos 2\pi(t-\frac{1}{2}) \end{pmatrix} \\ & \frac{1}{2} \le t \le \frac{3}{4} \\ \\ \begin{pmatrix} (-z^{m}P_{n} + Q_{n})\sin 2\pi(t-\frac{3}{4}) & (-z^{m}P_{n} + Q_{n})\cos 2\pi(t-\frac{3}{4}) \\ \\ -I\cos 2\pi(t-\frac{3}{4}) & I\sin 2\pi(t-\frac{3}{4}) \end{pmatrix} \\ & \frac{3}{4} \le t \le 1 . \end{cases}$$

Note that

$$ilde{\sigma}_2(z)_1 = egin{pmatrix} -z^m P_n + (I-P_n) & 0 \ 0 & I \end{pmatrix},$$

so $[\tilde{\sigma}_2(z)_1]_{K_2} = mn$ in $\pi_1(K_2)$, and the index of W_{ϕ} is -mn.

This example has an interesting consequence. Since $i_{\sharp 2}(mn) = i_{\sharp 2}[\tilde{\sigma}_{2}(z)_{1}]_{K_{2}} = [\tilde{\sigma}_{2}(z)_{1}]_{G_{2}} = 0$, it follows that $i_{\sharp 2} \equiv 0$. If $(\sigma_{1}(z), \sigma_{2}(z))$ is invertible in \sum_{2} , then we already know that $\sigma_{\sharp 2}[\sigma_{1}(z)]_{G_{2}} = \sigma_{\sharp 2}[\sigma_{2}(z)]_{G_{2}} = 0$ from the Lemma. But $\rightarrow \pi_{2}(H_{r}) \rightarrow \pi_{1}(K_{r}) \xrightarrow{i_{\sharp r}} \pi_{1}(G_{r}) \xrightarrow{\sigma_{\sharp r}} \pi_{1}(H_{r}) \rightarrow 0$ is exact, so $[\sigma_{1}(z)]_{G_{2}} = [\sigma_{2}(z)]_{G_{2}} = 0$.

The case r = 1 is quite different, because $\pi_2(H_1) = 0$ and $\pi_1(K_1) = Z$ so $i_{\sharp 1} \neq 0$. In fact, $G_1 \xrightarrow{\sigma} H_1$ has a global cross-section $(\phi \to W_{\phi})$, and so G_1 is homeomorphic with $K_1 \times H_1$ from bundle theory [9], whence $\pi_1(G_1) = Z \times Z$ since $\pi_1(H_1) = Z$. On the other hand, $i_{\sharp 2} \equiv 0$ easily implies that $i_{\sharp r} \equiv 0$ for $r \ge 2$ which further implies that $G_r \xrightarrow{\sigma} H_r$ does not have a global cross-section for r > 1.

Bibliography

 L. A. Coburn, The C*-algebra generated by an isometry, I, II, Bull. Amer. Math. Soc. 73 (1967) 722–726; Trans. Amer. Math. Soc. 137 (1969) 211–217.

592

AN INDEX THEOREM

- [2] L. A. Coburn & R. G. Douglas, C*-algebras of operators on a half-space. I, Inst. Hautes Études Sci. Publ. Math. No. 40 (1971) 59-67.
- [3] R. G. Douglas, Toeplitz and Wiener-Hopf operators in $H^{\infty} + C$, Bull. Amer. Math. Soc. 74 (1968) 895-899.
- [4] R. G. Douglas & R. Howe, On the C*-algebra of Toeplitz operators on the quarter-plane, Trans. Amer. Math. Soc. 158 (1971) 203-217. S. Hu, Homotopy theory, Academic Press, New York, 1959.
- [5]
- [6] R. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Math. Studies No. 57, Princeton University Press, Princeton (1965).
- [7] I. B. Simonenko, On multi-dimensional discrete convolution operators, Mat. Issled. 3 (1968) 108-122, (Russian).
- [8] I. M. Singer, Operator theory and periodicity, Indiana Univ. Math. J. 20 (1971) 949-951.
- [9] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, 1951.

YESHIVA UNIVERSITY STATE UNIVERSITY OF NEW YORK, STONY BROOK MASSACHUSETTS INSTITUTE OF TECHNOLOGY & Rockefeller University