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1. Introduction

Various well-known theorems can be stated in the following form: A certain
series of nonnegative functions converges (or diverges) almost everywhere if
the series of its integrals converges (or diverges). Examples are the Denjoy-
Lusin Theorem in trigonometric series, the Borel-Bernstein Theorem on con-
tinued fractions, and the Khintchine Theorem on metric Diophantine approxi-
mation. In [3] and [4] Cassels studied the last of the above theorems. In this
paper we will abstract the method used there by Cassels and first show how it
can be used to prove the Denjoy-Lusin Theorem and various generalizations of
the Borel-Bernstein and the Khintchine Theorems.

It is fairly clear that the convergence half of the above theorems is nothing
more than an application of the monotone convergence theorem. Our method
therefore consists in obtaining conditions under which the monotone conver-
gence theorem has a strong converse; i.e., one which implies divergence almost
everywhere. One such converse is immediately supplied by the Kolmogorov
three series theorem applied to uniformly bounded nonnegative functions.
Unfortunately, this converse is not adequate for most applications, since it
requires that the functions be independent random variables. However, we show

(Theorem 2.5) that the condition of independence for a series £ /»(*) c a n be
71 = 1

replaced by the much weaker condition for m Φ n,

J\fn(x)fm(x)\μ(dx) < j\fn(x)\μ(dx)j\fm(x)\μ(dx)
X X X

whenever |/W(JC)| < M < oo for all n and almost all x.
The idea of using this sort of a converse of the monotone convergence

theorem is not really original with us. Similar ideas have been used not only
by Cassels, but also by Kahane [20] and especially by Erdos and Renyi [19].
However, we believe that there is still much to be gained from using it system-
atically and in connection with various other techniques.

It is of some historical interest to recall that BoreΓs original proof of the
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Borel-Bernstein theorem was based on an illegitimate application of the Borel-
Cantelli lemma, which is a special case of the Kolmogorov theorem. The gap
in BoreΓs reasoning was pointed out by Lebesgue and Bernstein, see [2, p. 208]
for references.

Many of our results are illustrated by our generalization of Khintchine's
Theorem. Usually, the theorem is stated as follows:

Khintchine's Theorem. Let aλ,a2, be a sequence of positive numbers
such that

(1.1) 1/2 > ^ > a2 . . . .

Then for almost every x, 0 < x < 1, there are infinitely many {or only finitely
many) integers n > 0 such that

(1.2) \nx — m\< an or \x — m/n\ < an/n

is satisfied for some integer m according as 2 an = oo (or J] an < oo).
n=l n=l

To see that this theorem can be cast in the form discussed above, it suffices
to let fn be the characteristic function of the set of x's satisfying (1.2) for the
integer n. This set consists of n intervals, each of length 2an/n, centered at the

points m/n (modulo 1) so I fn(x)dx = 2an, hence (1.1) is equivalent to

(1.1)' 1 > j\(x)dx
0

>

and the assertion becomes " Σ fn(x) diverges (or converges) almost everywhere
71 = 1

oo /»1

according as Σ fn(χ)dx diverges (or converges)".
71 = 1 J

0

Our first generalization consists in letting fn(x) = gn(nx) where gn is any
periodic function of period one satisfying gn(x) — gn(—x), and gn(x) < gn(y)
when 0 < y < x < 1/2, so in particular, fn need not be the characteristic
function of a set at all. The conditions on the gn's are rather natural if gn is to
measure the distance from nx to an integer.

A further generalization is obtained by considering nx as a polynomial
P(n, x) in n with coefficient x. The original assertion then is that for almost all

choices of the coefficient, Σ 8n(P(n>χ)) diverges (or converges) according as
71=1

nl

Σ gn(χ)dx diverges (or converges). A second generalization consists in
71 = 1 J

0

showing that the above assertions are valid for P(n, x) — Σ nlxu where S is a

finite set of nonnegative integers, S Φ {0}. Here, of course, the coefficient is
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interpreted as a vector with as many components as there are elements of S.
If S has more than one element, then it turns out that (1.1)' is not needed. The
difference between our version of Khintchine's Theorem and the original one is
therefore analogous to the difference between WeyPs polynomial version of the
Kronecker-Weyl Theorem and the usually stated linear version.

The last generalization of the Khintchine Theorem described, as well as
various other results proved here, depends on replacing S1 by other manifolds
and viewing the situation geometrically. We feel that it is appropriate that a
paper honoring Chern and Spencer should apply geometrical methods to prob-
lems in Diophantine approximation.

Finally, we would like to acknowledge that contacts with various mathe-
maticians, especially Cassels and P. Hartman have enabled us to improve on
the original version of this paper.

2. Series on a probability space

Let (X, Ω, μ) be a probability space with X the space, Ω the Borel field of

subsets and μ a probability measure on (X, Ω). Let fn, n = 1, 2, , be a

sequence of measurable functions defined on (X,Ω,μ). This section is con-

cerned with the absolute convergence and divergence of the series J] fn(x). We
71=1

will denote the Lp norm by | |/ | |p. The following proposition is a version of the
monotone convergence theorem.

