ON THE RIGIDITY OF PUNCTURED OVALOIDS. II

R. E. GREENE \& H. WU

A C^{k} isometric embedding $\phi: M \rightarrow R^{n}$ of a Riemannian manifold M into n dimensional euclidean space R^{n} is said to be rigid in the class of C^{k} isometric embeddings if, corresponding to each C^{k} isometric embedding $\psi: M \rightarrow R^{n}$, there is a rigid motion $T_{\psi}: R^{n} \rightarrow R^{n}$ such that $\psi=T_{\varphi} \circ \phi$. A theorem of CohnVossen [3] is that any C^{3} isometric embedding of a compact 2-dimensional Riemannian manifold of everywhere positive Gaussian curvature in R^{3} is rigid in the class of C^{3} isometric embeddings. Earlier, Hadamard [5] had proven that a compact C^{2} submanifold of R^{3} having everywhere positive Gaussian curvature was a convex surface, that is, the boundary of a convex body in R^{3}. Using this convexity property, Herglotz [6](see also Hicks [7]) gave a brief new proof of the rigidity theorem of Cohn-Vossen; Wintner [20] showed using a refinement of Herglotz's approach that the theorem of Cohn-Vossen remains true if C^{3} is replaced by C^{2} throughout its statement. In the course of their work on the total curvature of submanifolds of euclidean space, Chern and Lashof [2] proved that a compact C^{2} surface in R^{3} with everywhere nonnegative Gaussian curvature was necessarily a convex surface. Using this generalization of the convexity result of Hadamard, Voss [18] and independently Sacksteder [15] extended Herglotz's rigidity argument to show that any C^{2} isometric embedding of a compact 2-dimensional Riemannian manifold of everywhere nonnegative Gaussian curvature is rigid.

It was shown in [4], the first paper of this series, that, if M is a compact orientable 2-dimensional Riemannian manifold with a C^{5} metric of everywhere positive Gaussian curvature and if M^{\prime} is the manifold obtained from M by deleting a finite number of points p_{1}, \cdots, p_{n}, then any C^{2} isometric embedding $\phi^{\prime}: M^{\prime} \rightarrow R^{3}$ is rigid in the class of C^{2} isometric embeddings. In fact, it was shown that ϕ^{\prime} is necessarily the restriction to M^{\prime} of a C^{2} isometric embedding $\phi: M \rightarrow R^{3}$, and the rigidity of ϕ^{\prime} is then a consequence of the rigidity theorem for C^{2} isometric embeddings of compact manifolds of positive curvature. The purpose of the present paper is to prove a similar rigidity and regularity result for compact orientable 2-dimensional Riemannian manifolds of everywhere nonnegative curvature with a finite number of points deleted, at each of which

[^0]points the Gaussian curvature is positive. This rigidity result is stated and proved in § 2 . § 1 contains the statement and proof of a proposition concerning the planar point set of an isometric embedding in R^{3} of such a manifold. Because the manifold is not assumed to be complete, this proposition is not a special case of Sacksteder's Theorem 1 in [14]; however, the present proposition is proved here using Sacksteder's methods. Some related results regarding the type of local convexity used in the proof of the proposition can be found in [16].

1. The structure of the set of planar points

Let V be a 2-dimensional manifold and $\psi: V \rightarrow R^{3}$ be an embedding. A planar point of ψ is a point $p \in V$ such that the second fundamental form of $\psi: V \rightarrow R^{3}$ at p is zero. If V is oriented, the Gauss map $\eta: V \rightarrow S^{2}$ (corresponding to a fixed orientation of R^{3}) is the map which assigns to $p \in V$ the unit vector at the origin in R^{3} parallel to the positively oriented normal to $\psi(V)$ at $\psi(p)$. The Gauss map has rank zero at $p \in V$ if and only if p is a planar point.

Proposition. If M^{\prime} is the manifold obtained by deleting a finite number of points p_{1}, \cdots, p_{n} from a $\left(C^{\infty}\right)$ manifold M homeomorphic to S^{2}, and $\psi: M^{\prime} \rightarrow R^{3}$ is a C^{3} embedding of M^{\prime} having the Gaussian curvature of the induced metric on M^{\prime} nonnegative everywhere and positive in a neighborhood of the points p_{1}, \cdots, p_{n}, then each component T_{0} of the set T of planar points of ψ has the property that $\psi\left(T_{0}\right)$ is a compact convex subset of a plane in R^{3}.

