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ON THE RIGIDITY OF PUNCTURED OVALOIDS. II

R. E. GREENE & H. WU

A Ck isometric embedding φ: M —> Rn of a Riemannian manifold M into n-
dimensional euclidean space Rn is said to be rigid in the class of Ck isometric
embeddings if, corresponding to each Ck isometric embedding ψ : M -> Rn,
there is a rigid motion Tφ\Rn-> Rn such that ψ = Tφoφ. A theorem of Cohn-
Vossen [3] is that any C3 isometric embedding of a compact 2-dimensional
Riemannian manifold of everywhere positive Gaussian curvature in R3 is rigid
in the class of C3 isometric embeddings. Earlier, Hadamard [5] had proven that
a compact C2 submanifold of R* having everywhere positive Gaussian curva-
ture was a convex surface, that is, the boundary of a convex body in R3. Using
this convexity property, Herglotz [6](see also Hicks [7]) gave a brief new proof
of the rigidity theorem of Cohn-Vossen Wintner [20] showed using a refine-
ment of Herglotz's approach that the theorem of Cohn-Vossen remains true if
C3 is replaced by C2 throughout its statement. In the course of their work on
the total curvature of submanifolds of euclidean space, Chern and Lashof [2]
proved that a compact C2 surface in R2 with everywhere nonnegative Gaussian
curvature was necessarily a convex surface. Using this generalization of the
convexity result of Hadamard, Voss [18] and independently Sacksteder [15]
extended Herglotz's rigidity argument to show that any C2 isometric embedding
of a compact 2-dimensional Riemannian manifold of everywhere nonnegative
Gaussian curvature is rigid.

It was shown in [4], the first paper of this series, that, if M is a compact
orientable 2-dimensional Riemannian manifold with a C5 metric of everywhere
positive Gaussian curvature and if Mf is the manifold obtained from M by
deleting a finite number of points p19 , pn, then any C2 isometric embedding
φf': Mr —> R} is rigid in the class of C2 isometric embeddings. In fact, it was
shown that φ' is necessarily the restriction to Mf of a C2 isometric embedding
0: M —>JR3, and the rigidity of φf is then a consequence of the rigidity theorem
for C2 isometric embeddings of compact manifolds of positive curvature. The
purpose of the present paper is to prove a similar rigidity and regularity result
for compact orientable 2-dimensional Riemannian manifolds of everywhere
nonnegative curvature with a finite number of points deleted, at each of which
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points the Gaussian curvature is positive. This rigidity result is stated and
proved in § 2. § 1 contains the statement and proof of a proposition concern-
ing the planar point set of an isometric embedding in R3 of such a manifold.
Because the manifold is not assumed to be complete, this proposition is not a
special case of Sacksteder's Theorem 1 in [14]; however, the present proposi-
tion is proved here using Sacksteder's methods. Some related results regarding
the type of local convexity used in the proof of the proposition can be found in
[16].

1. The structure of the set of planar points

Let V be a 2-dimensional manifold and ψ: V —> R3 be an embedding. A
planar point of ψ is a point p € V such that the second fundamental form of
ψ: V -+ R3 at p is zero. If V is oriented, the Gauss map η: V —>S2 (correspond-
ing to a fixed orientation of R3) is the map which assigns to p e V the unit
vector at the origin in R3 parallel to the positively oriented normal to ψ(V) at
ψ(p). The Gauss map has rank zero at p e V if and only if p is a planar point.

Proposition. // M' is the manifold obtained by deleting a finite number of
pointsp19 - - - ,pn from a (C°°)manifoldMhomeomorphic toS2, and ψ: M'^R3

is a C3 embedding of M! having the Gaussian curvature of the induced metric
on M' nonnegative everywhere and positive in a neighborhood of the points
Pi, - -,Pn> men each component To of the set T of planar points of ψ has the
property that ψ(TQ) is a compact convex subset of a plane in R3.

Proof. Fix orientations of R3 and M. The corresponding Gauss map η: Mf

—> S2 is C2 since ψ is C3. Since the planar points of ψ are precisely those points
of Mf at which η has rank zero, a theorem of Sard [17] implies that η is con-
stant on each component Tβ of the set of planar points. If the unit vector N is

the common value of η at the points of Tβ, then the C3 function p —> N-ψ(p)
from Mf to R has derivative zero at every point of Tβ. By a theorem of

A. P. Morse [9], p —> N>ψ(p) is constant on Tβ. Thus ψ(Tβ) lies in a (uniquely

determined) plane perpendicular to N. In particular, ψ(T0) lies in a plane which

is perpendicular to No, where ίV0 is the normal vector to ψ(M7) at every point

of ψ(Γ0).
Since by assumption the curvature is positive in a neighborhood in M' of

each of the points p19 , pn, it follows that T is bounded away from p19 , pn

in M and hence that T is a closed subset not only of M' but also of M. Thus
T is compact, and consequently every component of Γis compact. In particular,
To is compact and hence ψ(T0) is compact.