Proposition 2.1. // Σ ||/nlli < OT> then Σfn(x) converges absolutely ex-
n = l w = l

cept on a set measure zero.
Consequently, our main concern will be with the case where

| | / n | | 2 < oo for all n, but Σ J I U i

Following Cassels [3], [4], we will make frequent use of the proposition
below. (The Tchebycheff inequality could be used instead, but would lead to a
slightly less precise result.)

Proposition 2.2 (Paley-Zygmund, cf. [3]). Suppose that 0 < b < a < 1
andθ<a \\f\\2 < \\f\\,. Let E = {xeX: \f(x)\ > b ||/||2}. Then μ(E) > (a - b)\

Proof. By the Schwarz inequality,

^j\f\μ(dx)J<μ(E)\\f\\l.
E

Also,

J\f\μ(dx) = 11/11, - J \f\μ(dx) > (a - b)\\f\\2 .
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The assertion follows trivially from these inequalities.
Theorem 2.3. Assume

(2.1) | | / n | | 2 < oo for all n and Σ ||/»lli = °°

N

Let SN{x) = Σ \fn(x)\ and define C by
71 = 1

(2.2) C = limsup| |S*| | 1/| |SΛ r | | 2 as N -> oo .

Then Σ \fn(x)\ diverges on a set of measure at least C2.
71=1

Remark. The theorem is vacuous if C = 0. The Schwarz inequality implies
that C < 1.

Proof. It is sufficient to show that for any T > 0 and 0 < ε < 2C, SN(x)
> T on a set of measure (C — ε)2 if N is large enough. By (2.1) and the
Schwarz inequality,

2T/ε < HStflli < ||SV||2 for large N ,

and by (2.2) there are arbitrarily large ΛΓs such that (C — e/2)||S^||2 < \\Sx\l.
Taking b = ε/2, a = C — ε/2, and / = SN in Proposition 2.2 gives the desired
result.

Theorem 2.4. Assume (2.1),

(2.3) l i m s u p l l / ^ I U I / J l ^ l l ^ l l Γ ^ C - 2 as (n,\n - m\)-+(<*>, <χ>) ,

and for every fixed K > 0,

(2.4) Σ Σ WfnUi = o(\\SN\\ϊ) , as N-*°o,
w = l mζS

where here and below S = S(n, N, K) is the set where

Max (0, n - K) < m < Min (N, n + K) .

Then 2 \fn(x)\ diverges on a set of measure at least C2.
71 = 1

Proof. It will be shown that C < lim sup H^lli/ll^ivllz as Λ̂  -> oo, and the
conclusion will then follow from Theorem 2.3. For any positive ε let K be such
that for n > K and \n — m\ > K,

ll/n/mlli < (1 + ε ) C - 2 | | / J 1 | | / m | | 1 .

IίN>K, then
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\\SN\\1 = Σ ( Σ II/JJI1+ Σ II/
l \S K<\m-n\<N-n

hence C < lim sup HS Î̂ /HiSy ||2
 a s N —** °°

Theorem 2.5. Let f,,f2, satisfy (2.1), (2.3), and \fn(x)\ < M < oo for

some constant M. Then Σ \fn(χ)\ diverges on a set of measure C2.
71 = 1

Proof. By Theorem 2.4, it is only necessary to verify (2.4). But the left
N

side of (2.4) is no greater than 2KM Σ ll/πlli> which is o((\\SN\\1)
2) by (2.1).

7 1 = 1

3. Some applications

(a) The Denjoy-Lusin Theorem (cf. [9, p. 83] or [17, p. 131]). Suppose
that an arbitrary trigonometric series of functions of period one is written in

the form S(x) — Σ pn cos 2πn(x — an) for pn > 0, 0 < an < 2π. Then
71 = 0

oo oo

Σ pn |cos2τm(;t — an)\ diverges (or converges) almost everywhere if Σ Pn
71 = 0 71=0

diverges (or converges).
Proof. Noting that \\ρn cos 2πn(x — tfJHx = (2/π)pn the convergence case

is an immediate application of Proposition 2.1. Hence we may assume that

Σ pn = oo. There is no loss of generality in assuming that pn < M.
n = 0

Let fn(x) = ιn|cos2τr/i(jc — an)\2, or by the half angle formula fn(x) =
%pn{cos4πn(x — an) + 1}. Then for n φ m, by orthogonality, WfJ^ =

II in 111 II /mill = τPnPm, so Theorem 2.5 implies that f] /nW = °° almost every-

where. Clearly, /„(*) < ô,, |cos 2πn(x — an)\, so f] pn |cos 27rn(x — α n ) | di-
71=0

verges almost everywhere.