Proof. Fix orientations of R^{3} and M. The corresponding Gauss map $\eta: M^{\prime}$ $\rightarrow S^{2}$ is C^{2} since ψ is C^{3}. Since the planar points of ψ are precisely those points of M^{\prime} at which η has rank zero, a theorem of Sard [17] implies that η is constant on each component T_{β} of the set of planar points. If the unit vector \vec{N} is the common value of η at the points of T_{β}, then the C^{3} function $p \rightarrow \vec{N} \cdot \overrightarrow{\psi(p)}$ from M^{\prime} to R has derivative zero at every point of T_{β}. By a theorem of A. P. Morse [9], $p \rightarrow \vec{N} \cdot \overrightarrow{\psi(p)}$ is constant on T_{β}. Thus $\psi\left(T_{\beta}\right)$ lies in a (uniquely determined) plane perpendicular to \vec{N}. In particular, $\psi\left(T_{0}\right)$ lies in a plane which is perpendicular to \vec{N}_{0}, where \vec{N}_{0} is the normal vector to $\psi\left(M^{\prime}\right)$ at every point of $\psi\left(T_{0}\right)$.

Since by assumption the curvature is positive in a neighborhood in M^{\prime} of each of the points p_{1}, \cdots, p_{n}, it follows that T is bounded away from p_{1}, \cdots, p_{n} in M and hence that T is a closed subset not only of M^{\prime} but also of M. Thus T is compact, and consequently every component of T is compact. In particular, T_{0} is compact and hence $\psi\left(T_{0}\right)$ is compact.

Let V be a component of the open set $M-T$ and $\left\{U_{\alpha}\right\}$ be the components of $M-V$. Note that no $p_{i}, i=1, \cdots, n$, is contained in the boundary of any U_{α} since for each i the boundary of V, which is a subset of T, is bounded away from p_{i}. Also, each U_{α} contains only one component of the boundary of $M-V$
[10, p. 124]. Therefore the boundary of each U_{α} is a connected subset of T, and thus by the previous remarks the normal to $\psi\left(M^{\prime}\right)$ is constant on the boundary of U_{α}. Let \vec{N}_{α} be its constant value there.

For the remainder of the proof, a special type of local convexity property called here (as in [14]) W-convexity will be used; Let \vec{v} be any unit vector at the origin in R^{3}, P be the plane through the origin orthogonal to \vec{v}, and π_{P} : $R^{3} \rightarrow P$ be the orthogonal projection on P. Define W to be any (open) connected component of the set $\left\{p \in M^{\prime} \mid \overrightarrow{\eta(p)} \cdot \vec{v} \neq 0\right\}$. A subset $U \subset W$ is said to be W-convex if every two points p, q of U, which are joined by an arc in W whose orthogonal projection on P is the line segment from $\pi_{P}(p)$ to $\pi_{P}(q)$, are joined by an arc in U whose orthogonal projection on P is the line segment from $\pi_{P}(p)$ to $\pi_{P}(q)$. (Since $\pi_{P} \psi \mid W$ is a local homeomorphism, such an arc in W is unique up to parametrization, it being supposed here and henceforth that the arc is transversed without reversals.) The following properties of W-convex sets are easily derived from the definition: a) Any component of a W-convex set is W-convex. b) The intersection of any family of W-convex sets is W convex.

The following lemma will be used in proving that $\pi_{P} \psi\left(T_{0}\right)$ is convex:
Lemma 1. Let V be a component of $M-T$. If $U_{\alpha_{0}}$ is a component of $M-V$ such that $U_{\alpha_{0}}$ contains T_{0}, then $U_{\alpha_{0}} \cap W$ is W-convex for $W=$ the component of $\left\{p \in M^{\prime} \mid \overrightarrow{\eta(p)} \cdot \vec{N}_{0} \neq 0\right\}$ containing T_{0}.

Proof. Without loss of generality it can be supposed that the unit vector \vec{N}_{0} is along the positive z-axis so that the perpendicular plane P through the origin is the $x y$-plane. Let $x(p)=[x(p), y(p), z(p)] \in R^{3}$ be the coordinate representation of ψ. To prove that $U_{\alpha_{0}} \cap W$ is W-convex, it is sufficient to show that if γ is an arc in W from p to $q, p, q \in U_{\alpha_{0}} \cap W$, with the projection of γ the line segment L form $\pi_{P} \psi(p)$ to $\pi_{P} \psi(q)$ in P, then γ lies in $U_{\alpha_{0}} \cap W$. Since $U_{\alpha_{0}} \cap W$ is closed in $W, \gamma \cap\left(W-\left(U_{\alpha_{0}} \cap W\right)\right)$ is a (possibly empty) union of disjoint open curve segments in W whose endpoints lie in $U_{\alpha_{0}} \cap W$. Suppose that there is at least one such segment γ_{1}. Denote the closed arc which consists of γ_{1} together with its endpoints by $\bar{\gamma}_{1}$. Note that $\pi_{P} \psi\left(\bar{\gamma}_{1}\right)$ is a closed line segment in P with endpoints in $\pi_{P} \psi\left(U_{\alpha_{0}}\right)$.