Let V be a component of the open set M — T and {Ua} be the components
of M — V. Note that no pt, ί = 1, , n, is contained in the boundary of any
Ua since for each / the boundary of V, which is a subset of T, is bounded away
from Pi. Also, each Ua contains only one component of the boundary ofM—V
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[10, p. 124]. Therefore the boundary of each Ua is a connected subset of T,

and thus by the previous remarks the normal to ψ(M') is constant on the

boundary of Ua. Let Na be its constant value there.

For the remainder of the proof, a special type of local convexity property
called here (as in [14]) W-convexity will be used; Let v be any unit vector at
the origin in R\ P be the plane through the origin orthogonal to v, and πP:
R3 —> P be the orthogonal projection on P. Define W to be any (open) con-
nected component of the set {p e Mf \ η(p) v Φ 0}. A subset U C W is said to
be W-convex if every two points p, q of U, which are joined by an arc in W
whose orthogonal projection on P is the line segment from πP(p) to πP(q), are
joined by an arc in U whose orthogonal projection on P is the line segment
from πP(p) to πP(q). (Since πPψ \ W is a local homeomorphism, such an arc in
W is unique up to parametrization, it being supposed here and henceforth that
the arc is trans versed without reversals.) The following properties of JΓ-convex
sets are easily derived from the definition: a) Any component of a JF-convex
set is JF-convex. b) The intersection of any family of JF-convex sets is W-
convex.

The following lemma will be used in proving that πPψ(T0) is convex:
Lemma 1. Let V be a component of M — T. If Uao is a component of

M — V such that Uao contains Γo, then Uao Π W is W-convex for W = the

component of {p e Mf \ η(p) N0Φθ} containing To.
Proof. Without loss of generality it can be supposed that the unit vector

No is along the positive z-axis so that the perpendicular plane P through the
origin is the xy-plane. Let x(p) = [x(p), y(p), z(p)] e R3 be the coordinate
representation of ψ. To prove that UaQ Π W is TF-convex, it is sufficient to
show that if γ is an arc in W from p to q, p, q e Uao Π W, with the projection
of γ the line segment L form πPψ(p) to πPψ(q) in P, then γ lies in Uao Π W.
Since UaQ Π W is closed in W, γ Π (W - (ί7αo Π W)) is a (possibly empty)
union of disjoint open curve segments in W whose endpoints lie in Uao Π W.
Suppose that there is at least one such segment γλ. Denote the closed arc which
consists of γ1 together with its endpoints by γλ. Note that ττPψ(fi) is a closed
line segment in P with endpoints in τrPψ(C/αo).

If Ua is any component of M — V with Ua Π W Φ 0, then the boundary

of Ua intersects W since otherwise W would be contained in the interior of Ua,

contradicting the fact that the boundary of Uao is contained in W. Thus, if

Ua Π W Φ 0 then Na-Noφ 0. Let Pa be the (uniquely determined) plane

perpendicular to Na which contains the boundary of Ua. For each a, define

the function za: P —> R by taking za(x, y) to be the unique real number satis-

fying [x, y, za(x, y)] e Pa. (Na -N0Φθ insures that such a zβ(x, y) exists and is

uniquely determined.) Note that zao(x, y) is constant since JV0 is perpendicular

to the xy-plane. Define F: W -> R by
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F(p) = zip) - zaQ(x(p), y(p)) if p e W Π V

U p e W ΠUa.

F is C2, since the boundary of each Ua is contained in T and ψ(M7) coincides
with its tangent plane up to third order at each point of ψ(Γ). Now define a
mapping Φ: W —> Λ3 by

Φ is a C2 immersion, and its planar points are precisely the points of W — V.
The second fundamental form of ψ on F can be supposed without loss of
generality to be everywhere positive semidefinite (it is either everywhere posi-
tive semidefinite or everywhere negative semidefinite on V because V is a con-
nected set of non-planar points). Then the second fundamental form of Φ is
positive semidefinite.

Return now to the consideration of the curve segment yxcW whose end-
points lie in Ua. Since πPψ\γ1 is a one-to-one map of γλ onto L15 7τPψ and
hence Φ are each one-to-one in some neighborhood U of f in W. Thus Φ(U)
can be considered to be the graph over πPψ(U) of the function F. Then F is
convex on πPψ(U) because of the positive semidefiniteness of the second fun-
damental form of Φ. It may be assumed (by a linear change in the x, y co-
ordinates) that the segment Lx is a portion of the x-axis, say from [a, 0, 0] to
[6,0,0], 6 > a. Fxx > 0; but since the endpoints of Lλ lie in πPψ(T),
Fx([a, 0, 0]) = Fx([b, 0, 0]) = 0 and F([a, 0,0]) = F([b, 0, 0]) = 0. Hence F
= 0 everywhere on Lλ.