(b) Functions on Td. Let Td = .R^/Z^ denote the d-dimensional torus,

and F19F29 be a sequence of uniformly bounded measurable functions de-

fined on Td and satisfying Σ \\Fn\\ι = °°5 where || ||t is taken relative to the
71 = 1

measure on Td induced by Lebesgue measure on Rd. Let Al9A29 - 9BUB2,

• be sequences of elements of GL(d, Z) (or equivalently of endomorphisms

of Td). Consider the functions fn on T2d defined by fn(x, y) = Fn(Anx + Bny).

One easily verifies (cf. appendix) that ||/Λ ||χ = | | ^ | | i hence Σ ll/nlli — °° Now
7 1 = 1

suppose that

(3.1) /«» = d
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is satisfied foj m Φ n. Then H/JJIi = ||/n||ill/m Hi for/w Φ n. In fact the change
of variables (u, v) — (Amx + Bmy,Amx + Bmy) is nondegenerate so

Il/Jmlli = j\Fn(Anx + Bny)Fm(Amx + Bmy)\dxdy

= J\Fn(u)Fm(v)\dudv = WfΛWfΛ •

Now Theorem 2.5 shows that

(3.2) 2 \fn(χ>y)\ — °° almost everywhere.
91 = 1

We have therefore proved:
Theorem 3.1. Let fn(x,y) — Fn(Anx + Bny), where F19F2, is a se-

quence of uniformly bounded function on the torus Td = Rd jZd, and
Al9A2, ,B^B2, - are sequences of integer d x d-matrίces satisfying (3.1).

If Σ \\Fn\\i = Σ ll/»lli = TO

? then Σ | / » U , y ) | = °
w = l n = l

Remark. Special cases of this theorem are Theorem 2 of [3, p. 124] and
Theorem I of [4].

(c) Approximation by polynomials. The theorem stated in this section
has an obvious generalization to the case of "simultaneous approximation",
which we omit in order to keep the notation simple. Let g(n, p) be an integer
valued function defined for n = 1, 2, and p — 1, 2, , d where d > 2.
It will be required that for every m, n, m Φ n, there exist i, j depending on
m, n such that

(3.3) g(n, ϊ)g(m, j) Φ g(n, j)g(m, i) .

Many simple and natural choices of g(n, p) satisfy (3.3), for instance, gin, p)
= nv,pn, or (n + p)\.

Theorem 3.2. Let g(n,p) be as described above, and let Fn: R1 —• R1 (n =
1, 2, •) be a sequence of uniformly bounded measurable function satisfying

Fn(x + 1) = Fn(x). Suppose that £ Γ\Fn(x)\dx = oo. Define fn(x) =
n = l J

0
d

Fn(P(n, x)) where P(n, x) — J] 8(n> P)χv an(^ x ~ (χ^ ' ' ' > xa) is viewed as a
p = l

point on Td, so fn: Td -^ R\ Then 2 |/W(JC)| = oo almost everywhere on Td.

Proof. By Theorem 2.5 it suffices1 to verify that H / J ^ < | |/n | | i | |/m | | i for
every pair m,n,m Φ n. It can be assumed without loss of generality that (3.3)
holds for i — 1 and / = 2. Define an endomorphism Emn of Td by Emn(x) =
(u^x), , ud(x)) where ux(x) = P(n, x), u2(x) = P(m, x), up(x) = xp for p > 2.
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The Jacobian of the endomorphism is

Jmn = g i n , l ) g ( m , 2 ) - g ( n , 2 ) g ( m , l ) φ θ 9

by (3.3). Therefore

(3.4) J\fn(x)fm(x)\dx = JlFMF^uJldu ,

as is shown in the appendix. However, the right side of (3.4) is just

V\Fn{ui)\duι^\Fmi.uΐ)\du2 = J|/BGe)|£frJ|/MOc)|<& ,
0 0 Td Td

hence H/JJk = ||/n||i||/mlli and Σ \fn(x)\ = oo almost everywhere.
n = l

(d) The Borel-Bernstein Theorem. Let x be an irrational number, 0 < x
< 1, and let [0, al7a2, •] (cf. [8, Chapter X]) be its expression as a con-
tinued fraction. Suppose that a19 a2, is a sequence such that a"1 is a positive
integer. The Borel-Bernstein Theorem asserts that for almost all x in (0,1),

<xnan > 1 for infinitely many n if f] an = oo, and ^ w α n > 1 for only finitely

many n it Σ an < oo. This theorem will be derived from Theorem 2.5.
7 1 = 1

Let hn denote the characteristic function of the interval [0, <xn] and let T(x)
— fractional part of 1/x for 0 < x < 1. For irrational x, define fn(x) =
hn(Tn~\x)) so that /n(x) = 1 if anan > 1 and fn(x) = 0 otherwise, as one
easily verifies. T leaves the measure μ(d t) = (log 2) - 1 (l + Λ ) " 1 ^ invariant, so

WfnWi = log (1 + α»), and Σ α n = oo if and only if f] H/J^ = oo. Then the
71 = 1 71 = 1

Borel-Bernstein Theorem follows from Theorem 2.5 provided

(3.5) | | /J w | ( i< | |/Jl i l |/mll i( l + C ^ — • ) ,

where C > 0 and 0 < q < 1.
The relation (3.5) can be deduced fairly easily from a known result (the

Levy-Kuzmin Theorem). This assertion will not be verified here, since a detailed
discussion of a more general situation is contained in a forthcoming paper [21].