If U_{α} is any component of $M-V$ with $U_{\alpha} \cap W \neq \emptyset$, then the boundary of U_{α} intersects W since otherwise W would be contained in the interior of U_{α}, contradicting the fact that the boundary of $U_{\alpha_{0}}$ is contained in W. Thus, if $U_{\alpha} \cap W \neq \emptyset$ then $\vec{N}_{\alpha} \cdot \vec{N}_{0} \neq 0$. Let P_{α} be the (uniquely determined) plane perpendicular to \vec{N}_{α} which contains the boundary of U_{α}. For each α, define the function $z_{\alpha}: P \rightarrow R$ by taking $z_{\alpha}(x, y)$ to be the unique real number satisfying $\left[x, y, z_{\alpha}(x, y)\right] \in P_{\alpha} .\left(\vec{N}_{\alpha} \cdot \vec{N}_{0} \neq 0\right.$ insures that such a $z_{\alpha}(x, y)$ exists and is uniquely determined.) Note that $z_{\alpha_{0}}(x, y)$ is constant since \vec{N}_{0} is perpendicular to the $x y$-plane. Define $F: W \rightarrow R$ by

$$
\begin{aligned}
F(p) & =z(p)-z_{\alpha_{0}}(x(p), y(p)) & & \text { if } p \in W \cap V \\
& =z_{\alpha}(x(p), y(p))-z_{\alpha_{0}}(x(p), y(p)) & & \text { if } p \in W \cap U_{\alpha} .
\end{aligned}
$$

F is C^{2}, since the boundary of each U_{α} is contained in T and $\psi\left(M^{\prime}\right)$ coincides with its tangent plane up to third order at each point of $\psi(T)$. Now define a mapping $\Phi: W \rightarrow R^{3}$ by

$$
\Phi(p)=[x(p), y(p), F(p)] .
$$

Φ is a C^{2} immersion, and its planar points are precisely the points of $W-V$. The second fundamental form of ψ on V can be supposed without loss of generality to be everywhere positive semidefinite (it is either everywhere positive semidefinite or everywhere negative semidefinite on V because V is a connected set of non-planar points). Then the second fundamental form of Φ is positive semidefinite.
Return now to the consideration of the curve segment $\bar{\gamma}_{1} \subset W$ whose endpoints lie in U_{α}. Since $\pi_{P} \psi \mid \bar{\gamma}_{1}$ is a one-to-one map of $\bar{\gamma}_{1}$ onto $L_{1}, \pi_{P} \psi$ and hence Φ are each one-to-one in some neighborhood U of $\bar{\gamma}$ in W. Thus $\Phi(U)$ can be considered to be the graph over $\pi_{P} \psi(U)$ of the function F. Then F is convex on $\pi_{P} \psi(U)$ because of the positive semidefiniteness of the second fundamental form of Φ. It may be assumed (by a linear change in the x, y coordinates) that the segment L_{1} is a portion of the x-axis, say from $[a, 0,0]$ to $[b, 0,0], b>a . F_{x x} \geq 0$; but since the endpoints of L_{1} lie in $\pi_{P} \psi(T)$, $F_{x}([a, 0,0])=F_{x}([b, 0,0])=0$ and $F([a, 0,0])=F([b, 0,0])=0$. Hence F $=0$ everywhere on L_{1}.
$F_{y y} \geq 0$ everywhere on $\pi_{P} \psi(U)$; since $F=F_{y}=0$ at every point of L_{1}, it follows that there is some $\varepsilon>0$ such that $\left\{[x, y, 0]|a \leq x \leq b,|y| \leq \varepsilon\} \subset \pi_{P} \psi(U)\right.$ and such that $F([x, y, 0]) \geq 0$ for $a \leq x \leq b,|y| \leq \varepsilon$. Choose such an ε. Then, for $a \leq x \leq b$ and $|y| \leq \varepsilon$,