Fyy > 0 everywhere on πPψ(U); since F = Fy = 0 at every point of L1? it
follows that there is some ε > 0 such that {[JC, y, 0] \ a < x<b, \y\<ε}ClπPψ(U)
and such that F([x, y, 0]) > 0 for a < x < b, \y\ < ε. Choose such an ε. Then,
for a < x < b and \y\ < ε,

0 < F([JC, y, 0]) < *^l±F([a9 y, 0]) + f ^ F ( [ 6 , y, 0]) ,
b — a b — a

the second inequality following directly from the convexity of F. Since F — Fy

= Fyv = 0 at [a, 0,0], lim F([a, y, 0])/y2 = 0 similarly, lim F([x, y, 0])/y2 = 0

for a < x < b. The inequalities for F([x, y, 0]) then imply that lim F([x, y, 0])/y2

= 0 for a < x < b. Thus Fyv([x, 0, 0]) = 0 for a < x < b. Since also

Fxx([x, 0, 0]) = 0 for a < x < b, the semidefinite second fundamental form of

the graph F is 0 everywhere on Lλ. Thus fλ lies entirely in the set of planar

points of Φ, and hence γλ (Ί V = 0. It follows that fλ c Uao, and thus the

proof of the lemma is complete.

To continue the proof of the proposition, consider the intersection Π Όa(W
Π Ua) with W of every component Ua of M — V which contains To for all
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components V of M — Γ. By Lemma 1 and property (b) of JF-convexity, this
intersection is W-convex and hence by property (a) of W-convexity the com-
ponent of this intersection which contains To is W-convex. This component is
a connected subset of Γ, which contains To and hence equals Γo. Thus To is
JF-convex.

To complete the proof that ψ(Γ0) is convex, let S = the set of all pairs of
points (p, q) e Γo X To such that the (closed) line segment from ψ(p) to ψ(q)
lies in ψ(Γ0). ψ(Γ0) is convex if and only if S = To X To. Since {(/?,p)\pe To}
C £ and TQ is non-empty, 5 is non-empty. From the compactness (and con-
sequent closedness) of ψ(Γ0) in R3, it follows easily that S is closed in To x Γo.
To see that S is open in To X Γo, observe that since ψ(Γ0) lies in a plane
parallel to P, πPψ is a diίϊeomorphism of some open subset Uo of Mf with
To C t/0 C JF onto an open subset of the plane P. If (p, q) e 5, then the line
segment L from πPψ(p) to πPψ(q) lies in πPψ(U0) and hence some convex
open neighborhood WL of L in P lies in πPψ(U0). Put t/L = Uo Π ( T Γ P Ψ ) " ^ ^ ) .
t/L is an open subset of W, and if p\q' eUL Π Γo then the line segment from
7Γpψ(/?0 to πPψ(q') lies in WL and hence in πPψ(U). Then there exists an arc
f in U with the image of this arc under πPψ equal to this line segment in P.
Since U C W, the W-convexity of To implies that γ' lies in To, and therefore
the line segment from πP^{pf) to πPψ(q') lies in 7rPψ(T0). Since τrP |ψ(Γ0) is a
translation, it follows that the line segment from ψ(pθ to ψ(<?0 lies in ψ(Γ0).
Thus (£/L x UL) Π (Γo X Γo) is an open neighborhood of (/?, q) β 5, and so S
is open in To X Γo. Since 5 is also closed in To x Γo and is nonempty, the
connectedness of Γo x TQ implies that S = TQ x Γo. The proof of the convexity
of ψ(Γ0) is thus complete.

2. The rigidity theorem

Theorem. // Mf is the manifold obtained by deleting a finite number of
points /?!, , pn from a compact, orίentable 2-manifold M with a C5 Rieman-
nian metric whose Gaussian curvature is everywhere nonnegative, and the Gaus-
sian curvature of this metric on M is positive at each of the points p19 , pn,
then any C3 isometric embedding φ'': Mr —> R3 is the restriction to Mf of a C2

isometric embedding φ: M —> R3, and the isometric embedding φf is rigid in
the class of O isometric embeddings of Mf.

Proof, Since φ': Mf —> R3 is an isometric embedding, the Riemannian dis-
tance between two points q19 q2 of Mr is greater than or equal to the distance
between φ\q^) and φf{q^) in R3. Hence φf maps Cauchy sequences in Mf to
Cauchy sequences in R3, and consequently there is a unique continuous exten-
sion φ: M —> R3 of φr to all of M. φr is by assumption an embedding: the to-
pology induced on M' by φr from the topology of R3 agrees with the manifold
topology. This induced topology is thus Hausdorfϊ; it follows that φ: M -* R3



464 R. E. GREENE & H. WU

is one-to-one except for possible identifications of the points p19 , pn to each
other under φ.

Lemma 2. R3 — φ(M) has precisely two components, and φ(M) is their
common boundary.