4. A generalization of Khintchine's theorem

Khintchine's Theorem [10], [11] on metric Diophantine approximation has
been generalized in various directions [4], [5], [6], [12], [13], [14]. The gener-
alization below (Theorem 4.1) contains some of the others as special cases.
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Pick a basis {e19 , ed} of Rd and denote a typical element by x =

(JC1, , xd) = 2 jc%*. A Lebesgue integrable function f: Rd -*Rι is called a

W-function if for every JC in jRώ and i = 1, , d,

(4.1) fix) = fix - 2x%) .

(That is, /is symmetric in each coordinate hyperplane) and

(4.2) fix + tet) < fix - tβi) if txι > 0 .

When (4.1) holds, (4.2) simply means that fix) does not decrease as the
hyperplane xι = 0 is approached along a line orthogonal to it.

The properties (4.1) and (4.2) are natural ones if fix) is to represent a
measure of how close x is to the set of coordinate hyperplanes. Later such
functions will be used to measure the closeness of a d-tuple of numbers to the
integer lattice in Rd.

First we shall develop some properties of W-tunctions.
Lemma 4.1 (Wintner [16, p. 30 and p, 32]). // / and g are W-functions,

so is their convolution hix) — I /(y)g(jc — y)dy.

Rd

Proof. Since / and g satisfy (4.1),

hix) = jfiy - 2y%)gix - y)dy = ff(y)g(x + 2y% - y)dy
Rd Rd

Rd

so h satisfies (4.1).
To show that h satisfies (4.2), it suffices to discuss the case where xι > 0

and t > 0. Consider

Δth = hix — tβi) — hix + tβi)

Ky){gi* - tet - y) - gix + tet - y)}dy .
Rd

Now write the integral as the sum of integrals over the set where yι > xι and
the set where yι < xι. In these two sets make the substitutions y = u + x and
y = u + x — 2uιei respectively. The result after using the fact that g satisfies
(4.1) is

Δth = j {fiu + χ)-fiu + x - 2uίeί)}{gi-u - tet) - gi-u + tet)}du .
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Since uι > 0, uι + xι > 0, and t > 0, (4.2) for / and g implies that each term
is nonpositive and Ath > 0.

Theorem 4.2. Let Q = {xeRd: \x*\ < 1/2, i = 1, . . ,d} and suppose
that fl9f2, is a sequence of W-junctions satisfying:

(4.3) 0 < fn(x) <D<oo for x in Rd ,

(4.4) fn(x) = 0 for x outside Q ,

(4.5) \\U\V>\\fA>

Let F 1 ? F2, Z?̂  ί/ẑ  sequence of functions such that Fn(x) = /^(Λ:) /or Λ: m Q

ΛΠί/ F n ( x + z) = Fn(x) for z in Zd. If Σ \\fn\l < oo (or = oo), ί/zen //z^ jgrfej
W = l

2 Fn(nx) converges (or diverges) almost everywhere.
71 = 1

Notation. F w will be viewed as a function on Td = Rd/Zd so that

ll/nlli = J |/nW|d* = J\Fn(*)\dx = {{FJ, .
Rd τd

Proof. As usual, the convergence case is just Proposition 2.1, so it can be
assumed that

(4.6) Σl l/» l l i= ™ -
7 1 = 1

Our proof uses many of the ideas of CassePs proofs [3], [4]. In particular,
Lemam 4.3. Assume (4.5). Then for some B > 0 and independent of N,

N N

Σ ll/πlli < B Σ (φirϋ/nYWfnW^ where φ is theEuler function, i.e., ψ(ή) = the
7 1 = 1 7 1 = 1

number of the integers less than and prime to n.
For a proof see [3, p. 127 and p. 131].

Now let P(n) denote the set of d-tuples k = (pu , pd) of integers pt with

0 < Pi < n and pt relatively prime to n. Note that P(n) has (φ(ή))d elements.

Let gn(x) = Σ fninx — P) a n d n o t e t n a t

(4.7) H îl, = (φ(n)/ny\\FJ, .