$$
0 \leq F([x, y, 0]) \leq \frac{b-x}{b-a} F([a, y, 0])+\frac{x-a}{b-a} F([b, y, 0])
$$

the second inequality following directly from the convexity of F. Since $F=F_{y}$ $=F_{y y}=0$ at $[a, 0,0], \lim _{y \rightarrow 0} F([a, y, 0]) / y^{2}=0 ;$ similarly, $\lim _{y \rightarrow 0} F([x, y, 0]) / y^{2}=0$ for $a \leq x \leq b$. The inequalities for $F([x, y, 0])$ then imply that $\lim _{y \rightarrow 0} F([x, y, 0]) / y^{2}$ $=0$ for $a \leq x \leq b$. Thus $F_{y y}([x, 0,0])=0$ for $a \leq x \leq b$. Since also $F_{x x}([x, 0,0])=0$ for $a \leq x \leq b$, the semidefinite second fundamental form of the graph F is 0 everywhere on L_{1}. Thus $\bar{\gamma}_{1}$ lies entirely in the set of planar points of Φ, and hence $\bar{\gamma}_{1} \cap V=\emptyset$. It follows that $\bar{\gamma}_{1} \subset U_{\alpha_{0}}$, and thus the proof of the lemma is complete.

To continue the proof of the proposition, consider the intersection $\cap_{U_{\alpha}}(W$ $\cap U_{\alpha}$) with W of every component U_{α} of $M-V$ which contains T_{0} for all
components V of $M-T$. By Lemma 1 and property (b) of W-convexity, this intersection is W-convex; and hence by property (a) of W-convexity the component of this intersection which contains T_{0} is W-convex. This component is a connected subset of T, which contains T_{0} and hence equals T_{0}. Thus T_{0} is W-convex.
To complete the proof that $\psi\left(T_{0}\right)$ is convex, let $S=$ the set of all pairs of points $(p, q) \in T_{0} \times T_{0}$ such that the (closed) line segment from $\psi(p)$ to $\psi(q)$ lies in $\psi\left(T_{0}\right) . \psi\left(T_{0}\right)$ is convex if and only if $S=T_{0} \times T_{0}$. Since $\left\{(p, p) \mid p \in T_{0}\right\}$ $\subset S$ and T_{0} is non-empty, S is non-empty. From the compactness (and consequent closedness) of $\psi\left(T_{0}\right)$ in R^{3}, it follows easily that S is closed in $T_{0} \times T_{0}$. To see that S is open in $T_{0} \times T_{0}$, observe that since $\psi\left(T_{0}\right)$ lies in a plane parallel to $P, \pi_{P} \psi$ is a diffeomorphism of some open subset U_{0} of M^{\prime} with $T_{0} \subset U_{0} \subset W$ onto an open subset of the plane P. If $(p, q) \in S$, then the line segment L from $\pi_{P} \psi(p)$ to $\pi_{P} \psi(q)$ lies in $\pi_{P} \psi\left(U_{0}\right)$ and hence some convex open neighborhood W_{L} of L in P lies in $\pi_{P} \psi\left(U_{0}\right)$. Put $U_{L}=U_{0} \cap\left(\pi_{P} \psi\right)^{-1}\left(W_{L}\right)$. U_{L} is an open subset of W, and if $p^{\prime}, q^{\prime} \in U_{L} \cap T_{0}$ then the line segment from $\pi_{P} \psi\left(p^{\prime}\right)$ to $\pi_{P} \psi\left(q^{\prime}\right)$ lies in W_{L} and hence in $\pi_{P} \psi(U)$. Then there exists an arc γ^{\prime} in U with the image of this arc under $\pi_{P} \psi$ equal to this line segment in P. Since $U \subset W$, the W-convexity of T_{0} implies that γ^{\prime} lies in T_{0}, and therefore the line segment from $\pi_{P} \psi\left(p^{\prime}\right)$ to $\pi_{P} \psi\left(q^{\prime}\right)$ lies in $\pi_{P} \psi\left(T_{0}\right)$. Since $\pi_{P} \mid \psi\left(T_{0}\right)$ is a translation, it follows that the line segment from $\psi\left(p^{\prime}\right)$ to $\psi\left(q^{\prime}\right)$ lies in $\psi\left(T_{0}\right)$. Thus $\left(U_{L} \times U_{L}\right) \cap\left(T_{0} \times T_{0}\right)$ is an open neighborhood of $(p, q) \in S$, and so S is open in $T_{0} \times T_{0}$. Since S is also closed in $T_{0} \times T_{0}$ and is nonempty, the connectedness of $T_{0} \times T_{0}$ implies that $S=T_{0} \times T_{0}$. The proof of the convexity of $\psi\left(T_{0}\right)$ is thus complete.