Proof (after Alexander's proof of the Jordan-Brouwer theorem). Choose a
triangulation of M with p19 >,pn among the vertices. The image under φ of
this triangulation is a triangulation of φ(M). It is easy to verify using these
triangulations that

H2(φ(M); Z2) ^ H2(M; Z2) ^ Z2 .

Then H2(φ(M);Z2) = Z 2. From Alexander duality, H0(R3 - φ(M); Z2)
= H\φ(M)\ Z2) 0 Z 2. Thus //0CR3 - ^(M); Z2) = Z2 0 Z2, and # 3 - 0(Λf)
has exactly two components, say / and E.

Cl/ Π Cl E c 0(M). Suppose that 0(M) - (Cl/ Π C1E) is not empty. Then
φ~\φ(M) — (Cl/ Π C1E)) is open (and nonempty) in M. Hence there is a set
D (Z M' such that D is homeomorphic to the closed unit disc and such that
φφ) c φ{M) - (Cl/ Π C\E). φ = interior of Zλ) Since 0(Z>) c 0(M)
- (Cl/ Π C1E), # 3 - 0(M - /)) is not connected. But H\M - D; Z2)
= //2(M - / ) ; Z2) = 0 and as before H\φ(M - D); Z2) μ H\M - D\Z2).
Hence, again applying Alexander duality, H0(R3 — φ(M — D) Z2) = Z2 so that
R3 — φ(M — D) is connected. This contradiction completes the proof. (For a
more detailed version of this argument, see the Appendix of [4].)

Note that the compactness of φ(M) implies that JR3 — φ(M) has only one
unbounded component. According to Lemma 2, R3 — φ(M) has then exactly
one bounded component and one unbounded component hereafter / denotes
the bounded component of R3 — φ(M) (the "interior" of φ(M)) and E the un-
bounded component (the "exterior" of φ(M)).

Lemma 3. The complement in Mf of the set of planar points of φf is con-
nected.

Proof. Let T be the set of planar points of ψf. As noted in the proof of the
proposition of § 1, T is a compact subset of Mr and hence a closed subset of
M. A closed subset of the sphere separates the sphere only if one of its com-
ponents separates the sphere [10, p. 123]. Since T U {pί9 -,pn} is closed
and has as its components the components of T together with the one-point sets
{Pi}? > {Pn}> it suffices for the proof of the present lemma to show that no
component of T separates M. If a component To of T separated M, then any
subset of M homeomorphic to this component would also separate M [ 8 , p . 101].
Every component of T is homeomorphic to a compact convex plane set by the
proposition of § 1. Hence To would be homeomorphic to a point, a closed
straight line segment, or the closed unit disc. Since each of these three clearly
has a homeomorphic image in M which fails to separate M, the lemma follows.

It follows immediately by continuity considerations from Lemma 3 that the
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semidefinite second fundamental form of ψ': Mf —> R3 (relative to either of the
two continuous unit normal fields defined on all of φf(M)) is of constant sign,
that is, is either positive semidefinite everywhere or negative semidefinite every-
where in Mf. This conclusion will be used in the proofs of Lemmas 4 and 5.

For a given vector N e S\ the function hN:M-+R defined by hN(p) = φ(p)-N

is C3 on M', and its critical points in M! are precisely those points p e Mf at

which the tangent plane to φ(M') at φ(p) is perpendicular to N. Such a critical

point can be degenerate only if N or — JV is a critical value of the Gauss map

η: M' —• S2. By Sard's theorem [17], the set © of critical values of the C2 map

η is of measure 0 in S2. Thus © U - © ( - © = {v ε S2 \ -v e ©}) is also of

measure 0 in S2. The set ® of vectors iVe^S2 for which hN has only nondegen-

erate critical points, which set contains the complement in S2 of © U — © , is

therefore everywhere dense in S2.

Lemma 4. // ΪVe®, then, for any teR, the intersection of the set Pt

= {v e R31 v - N = t] with φ(M) is either empty or connected.

Proof. Define a Ck generalized circle to be either a point or a Ck difϊeo-
morph of a circle; for brevity, a C° generalized circle will be referred to here-
after simply as a generalized circle. A generalized circle which is not a single
point will be called a nondegenerate generalized circle. Clearly, it suffices to
show that Pt Π φ(M) consists of at most a single generalized circle. Since the
proof of this fact is very nearly identical to the proof of the Lemma in [4], only
an outline of the argument will be given here together with a description of the
modifications needed to fit the argument to the present situation. The reader is
then referred to [4] for the remaining details.

Throughout the following discussion, denote hN by h and let t19 , tm be
an ordered listing (tλ < < tm) of the finite set {hφ(pλ), , hφ(pn)} so that
{φ(Pi)> ' - , Φ(Pn)} C (Ptl Π φ(M)) U U (Ptm ίΊ φ(M)) but no such inclusion
holds for any smaller set of P/s.

A number of preliminary conclusions will now be stated and discussed:

(A) If t $ {t19 - - , tm}, then Pt Π φ(M) is a finite disjoint union of general-
ized circles of class C3.