Now (4.6) and Lemma 4.3 imply that

(4.8) Σ \\8nl = ~
71 = 1

Next it will be shown that

(4.9) \\gn8Λ<\\Fn\l\\FΛ for nφm.
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In fact, if R(n, m) denotes the set of pairs (p q) = (p19 , pd q19 , qd)
where mpi Φ nqi9 0 < pt < n, 0 < qt < m, then Λ(m, π) ID P(w) X P(m) and

s»£mlli = Σ Σ (fn(nx-p)fm(mx-q)dx
P(n) P{m) J

Rd

< Σ (fnOn - P)fm(rnx - q)dx = Σ hmn(p/n - qjm) ,
R J )

Σ ( Σ
R(m,n) J R(m,n)

Rd

where hmn is convolution of fn(nx) with fm(mx). If r is the greatest common
divisor of m and n,p/n — g/ra = rk/mn can occur for a given & e Zd at most
rd times for distinct (p, q) in R(m, ή). Therefore,

l l ^ m l l i < ^ Σ hmn(rk/mn) .
k€Zd

Now Lemma 4.1 and the fact that fjjix) and fm(mx) are PF-functions imply
that

II8n8m 111 < r*Jhmn(rx/mn)dx = ||Fn||1||FTO||1 ,

which proves (4.9).

Let S^(jt) = f; gn(x). Then (4.9), Lemma 4.3, and (4.3) imply that
7 1 = 1

IISWI. < ( Σ ll^nlli)1 + Σ ll^lli < &\\sN\\l +

hence for any ε > 0, and large N, (4.6) implies

Applying Theorem 2.1 gives the result that J] gn(x) = oo for x on a set of
n = l

positive measure. The definition of gn shows that gn(x) < Fn(nx) so J] Fn(nx)
w = l

= oo on a set of positive measure.
Now let 1 > aλ > a2 > α3 > 0 be such that lim an — 0 as n —> oo and

Σ βίl|/»lli = °° D e f i n e /*W = /n(*/βn) and let F* be to /* as Fn is to fn.
71 = 1

Since |J/* ||x = flSH/nllu w n a t n a s already been proved implies that 2 F*(nx) =
7 1 = 1

oo on a set 51 of positive measure.
Now it will be shown that if * = Λty + q for some j in 5, and # in Zd and

if iV is large enough so that anN < 1, then
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(4.10) F*(ny) < Fn(ηx) .

This will complete the proof since (4.10) clearly implies that Σ Fn(nx) = oo
71 = 1

for x — Ny and y in S, and almost all points x are of this form; cf. [3, p. 126].
To verify (4.10), first let pn be an element of Zd such that | ny — pn \ < 1 /2.

If \ny — pn\ > an/2, the definition of /* together with (4.4) shows that F*(ny)
= 0. Clearly (4.10) holds in that case, so suppose that \ny — pn\ < an/2.
Then

F*(ny) = f*(ny - pn) = fn((ny - pn)/an)

= fn((nx -nq- Npn)/(Nan)) < fn(nx - nq - Npn) < Fn(nx) ,

where the first inequality follows from (4.1), (4.2) and Nan < 1. This proves
(4.10) and completes the proof of Theorem 4.2.

The arguments of Cassels [4] show that Theorem 4.2 is also true if one con-

siders the series Σ Fn{bnx) where ft15 b2, is a 2]-sequence in the terminology
71 = 1

of [4]. In particular, the conclusion holds for the series £] Fn(npx) for a fixed
n = l

positive integer p. Combining this extension of Theorem 4.2 with Theorem 3.2
gives the following extension of the Khintchine Theorem.

Theorem 4.3. Let the functions F19 F2, be as in Theorem 4.2, S Φ {0}
be a set of nonnegative integers with d > 1 elements, and P(n, x) = J] nlxt

i€S

be a polynomial in n whose coefficients are defined by an element of Rd. If

Σ II fn Hi < °° (or =oo), then Σ Fn(P(n, x)) converges (or diverges) for almost
rc=l n=l

every x in Rd.

5. Nilmanifolds

The theorem of Khintchine can be extended in another direction by replacing
the reals and the integers, respectively, by a nilpotent group and a discrete
subgroup. In this section we are going to give one example of such a generali-
zation.

Our example concerns the 3-dimensional nilpotent Lie group N whose defi-
nition is as follows:

As a differentiable manifold, N is just R3 itself. The group operation, in
terms of the coordinates (x, y, z) in Rz, is given by

(5.1) (x, y, z) (*', /, Zθ = (x + x'9y + /, z + z' + */) .

In particular, we have

(5.2) (x, y, z)-1 = (-x, -y, -z + xy) .
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Let Γ denote the subset of N consisting of those points (x, y, z) in N with
x, y, and z all in Z. It is easy to see that Γ is a subgroup of N and that N/Γ
is compact. In fact, denoting by Q the unit cube {(x, y,z): 0 < x, y, z < 1},
we have that for every n e N there are unique elements g e Q and γ e Γ satisfy-
ing n — gγ. Lebesgue measure dμ = dxdydz is both the left and right Haar
measure on N, and Lebesgue measure restricted to Q defines a measure v on
N/Γ, which is invariant under translation by elements of N.