2. The rigidity theorem

Theorem. If M^{\prime} is the manifold obtained by deleting a finite number of points p_{1}, \cdots, p_{n} from a compact, orientable 2 -manifold M with a C^{5} Riemannian metric whose Gaussian curvature is everywhere nonnegative, and the Gaussian curvature of this metric on M is positive at each of the points p_{1}, \cdots, p_{n}, then any C^{3} isometric embedding $\phi^{\prime}: M^{\prime} \rightarrow R^{3}$ is the restriction to M^{\prime} of a C^{2} isometric embedding $\phi: M \rightarrow R^{3}$, and the isometric embedding ϕ^{\prime} is rigid in the class of C^{3} isometric embeddings of M^{\prime}.

Proof. Since $\phi^{\prime}: M^{\prime} \rightarrow R^{3}$ is an isometric embedding, the Riemannian distance between two points q_{1}, q_{2} of M^{\prime} is greater than or equal to the distance between $\phi^{\prime}\left(q_{1}\right)$ and $\phi^{\prime}\left(q_{2}\right)$ in R^{3}. Hence ϕ^{\prime} maps Cauchy sequences in M^{\prime} to Cauchy sequences in R^{3}, and consequently there is a unique continuous extension $\phi: M \rightarrow R^{3}$ of ϕ^{\prime} to all of $M . \phi^{\prime}$ is by assumption an embedding: the topology induced on M^{\prime} by ϕ^{\prime} from the topology of R^{3} agrees with the manifold topology. This induced topology is thus Hausdorff; it follows that $\phi: M \rightarrow R^{3}$
is one-to-one except for possible identifications of the points p_{1}, \cdots, p_{n} to each other under ϕ.

Lemma 2. $R^{3}-\phi(M)$ has precisely two components, and $\phi(M)$ is their common boundary.

Proof (after Alexander's proof of the Jordan-Brouwer theorem). Choose a triangulation of M with p_{1}, \cdots, p_{n} among the vertices. The image under ϕ of this triangulation is a triangulation of $\phi(M)$. It is easy to verify using these triangulations that

$$
H_{2}\left(\phi(M) ; Z_{2}\right) \cong H_{2}\left(M ; Z_{2}\right) \cong Z_{2}
$$

Then $H^{2}\left(\phi(M) ; Z_{2}\right)=Z_{2}$. From Alexander duality, $H_{0}\left(R^{3}-\phi(M) ; Z_{2}\right)$ $=H^{2}\left(\phi(M) ; Z_{2}\right) \oplus Z_{2}$. Thus $H_{0}\left(R^{3}-\phi(M) ; Z_{2}\right)=Z_{2} \oplus Z_{2}$, and $R^{3}-\phi(M)$ has exactly two components, say I and E.
$\mathrm{Cl} I \cap \mathrm{Cl} E \subseteq \phi(M)$. Suppose that $\phi(M)-(\mathrm{Cl} I \cap \mathrm{Cl} E)$ is not empty. Then $\phi^{-1}(\phi(M)-(\mathrm{Cl} I \cap \mathrm{Cl} E)$) is open (and nonempty) in M. Hence there is a set $D \subset M^{\prime}$ such that D is homeomorphic to the closed unit disc and such that $\phi(D) \subset \phi(M)-(\mathrm{Cl} I \cap \mathrm{Cl} E) .\binom{\mathrm{D}}{\mathrm{D}}$ interior of D. $)$ Since $\phi(\mathrm{D}) \subset \phi(M)$ $-(\mathrm{Cl} I \cap \mathrm{Cl} E), R^{3}-\phi(M-D)$ is not connected. But $H^{2}\left(M-D ; Z_{2}\right)$ $\cong H_{2}\left(M-D ; Z_{2}\right)=0$ and as before $H^{2}\left(\phi(M-D) ; Z_{2}\right) \cong H^{2}\left(M-D \circ Z_{2}\right)$. Hence, again applying Alexander duality, $H_{0}\left(R^{3}-\phi(M-D) ; Z_{2}\right)=Z_{2}$ so that $R^{3}-\phi(M-\dot{D})$ is connected. This contradiction completes the proof. (For a more detailed version of this argument, see the Appendix of [4].)