This assertion follows easily from the facts that Pt (Ί φ(M) c φ(M') and that
h has as critical points in φ(M') at most nondegenerate and hence isolated
maxima and minima.

(B) Each generalized circle of (A) is a convex curve in Pt (i.e., it lies

entirely on one side of each of its tangents and thus bounds a convex domain

in Pt).

This assertion is an essential point in the proof of the lemma the convexity

of these curves of intersection is precisely the property which makes it possible

to deduce enough information about the behavior of φ(M) in a neighborhood

of each φ(pt) to complete the proof. The fact that the intersection curves are
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convex is a consequence of the constancy of sign of the second fundamental
form of φ(M'), which was deduced from Lemma 3, and of Meusnier's theorem
(Willmore [19, p. 96]). Since Pt f)φ(M)aφ(M'), this constancy of sign implies
that the sign of the curvature of each C3 generalized circle (which is not a point)
is constant when the generalized circle is considered as a plane curve in Pt. It
is a standard result that a plane curve whose curvature has constant sign is
convex.

(C) If the critical points of h and the points φ(Pι), , φ(pn) are removed
from Ptj ΓΊ φ(M), the remainder consists of a disjoint union of C3 diffeomorphs
of straight lines and circles. The critical points of h form a discrete set in

ph n φ(M).
These facts are immediate consequences respectively of the implicit function

theorem and of the fact that the critical points of h in φ{Mf) are nondegenerate
and hence isolated.

Pt,-+Pt as t'—>t; it is intuitively clear that the intersection Pt, Π φ(M)
converges to Pt Π φ(M) in a uniform fashion as tr —> t because of the facts that
the critical points of h are nondegenerate so that the level sets of h on φ(Mf)
vary uniformly and that the value of φ at each pt is uniquely determined by the
values of φ in a (deleted) neighborhood of pt in M\ To make this observation
precise, an explicit description of the variation of Pt Π φ(M) with t is needed:

Let grad h be the gradient vector field of the function h relative to the in-
duced metric on φ(Mf) and set V = grad h/||grad h\\2. V is defined everywhere
on φ(M) except at the points φ(pλ) -φ(pn) and the critical points of h. On its
domain of definition, V generates a local one-parameter group of local diffeo-
morphisms ηt explicitly, if V is defined in a neighborhood of p e φ(M'), and
γ: [0, ε) —• φ(M) is the integral curve of V issuing from p, then ηt(p) = γ(t).
Observe that, if h(p) = f, then h(γ(t)) = t + f for all t for which γ{t) is defin-
ed equivalently, if p ePt> Π φiM) and ηt(p) is defined, then ηt(p) ePt+t, Π φ(M).

Suppose that ti{t19 , tm}, and let C be a C2 diίϊeomorph of the unit circle
in Pt Π φ(M). Suppose further that there is a t' such that τjs(p) is defined for
all p eC and all s such that 0 < s < t'. Then it can be shown as in [4] that
7]s(p) approaches a limit, to be called y]t>(p), as s —> tf and that the mapping
P —• VΛP) is a continuous mapping of C. Symbolically, write C\ηt,{C). Simi-
larly, if C c P; Π φ(M) is a C2 diffeomorph of the circle and the integral cur-
ves {ξp(x)} of — V issuing from points p of C are defined for all p e C and all
s such that 0 < s < t\ then η_t'(p) = ϋm ?PC?) exists for all /? e C, and the
mapping p —> η_t'(p) is continuous. Again, write symbolically Cj^.f/ίC). The
following statement (D) describes the situation in which the hypotheses requir-
ed for the definition of the maps ηt, and η_t, are satisfied (only the case of ηt,,
tf > 0, will be treated explicitly; the case of η_t, is obtainable by obvious minor
modifications).

(D) Let tj_, <t <tj and t' = ts - t. If C ^ Pt Π φ{M) is a C2 diίϊeo-
morph of the unit circle and γp are the integral curves of V issuing from p e C



RIGIDITY OF PUNCTURED OVALOIDS 467

with γp(0) = p, then one but not both of the following conditions (a), (β) is
satisfied: (a) There is some p e C such that, for some u with 0 < u < *', ^(w)
is not defined but γp(s) is defined for 0 < s < w. Then, for all qeC, γq(s) is
defined for 0 < s < u, but Q̂(w) is undefined, and there exists a local maximum
Q of Λ such that lim ^(s) = Q for all g e C. (/3) For all p e C, 7̂ (5) is defined

for 0 < s < *'. Then C t ^ ( C ) .
(E) If Q ζPtj Π ^(M) is an isolated point in Pt. Π φ(M), then for some

t Φ tj and some C C P { f l φ(M), C is a C2 difϊeomorph of the circle, C | Q (if
ί < i , )orC |Q( i f ί > tj).