One final piece of notation and we shall be ready to state our theorem.
Notice that for each real number t > 0, the map (x, y, z) —> (tx, ty, t2z) is an
automorphism of N. This automorphism is the analogue in the present context
of the operation of scalar multiplication by t in Rd. For that reason we will use
t(x, y, z) to denote the point (tx, ty, fz). Some related notation we shall use
is: for each n e Z + , w e set Γ/n — {n'ιγ\ γ e Γ), and for each real t > 0, we
set Q(t) = {tg: gε Q}. (Note that Q(t) is a parallelipiped of measure t\)

Theorem 5.1. Let a19 a2, be a sequence of positive real numbers each
of which is no larger than 1.

(1) // Σ ^ = i < 4 < °°> t n e n w e n a v e that for almost every geQ there are
only finitely many neZ+ for which

(5.3) n.g*Q(an)Γ .

(2) // 2 » = i ^n — °°5 then we have that for almost all geQ there are
infinitely many w e Z + for which (5 .3) holds.

Remark. Note that in contrast to the assumption (4.5) in Theorem 4.2,
the sequence a19 a2, is not assumed here to be monotone.

Proof. L e t Bn d e n o t e t h e s u b s e t {gΓ: geN a n d ng e Q(an)Γ} of N/Γ, a n d
recall that v is the measure on N/Γ defined by Lebesgue measure on N.

Lemma 5.2. Bn is the disjoint union of the subsets Q(an/ή)γΓ, where γ
traces (Γ/n) Π Q. In particular, v(Bn) = β£.

Proof. (Γ/ri) Π Q is a complete set of coset representatives for Γ in Γ/n.
Furthermore, if γ and λ are in Γ/n, then Q(an/n)γΓ and Q(an/ή)λΓ are dis-
joint if and only if γΓ Φ XT. The lemma follows easily, q.e.d.

Part (1) of Theorem 5.1 follows immediately from Lemma 5.2 by applying
Proposition 2.1 to the characteristic functions of the sets Bn. As for part (2),
we shall follow the argument of Gallagher [6].

Given n € Z+ and γ = (γλ, γ2, γ2) 6 Γ, we shall use (n, γ) to denote the g.c.d.
of n, γ19 γ2, and γ3, and also use Γ(n) to denote {γ e Γ: (n, γ) — 1}.

Lemma 5.3. Let ξ(n) denote the cardinality of Γ(ή) Π Q(n). Then there
is a constant c > 0 such that for all neZ+, ξ(n) > cn\

Proof following Gallagher [6]. For this proof only, μ will denote the Mobius
function on Z + . If n € Z+ and n Φ 1, then J]d]n μ(d) — 0. Hence

(5.4) ξ(ή) = Σ ' Σ μ(d) ,
r d\(n,r)
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where the first summation is over all γ Φ 0 in Q(ή) Π Γ. Since a given d which
divides n will occur n*/d3 times as a summand in (5.4), we have ξ(ή) =
n* Σιd\n μ(d)/d3 = rύ Y\p]n (1 — p~3), the product being taken over the primes
that divide n. But the product f] (1 — p~3) over all primes converges, hence
£00 > en4, q.e.d.

Let C n = U{Q(an/ή)λΓ: nλzΓ(n) Π β(π)}. In order to prove part (2) of
the theorem, we need only show that if Σ n a*n = oo, then almost every point
of N/Γ is in infinitely many sets of Cn. Lemma 5.5 is our main tool; its proof
requires the following lemma:

Lemma 5.4. For each pair {a, b) of positive real numbers, let S(a, b) =
Σr*o<=r MG(fl) Π Q(b)γ). Then there is a constant c > 0, not depending on
either a or b, such that S(a, b) < caAbA.

Proof. Since S(a, b) = S(b, a), we may assume that b < a. If b < a and
a < 1/2, then S(a, b) = 0. We assume, henceforth, that a < 1/2 and b < a.

For any subset V of iV, let ζ(F) denote the cardinality of F Π Γ. We begin
the proof by showing that there is a constant c > 0 such that for all g € N and
all real a > 1/2,

(5.5) ζ(gQ(a)) < cat .

Let g = (&, g2, g3) be given, and suppose γ = (γ19 γ2, γz) is in gQ(a) Π Γ. The
condition, then, on γ is that each γtζ Z (i = 1,2, 3) and g~γ 6 β(α), which
means that

(5.6) g2 < r 2 < a + g2 ,

& - r2£i + ^ig2 < h < a2 + 83 - hZi + 8182

Note that once γ1 and γ2 are chosen, there are 0(α2) choices for γ3 satisfying the
third inequality in (5.6). This proves (5.5).

Now

S{a,b)< Σ μ(Q(a) ΓΊ Q(b)r)
rsr

= J ζ(χ-ιQ{a))μ{x) <

by virtue of (5.5).