Note that the compactness of $\phi(M)$ implies that $R^{3}-\phi(M)$ has only one unbounded component. According to Lemma $2, R^{3}-\phi(M)$ has then exactly one bounded component and one unbounded component; hereafter I denotes the bounded component of $R^{3}-\phi(M)$ (the "interior" of $\phi(M)$) and E the unbounded component (the "exterior" of $\phi(M)$).

Lemma 3. The complement in M^{\prime} of the set of planar points of ϕ^{\prime} is connected.

Proof. Let T be the set of planar points of φ^{\prime}. As noted in the proof of the proposition of $\S 1, T$ is a compact subset of M^{\prime} and hence a closed subset of M. A closed subset of the sphere separates the sphere only if one of its components separates the sphere [10, p. 123]. Since $T \cup\left\{p_{1}, \cdots, p_{n}\right\}$ is closed and has as its components the components of T together with the one-point sets $\left\{p_{1}\right\}, \cdots,\left\{p_{n}\right\}$, it suffices for the proof of the present lemma to show that no component of T separates M. If a component T_{0} of T separated M, then any subset of M homeomorphic to this component would also separate M [8, p. 101]. Every component of T is homeomorphic to a compact convex plane set by the proposition of $\S 1$. Hence T_{0} would be homeomorphic to a point, a closed straight line segment, or the closed unit disc. Since each of these three clearly has a homeomorphic image in M which fails to separate M, the lemma follows.

It follows immediately by continuity considerations from Lemma 3 that the
semidefinite second fundamental form of $\phi^{\prime}: M^{\prime} \rightarrow R^{3}$ (relative to either of the two continuous unit normal fields defined on all of $\phi^{\prime}(M)$) is of constant sign, that is, is either positive semidefinite everywhere or negative semidefinite everywhere in M^{\prime}. This conclusion will be used in the proofs of Lemmas 4 and 5.

For a given vector $\vec{N} \in S^{2}$, the function $h_{N}: M \rightarrow R$ defined by $h_{N}(p)=\overrightarrow{\phi(p)} \cdot \vec{N}$ is C^{3} on M^{\prime}, and its critical points in M^{\prime} are precisely those points $p \in M^{\prime}$ at which the tangent plane to $\phi\left(M^{\prime}\right)$ at $\phi(p)$ is perpendicular to \vec{N}. Such a critical point can be degenerate only if \vec{N} or $-\vec{N}$ is a critical value of the Gauss map $\eta: M^{\prime} \rightarrow S^{2}$. By Sard's theorem [17], the set © of critical values of the C^{2} map η is of measure 0 in S^{2}. Thus (C) $\left.U-\mathbb{C}(-\mathbb{C})=\left\{\vec{v} \in S^{2} \mid-\vec{v} \in \mathbb{C}\right\}\right)$ is also of measure 0 in S^{2}. The set (A) of vectors $\vec{N} \in S^{2}$ for which h_{N} has only nondegenerate critical points, which set contains the complement in S^{2} of $\mathbb{C} U-\mathbb{C}$, is therefore everywhere dense in S^{2}.
Lemma 4. If $\vec{N} \in(A)$, then, for any $t \in R$, the intersection of the set P_{t} $=\left\{\vec{v} \in R^{3} \mid \vec{v} \cdot \vec{N}=t\right\}$ with $\phi(M)$ is either empty or connected.

Proof. Define a C^{k} generalized circle to be either a point or a C^{k} diffeomorph of a circle; for brevity, a C^{0} generalized circle will be referred to hereafter simply as a generalized circle. A generalized circle which is not a single point will be called a nondegenerate generalized circle. Clearly, it suffices to show that $P_{t} \cap \phi(M)$ consists of at most a single generalized circle. Since the proof of this fact is very nearly identical to the proof of the Lemma in [4], only an outline of the argument will be given here together with a description of the modifications needed to fit the argument to the present situation. The reader is then referred to [4] for the remaining details.

Throughout the following discussion, denote h_{N} by h and let t_{1}, \cdots, t_{m} be an ordered listing $\left(t_{1}<\cdots<t_{m}\right)$ of the finite set $\left\{h \phi\left(p_{1}\right), \cdots, h \phi\left(p_{n}\right)\right\}$ so that $\left\{\phi\left(p_{1}\right), \cdots, \phi\left(p_{n}\right)\right\} \subset\left(P_{t_{1}} \cap \phi(M)\right) \cup \cdots \cup\left(P_{t_{m}} \cap \phi(M)\right)$ but no such inclusion holds for any smaller set of P_{t} 's.