This assertion follows immediately if Q is a critical point of h in φ(Mf). In
case Q e φ(M'), a more intricate argument is needed and is given in [4], where
it is also shown that:

(F) If Q e Pt. Π φ(M) is not an isolated point, then for some ε > 0 there
are C2 diffeomorphs Cx and C2 of the circle with Cλ cz Pt._ε Π φ(M) and C2 C F ί y + ε

Π φ(M) such that Qt^XCO with QeηXCJ and C2|^_ε(C2) with Q e ^-ε(C2).
Statements (E) and (F) together assert that all of Pt. Π φ(M) is an upward

or downward limit of Pt Π φ(M), t ${ί15 , ίm}. Statement (G) asserts that
these limits are uniform:

(G) Let C be a C2 diffeomorph of the circle in Pt Π φ(M), tj_λ < t < tj9

such that all the integral curves γp(s) of V issuing from points p €<C are defined
for 0 < s < Λ Let Cs be the set {γp(s): p eC}. Then C5 converges uniformly
to ηt>(C), i.e., for every neighborhood U of ^ r(C) there is some sx such that
Csd U its.Ks < t\

(H) For all t, Pt (Ί ^(M) is a union of (C°) generalized circles; each gen-
eralized circle is either an isolated point or a convex (C°) curve, and no one of
the generalized circles intersects the interior of any other.

To verify (H), recall statement (B): if / $ {t19 , tm}, then Pt Π φ(M) is a
union of disjoint convex plane curves. The uniform limit of convex plane curves
is a convex plane curve and hence a (C°) generalized circle (note that convexity
is essential for this conclusion concerning the uniform limit: the uniform limit
of arbitrary generalized circles is not necessarily a generalized circle). Then (G)
combined with (E) and (F) implies that, for any t, Pt Π φ(M) is a union of
convex generalized circles. That no one of these convex curves intersects the
interior of any other is a consequence of Lemma 2 and the fact, easily derived
from the observations used to prove (B), that the interior in Pt of any of the
generalized circles in Pt Π φ(M), t $ {t19 , tm}, is contained in the interior of
φ(M). Since every point of φ(M) is a boundary point of the interior of φ(M) by
Lemma 2, these generalized circles cannot intersect one another's interiors in
Pt. The same conclusion then follows for te{t19 , tm} by a limit argument
using (G).

( I ) Any two of the generalized circles of (H) can intersect only at one of
the φ(p,), . --,φ(pn).
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To verify this assertion, it suffices to observe that an intersection point in
φ(M;) would have to be a critical point of h, but that each critical point of h in
Pt Π φ(M'), being a nondegenerate maximum or minimum of h, is an isolated
point in Pt Π φ(Mf).

Now a relation on the nondegenerate generalized circles in all the level sets
Pt ΓΊ φ(M) can be defined as follows:

Two nondegenerate generalized circles C and C" in PSl Π φiM) and
PS2 Π φ(M), respectively, are deformation-related if there is a chain C = C19

C2, - -, Ct_19 Cι = C" of nondegenerate convex curves satisfying

(1) Cx c Ps, Π φ(M), C2 c P9., ΓΊ 0(Λf), . . , CL c P I ( Z ) Π 0(Λf) with either
^ = y > s" > '•' > sa) = s2 or sλ = J ' < s" < . . . < sα ) = j 2 .

(2) If sx > s2, then for all / either Ct 19 ί(C,) = C< + 1 or C< + 11 %(C<+1) = C t

for some /. If sλ < s2, then for all / either C ^ ^ ( Q ) = C ί + 1 or Cί+1[η(Cί+ι)
= C4 for some ί.

The symmetry and reflexiveness of this relation are obvious that the relation
is transitive and hence is an equivalence relation follows from the observation
that by (H) the generalized circles in each Pt Π φ{M) have disjoint interiors in
Pt and hence that a given nondegenerate generalized circle Cv Q Pt* Π φ(M)
cannot be the limit from below (and similarly from above) of two distinct
families of generalized circles Ct c Pt Π φ(M) and C* c Pt Π φ(M) as ί \ tr.

Let /j, ••-,/„, ••• be the subsets of φ(M) obtained by taking, for each dis-
tinct equivalence class of nondegenerate generalized circles under the deforma-
tion-relatedness equivalence relation, the union of the sets of points of the gen-
eralized circles. It is then easily verified from statements (A) and (I) that

To complete the proof that Pt Π φ{M) consists of at most a single generalized
circle, consider the set A obtained by deleting from φ(M) the critical points of
h in φ(M') and the points φ(pλ), ,φ(pn). The deleted set is countable be-
cause the critical points of h are isolated, and hence it has topological dimension
0, while φ(M) has topological dimension 2; therefore, A is connected by a
theorem of Hurewicz and Wallman [8, p. 48]. Moreover, Ia Π A is open in A
by statement (D) and the existence of box-like neighborhoods in φ(M) of points
in Ia Π A. But Ia ΓΊ Iβ e {φ{pλ), "9φ(pn)} for Ia φ Iβ, so that (Ia Π A)
Π (Iβ Π A) = φ for Ia Φ Iβ. Thus the connectedness of A implies that there
is at most one distinct nonempty Ia Π A. If Ia Π A is empty so is Ia since Ia is
either empty or nondenumerable. Thus there is only one nonempty Ia, say /.
Here for any t, Pt Π φ(M) contains at most one generalized circle which is
nondegenerate.