Lemma 5.5. There is a constant K > 0 such that if m and n are in Z+ and

mφn, then v(Cm Π Cn) < ffv(CmMCB).
Proo/. Set ^ = ^. c. d. (m, n). Then

Π Cn) = Σ v({Q(αm/m)(r/m)Γ} Π

Σ μ(Q(nam/g) Π
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the sum being taken over γ e Γ{m) Π Q(m) and η e Γ(n) Π Q(ri). Now
(mηXnγ"1) = gtc for some K e Γ, and a given K e Γ will satisfy (mη)(nγ~ι)gfc for
at most g4 pairs η e Γ(n) Π β(«) and γeΓ(m) Π β(^) (This can easily be
seen by writing everything out in coordinates.) Furthermore, the conditions
(ra, γ) = (n, η) = 1 guarantee that (mη)(nγ-1) Φ 0. It follows that

ΓΊ Cn) < (gηmny Σ μ(Q(nan/g) Π {Q(man/g)κ})
Kφoer

= (g2/mnyS(nam/g,man/g)

by the previous lemma. From Lemma 5.2 it follows that v(Cn) =
ξ(n)v(Q(an/n)Γ) — f(π)π~4<. On the other hand, f(n)π"4 is bounded away from
0 by Lemma 5.3. Thus, the inequality (5.5) yields v(Cm Π Cn) < K2v(CmMCn)
for some K > 0. q.e.d.

We are now ready to prove part (2) of Theorem 5.1. Since ξ(n)n-A is
bounded away from 0, by Lemma 5.3 we see that J]n v(Cn) = J]n ξ(n)n-ιan

= oo if Σn an = CXD. It follows then from Lemma 5.5 and Theorem 2.5 that
if Tin an — °°? there is a subset S of N/Γ of positive measure such that for
all g e S there are infinitely many neZ+ for which g eCn. Arguing as in [6]
we see that this implies that almost every geN/Γ lies in infinitely many of the
sets Cn. q.e.d.

The proof of Theorem 5.1 works for some non-abelian groups other than N.
We shall close this section with the statement of one such general result. Our
result concerns connected, simply connected nilpotent Lie groups. It is a
theorem that every such Lie group G is, as a differentiable manifold, equal to
Rd for some de Z+, and furthermore we can choose the coordinates (x19 , xd)
so that the group operation in G takes the form (x19 , xd)(y^ , yd) =
(z19 , zd), where zλ = xλ + yx, z2 = x> + J2? and for / > 3,

(5.8) z t = χt + yt + fι(χ19 - , X i - i ; y ί 9 - , y i - i ) ,

where ft is a polynomial in x19 , xi_1, y19 , yi_λ with real coefficients and
ft(x19 ,Xi^; 0, ,0) = 0 = MO, , 0 ; y19 ,y<_i).

The group G is said to be rationally presented if the polynomials ft all have
integer coefficients. When G is rationally presented, the subset Γ —
{(*u * * J xa) ^ ^ ̂  f° r all 0 of G is a subgroup of G (as in readily verified
by induction on d) with compact quotient G/Γ. Let β = {C*15 , xΛ): 0 < ^
< 1 for all i}. Then every element of G can be written in precisely one way
as a product gγ with g e Q and 7 e Γ, when G is rationally presented.

The left and right Haar measure on G is Lebesgue measure.
Theorem 5.6. Let G be a rationally presented nilpotent Lie group, the

group operation being given by (5.8). Assume further that there are integers
<*ι > '' ' J Q-d > 0 such that for all real numbers t > 0, the map ta: G —+ G given
by
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Γ(X, , xd) = (taixλ, - -, tadxd)

is an automorphism of G. Finally, assume that d > 2. Let aλ,a2, be a
sequence of positive numbers each of which is no larger than 1, and let \a\ =
a x + + ad.

(1) // Σn=ialnl < °°> t n e n there are, for almost all geQ, only finitely
many integers n > 0 for which

(5.9) nageQ(an)Γ ,

where Q(an) = {aa

nx: xεQ}.

(2) // Σιn=ιalnl — °°> t^ιen t n e r e are> ίor almost all geQ, infinitely many
integers n > 0 for which (5.9) holds.

This theorem is proved exactly as Theorem 5.1 is. In the next section we
will comment on the existence of the multi-index a — (a19 , ad). Finally,
we note that the hypothesis d > 2 is needed for the analogue of Lemma 5.3.
The theorem as stated is false when d = 1.

In closing, let us write out what Theorem 5.1 says in the special case an =
n~λβ. Let (x, y, z) denote a typical point in the unit cube in N, and consider
the inequalities:

0 < nx — m < n~ι/i ,

( * ) 0 < ny - m' < n~ι/i ,

0 < n2z + nxmf + mπ < n~1/2 .

Theorem 5.1 says that, for almost all (x, y, z) in Q, there are infinitely many
positive integers n for which the inequalities (*) have a solution (m, m'\ m") e Z3.
More intricate groups than N yield inequalities like those in (*), but of greater
complexity. The exact role of the term nxm! is not yet understood.