A number of preliminary conclusions will now be stated and discussed:
(A) If $t \notin\left\{t_{1}, \cdots, t_{m}\right\}$, then $P_{t} \cap \phi(M)$ is a finite disjoint union of generalized circles of class C^{3}.

This assertion follows easily from the facts that $P_{t} \cap \phi(M) \subset \phi\left(M^{\prime}\right)$ and that h has as critical points in $\phi\left(M^{\prime}\right)$ at most nondegenerate and hence isolated maxima and minima.
(B) Each generalized circle of (A) is a convex curve in P_{t} (i.e., it lies entirely on one side of each of its tangents and thus bounds a convex domain in P_{t}).

This assertion is an essential point in the proof of the lemma; the convexity of these curves of intersection is precisely the property which makes it possible to deduce enough information about the behavior of $\phi(M)$ in a neighborhood of each $\phi\left(p_{i}\right)$ to complete the proof. The fact that the intersection curves are
convex is a consequence of the constancy of sign of the second fundamental form of $\phi\left(M^{\prime}\right)$, which was deduced from Lemma 3, and of Meusnier's theorem (Willmore [19, p. 96]). Since $P_{t} \cap \phi(M) \subset \phi\left(M^{\prime}\right)$, this constancy of sign implies that the sign of the curvature of each C^{3} generalized circle (which is not a point) is constant when the generalized circle is considered as a plane curve in P_{t}. It is a standard result that a plane curve whose curvature has constant sign is convex.
(C) If the critical points of h and the points $\phi\left(p_{1}\right), \cdots, \phi\left(p_{n}\right)$ are removed from $P_{t_{j}} \cap \phi(M)$, the remainder consists of a disjoint union of C^{3} diffeomorphs of straight lines and circles. The critical points of h form a discrete set in $P_{t_{j}} \cap \phi(M)$.

These facts are immediate consequences respectively of the implicit function theorem and of the fact that the critical points of h in $\phi\left(M^{\prime}\right)$ are nondegenerate and hence isolated.
$P_{t^{\prime}} \rightarrow P_{t}$ as $t^{\prime} \rightarrow t$; it is intuitively clear that the intersection $P_{t^{\prime}} \cap \phi(M)$ converges to $P_{t} \cap \phi(M)$ in a uniform fashion as $t^{\prime} \rightarrow t$ because of the facts that the critical points of h are nondegenerate so that the level sets of h on $\phi\left(M^{\prime}\right)$ vary uniformly and that the value of ϕ at each p_{i} is uniquely determined by the values of ϕ in a (deleted) neighborhood of p_{i} in M^{\prime}. To make this observation precise, an explicit description of the variation of $P_{t} \cap \phi(M)$ with t is needed:

Let $\operatorname{grad} h$ be the gradient vector field of the function h relative to the induced metric on $\phi\left(M^{\prime}\right)$ and set $V=\operatorname{grad} h /\|\operatorname{grad} h\|^{2} . V$ is defined everywhere on $\phi(M)$ except at the points $\phi\left(p_{1}\right) \cdots \phi\left(p_{n}\right)$ and the critical points of h. On its domain of definition, V generates a local one-parameter group of local diffeomorphisms η_{t}; explicitly, if V is defined in a neighborhood of $p \in \phi\left(M^{\prime}\right)$, and $\gamma:[0, \varepsilon) \rightarrow \phi(M)$ is the integral curve of V issuing from p, then $\eta_{t}(p)=\gamma(t)$. Observe that, if $h(p)=t^{\prime}$, then $h(\gamma(t))=t+t^{\prime}$ for all t for which $\gamma(t)$ is defined; equivalently, if $p \in P_{t^{\prime}} \cap \phi(M)$ and $\eta_{t}(p)$ is defined, then $\eta_{t}(p) \in P_{t+t^{\prime}} \cap \phi(M)$.