Suppose that, for some t Φ t19 , tm9 Pt Π φ(M) consisted of more than one
generalized circle. If one of these circles were nondegenerate, then, for some
t' Φtl9 , tm near t, Pt, Π φ(M) would contain two nondegenerate generalized
circles. Thus, if Pt Π φ(M) contains more than one generalized circle, then
Pt Π φ(M) most consist only of isolated points, say q19 , qk, k > 2, each q
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being either a maximum or a minimum of h. If two of the g's are maxima,
then for some t'' Φtl9 , tm slightly less than t, Pt, Γi φ(M) would contain two
nondegenerate generalized circles thus there cannot be two maxima among the
q's. Similarly there cannot be two minima among the g's. Thus there can be
but two q's, one a maximum and one a minimum of h. But then the connected
set φ(M) — {#!, q2} is separated by the plane Pt. This contradiction shows that
Pt Π φ(M) contains at most one generalized circle and is hence connected for
t φ t19 ,tm. Since the limit of a single family of convex generalized circles
can be only a single generalized circle, it follows then from statements (E), (F),
and (G) that Pt Π φ(M) is at most a single generalized circle and is hence con-
nected for t — tλ, , tm as well. Hence the proof of Lemma 4 is complete.

To resume the proof of the theorem, observe that if p e Mf and U is a suffi-
ciently small neighborhood in R3 of φ(p), then U Π φ{M') = U Π φ(M). If the
Gaussian curvature is positive at p, then such a U can be so chosen as to satisfy
the additional condition that the intersection of the tangent plane of φ(M') at
φ(p) with U Π 0(M0 (and hence with U Π φ(M)) contains only the single point
p. If in addition η(p) is in the set ® of vectors N in S2 for which the function
hN has only nondegenerate critical points, it follows from Lemma 4 that the
intersection of the tangent plane of φ(M') at φ(p) with all of φ(M) contains
only the single point p. From the connectedness of M — {p}, it follows then
that φ(M) lies entirely in one of the (closed) half-spaces of R3 determined by
the tangent plane of φ(M') at φ(p). Let (g) be the set of points p eMf such that
the Gaussian curvature of M' is positive at p and η(p) e @. Note that (g) is not
empty in fact, since @ is everywhere dense in S2 and η is an open mapping
wherever the Gaussian curvature is positive, (g) is dense in the set of points of
M' at which the Gaussian curvature is positive. If / ? € ® , then since φ(M) lies
entirely in one of the closed half-spaces determined by the tangent plane of
φ(M') at φ(p), so does / U φ(M).

Lemma 5. / U φ(M) is a compact convex body in R3.
Proof. A plane P in R3 containing a point x in the boundary of a set in R3

is called a local support plane of the set at x if there is some neighborhood of
x in JR3 such that the intersection of the set with the neighborhood lies entirely
in one of the closed half-spaces determined by P. A theorem of E. Schmidt is
that if a connected set with nonempty interior has a local support plane at each
of its boundary points then the set is convex. Thus for the proof of the lemma
it suffices (since / is open and nonempty) to show that / U φ(M) has a local
support plane at each point of its boundary φ(M).

Denote by Pp(p e Mr) the tangent space in Rz of φ{Mf) at φ(p). The constancy
of the sign of the semideίinite second fundamental form of φf: M! —>i?3 implies
that in a neighborhood of each φ(p), p eM\ the surface φ(M') lies in one of
the closed half-spaces determined by Pp. To verify this implication, observe
that in a neighborhood of φ(p) the surface φ(M') is representable as the graph
of a function, that by the constancy of the sign of the second fundamental form
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this function is convex, and that the graph of a convex function lies locally on
one side of its tangent plane. Let Hp be the closed half-space determined by Pp

which contains φ(M') in a neighborhood of φ(p). It was shown previously that
if p e (g), then / (J φ(M) lies in Hp. Since (g) is not empty and Hp varies con-
tinuously with p, it follows that for every p e M\ I U φ(M) lies in Hp in some
neighborhood of φ(p). It remains to show that / U φ(M) has a local support
plane at each of the φ(Pi), i = 1, • •-,«. For a given /, there is a sequence
{^ I / = 1,2, qά € (g)} of points of (g) approaching /?ί? since (g) is dense in
the set of points of M' of positive curvature. There is a subsequence {q/

J} such
that {Pq,} is a convergent sequence of planes in R3. The limit P of {PQ,.} is a