6. Dilation automorphisms

Let G denote a nilpotent Lie group whose underlying differentiable manifold
is Rd and whose group operation is given by (5.8) with respect to the coordi-
nates in Rd. Let a = (au , ad) be a d-tuple of positive integers, and for each
real t > 0 let t*: G -> G denote the map (x19 ., xd) -> (taixλ, ., tadxd). We
are going to give an inductive procedure for choosing ax, , ad so that either
Γ is an automorphism of G for all t > 0 or ta becomes an automorphism on
performing a slight change in the group operation of G.

To begin the induction, we choose aλ and a2 to be any two integers greater
than 0. Suppose now that a19 , ^ _ i are chosen. We will now define at.
There are two cases:

(1) If the polynomial fi in (5.8) is 0, then at may be chosen arbitrarily
from the integers.
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(2) If U φ 0, then U(r*xl9 , Γ^x^ ta'yλ, , Γ ^ - i ) will be a non-
zero polynomial over R in the variables t,x19 , ΛΓ€-1, yls , y ^ . We take
for cii the largest power of t occurring in this polynomial.

We have now defined a = (aλ, , ad). Our definition of a guarantees that
if ft φ 0, then

where ^ and Λ̂  are polynomials over R, and Â  is either 0 or of degree less
than at in t. It is easy to verify that t" is an automorphism of G if, and only
if, hi = 0 for all z. In case the A/s do not vanish we have the following result:

Theorem 6.1. Define a binary operation Rd x Rd —• i?d fey (JC1? , jcd) o
Oi, , yd) = fe? , zd), where zγ = ^ + Ji, z2 = x> + ^25 fl^d /or 3 < i < d,

ί w defined from ft as above (gt — 0 if ft — 0). ΓAen jRd wzϊA the
operation xoy is a nilpotent Lie group, denoted Go. The group Go will be non-
abelian whenever G is non-abelian, and for all real ί > 0 the map Γ: Go —> Go

is an automorphism.
Remark. There exist real nilpotent Lie algebras all of whose automorphisms

have only eigenvalues of absolute value 1; see [18], for instance. Thus the
present theorem is not without content.

Proof of Theoem 6.1. It is clear that (0, ,0) is an identity for the
operation in Go, and an easy argument by induction on d shows that for all
g € Go there is an element g/ e Go satisfying gog' = (0, , 0). It remains to
check associativity. In order to do so, we will use the fact that the product
x o y in Go can be got from the product xy in G as follows:

xoy = Jimra((tax)(tax))) .

If follows that

(6.1) (χoy)oZ = Jim J"β(jβQim Γa[{tax}{tay}](saz))) .

It is easy to verify that the iterated limit in (6.1) can be replaced by a double
limit over 0, t). It follows that we can take the limit in (6.1) along the line
s = t, and hence

(6.2) (* oy) o z = lim s-a(({sax}{say})(saz)) .

Similarly,

(6.3) x o (y o z) = lim s-a((sax)({say}{saz})) .
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Since multiplication in G is associative, it follows from (6.2) and (6.3) that

(χoy)oz = χo(yoz).

The remaining assertions of the theorem are obvious.

Appendix

Let G be a compact topological group and denote its left invariant Haar
measure by dx. Suppose that A: G -* G is measurable surjective endomor-
phism, and denote by A^(dx) the measure induced on G by /I, so that for
every continuous function / on G,

(A.I) Jf(A(x))dx = ff(x)A*(dx) .
G G

Then A*(dx) = dx, that is, for every continuous /,

(A.2) jf(A(x))dx= JKx)dx.
G G

To prove this well-known fact, let z = A(y) be any element of G. Then
(A.I) and the fact that dx is left invariant imply

= jf(zA(x))dx
G

= Jf(A(yx))dx = Jf(A(.x))dx =
G G

Therefore the left side does not depend on z, and A^(dx) is proportional to
Haar measure. Taking / = 1 shows that A*(dx) = dx, that is, (A.2) holds.

Our interest here is in the case where G = Tk = Rk/Zk so that A is defined
by a /: x k matrix with integer entries and nonzero determinant. (It is clear
that such a matrix defines an endomorphism with a closed image. The non-
vanishing of the determinant implies that the image is also open so the endo-
morphism is onto.) In this case (A.2) takes the form

(A.3) jf(A(z))dz = Jf(z)dz .

Several cases of (A.3) have been used in § 3. In § 3(b), the proof that || fn \l =
H/sJIi follows from

Fn(Anx + Bn

γd

ny)\dx]dy =
rpd γd

= j\Fn(Anx)\dx = J\Fn(z)\dz = HFJ, .



496 L. AUSLANDER, J . BREZIN & R. SACKSTEDER

In the same section, the proof that | | / J m | | i = ||/Jlil|/mlli i s t n e c a s e °f (A.3)

where k = 2d,z = (x, y), A(z) = (Amx + Bmy, Anx + Bny). Finally, in § 3(c),
formula (3.4) is obtained by taking z = x, A(z) = u in the notation of that
section.
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