(local) support plane at φ(Pi), for if / U 0(M) did not lie in one of the closed
half-spaces determined by P, then for q] sufficiently near pi9 I \J φ(M) could
not lie entirely in Hq,.. (Note that this argument depends upon the fact that

/ Π φ(M) lies in Hq,. altogether, not just in some neighborhood of q'j a limit

of local support planes is not necessarily a local support plane.) q.e.d.
It was observed earlier that the continuous map φ is one-to-one except for

possible identities among the φipj, ,φ(pn)- Since φ(M) is the boundary of
a compact convex body, it is homeomorphic to S2 and H^φiM) Z) = 0. But
it is easy to see by using the triangulations of M and φ(M) described in the
proof of Lemma 2, that if identifications among the pt occur under φ then
H^φiM); Z) Φ 0. Hence φ: M —> φ(M) must be one-to-one and, being then a
one-to-one continuous map from one compact Hausdorίϊ space to another, must
be a homeomorphism.

Let Dε be the disc of radius ε in M about a fixed point p, and Eε be the set
of all oriented unit normals to the planes of support of φ(M) at points of φ(Dε).
(A (global) plane of support P at a point of a surface is a plane through p such
that the surface lies entirely in one of the closed half-spaces determined by P.)
Define

Eε D£

where ΩM is the volume element of M, and Ωs is the volume element of the
unit sphere S2 of R3. It will now be shown that K{φ(p)) = K(p), the Gaussian
curvature of M at p. Since / U φ(M) is convex, a local support plane of / U φ(M)
is necessarily a global support plane of φ(M). It was shown in the proof of
Lemma 5 that for any p e Mr the tangent plane to φ(Mf) at φ(p) was a local
support plane of / U φ(M) clearly no plane other than this tangent plane can
be a local support plane of / U φ{M) at φ{p). It now follows easily from the
interpretation of the Gaussian curvature as the Jacobian of the Gauss map and
the continuity of the Gaussian curvature of M that K(φ(p)) = K(p) if p eM'.
To see that K(φ(p)) = K(p) if p ε M — M', note that the Gauss map is one-
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to-one on the set (g) this fact is a consequence of the previous observations
that if q <ε (g), then the tangent plane to φ(M') at φ(q) intersects / U φ(M) only
at the point φ(q) and that / U φiM) lies everywhere on the same side (relative
to the oriented normal) of the tangent planes of φ(Mf). Now η(Mf) — η(®)
has measure 0 in S\ because η(M') — η(Mf

+) c © has measure zero and
η(M;

+) — 5?((g)) C © U — © has measure 0, where M'+ is the set of points of
Mr of positive curvature. Since

the fact that η(M') — jy((g)) has measure 0 implies that

4π =

Thus, since η | (g) is one-to-one, the measure of jy((g)) in S2 is 4ττ. Hence

K(φ(p)) = lim (Jfls/Jβjf) = IJHJ [fKΩ*/fΩ*) = K{p) •
Eε Dε Dε Dε

Thus K{φ{p)) is equal to K(p) for all p eM, and K is consequently bounded
everywhere from above, and in a neighborhood of each pt is bounded away
from zero as well. By a theorem of Alexandrov [l](see also [12, p. 27]), φ(M)
is a C1 submanifold of R3. φ: M —> 0(M) is an isometry except at (possibly) a
finite number of points. Thus φ is a distance preserving map in the sense that
both φ and φ~ι map rectifiable curves to rectifiable curves and that the length
of rectifiable curves is preserved under φ and φ~ι. The following regularity
theorem [13] of Pogorelov implies that M is a C4 submanifold of R\

Theorem (Pogorelov). Let N be a convex surface of class C1 in R3. Suppose
that in a neighborhood of some point p in N the generalized Gaussian curva-
ture is positive and finite and that moreover there is a distance-preserving
homeomophism of some neighborhood of p in N onto a Riemannian manifold
whose metric is of class Ck (k>2). Then N is necessarily a Ck~1 submanifold
of R2 in some neighborhood of p.

Pogorelov considers explicitly only the case in which the generalized Gaussian
curvature of N is everywhere positive and finite, and in which a distance-pre-
serving homeomorphism onto a Riemannian manifold with Ck metric is defined
on all of N. However, his proof that the surface N is Ck~ι in a neighborhood
of an arbitrary point pεN uses these assumptions only locally, in a neighbor-
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hood of p, and it is easy to verify that the same arguments yield the local result

stated here.

Since φ(M) is a C4 submanifold of R3, the Riemannian metric induced on

φ(M) is of class C3. The Myers-Steenrod theorem (cf. Palais [11]) implies that

the distance-preserving map φ: M —> φ(M) is an isometry of class C2 at least.

Thus φ: M —> R3 is a C2 isometric embedding. By the rigidity theorem of

Sacksteder [15] and Voss [18], the map φ is rigid in the class of C2 isometric

embeddings of M. Hence φ' is necessarily rigid in the class of C3 isometric em-

beddings of M'.
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