Suppose that $t \notin\left\{t_{1}, \cdots, t_{m}\right\}$, and let C be a C^{2} diffeomorph of the unit circle in $P_{t} \cap \phi(M)$. Suppose further that there is a t^{\prime} such that $\eta_{s}(p)$ is defined for all $p \in C$ and all s such that $0 \leq s<t^{\prime}$. Then it can be shown as in [4] that $\eta_{s}(p)$ approaches a limit, to be called $\eta_{t^{\prime}}(p)$, as $s \rightarrow t^{\prime}$ and that the mapping $p \rightarrow \eta_{t^{\prime}}(p)$ is a continuous mapping of C. Symbolically, write $C \uparrow \eta_{t^{\prime}}(C)$. Similarly, if $C \subseteq P_{t} \cap \phi(M)$ is a C^{2} diffeomorph of the circle and the integral curves $\left\{\xi_{p}(x)\right\}$ of $-V$ issuing from points p of C are defined for all $p \in C$ and all s such that $0 \leq s<t^{\prime}$, then $\eta_{-t^{\prime}}(p)=\lim _{s i t t^{\prime}} \xi_{p}(s)$ exists for all $p \in C$, and the mapping $p \rightarrow \eta_{-t^{\prime}}(p)$ is continuous. Again, write symbolically $C \downarrow \eta_{-t^{\prime}}(C)$. The following statement (D) describes the situation in which the hypotheses required for the definition of the maps $\eta_{t^{\prime}}$, and $\eta_{-t^{\prime}}$ are satisfied (only the case of $\eta_{t^{\prime}}$, $t^{\prime}>0$, will be treated explicitly; the case of η_{-t}, is obtainable by obvious minor modifications).
(D) Let $t_{j-1}<t<t_{j}$ and $t^{\prime}=t_{j}-t$. If $C \subseteq P_{t} \cap \phi(M)$ is a C^{2} diffeomorph of the unit circle and γ_{p} are the integral curves of V issuing from $p \in C$
with $\gamma_{p}(0)=p$, then one but not both of the following conditions $(\alpha),(\beta)$ is satisfied: (α) There is some $p \in C$ such that, for some u with $0<u<t^{\prime}, \gamma_{p}(u)$ is not defined but $\gamma_{p}(s)$ is defined for $0 \leq s<u$. Then, for all $q \in C, \gamma_{q}(s)$ is defined for $0 \leq s<u$, but $\gamma_{q}(u)$ is undefined, and there exists a local maximum Q of h such that $\lim _{s i u} \gamma_{q}(s)=Q$ for all $q \in C$. (β) For all $p \in C, \gamma_{p}(s)$ is defined for $0 \leq s<t^{\prime}$. Then $C \uparrow \eta_{t^{\prime}}(C)$.
(E) If $Q \in P_{t_{j}} \cap \phi(M)$ is an isolated point in $P_{t_{j}} \cap \phi(M)$, then for some $t \neq t_{j}$ and some $C \subseteq P_{t} \cap \phi(M), C$ is a C^{2} diffeomorph of the circle, $C \uparrow Q$ (if $t<t_{j}$) or $C \downarrow Q$ (if $t>t_{j}$).

This assertion follows immediately if Q is a critical point of h in $\phi\left(M^{\prime}\right)$. In case $Q \in \phi\left(M^{\prime}\right)$, a more intricate argument is needed and is given in [4], where it is also shown that:
(F) If $Q \in P_{t_{j}} \cap \phi(M)$ is not an isolated point, then for some $\varepsilon>0$ there are C^{2} diffeomorphs C_{1} and C_{2} of the circle with $C_{1} \subseteq P_{t_{j-\varepsilon}} \cap \phi(M)$ and $C_{2} \subseteq P_{t_{j+\varepsilon}}$ $\cap \phi(M)$ such that $C_{1} \uparrow \eta_{s}\left(C_{1}\right)$ with $Q \in \eta_{\varepsilon}\left(C_{1}\right)$ and $C_{2} \downarrow \eta_{-\epsilon}\left(C_{2}\right)$ with $Q \in \eta_{-s}\left(C_{2}\right)$.
Statements (E) and (F) together assert that all of $P_{t_{j}} \cap \phi(M)$ is an upward or downward limit of $P_{t} \cap \phi(M), t \notin\left\{t_{1}, \cdots, t_{m}\right\}$. Statement (G) asserts that these limits are uniform:
(G) Let C be a C^{2} diffeomorph of the circle in $P_{t} \cap \phi(M), t_{j-1}<t<t_{j}$, such that all the integral curves $\gamma_{p}(s)$ of V issuing from points $p \in C$ are defined for $0 \leq s<t^{\prime}$. Let C_{s} be the set $\left\{\gamma_{p}(s): p \in C\right\}$. Then C_{s} converges uniformly to $\eta_{t^{\prime}}(C)$, i.e., for every neighborhood U of $\eta_{t^{\prime}}(C)$ there is some s_{1} such that $C_{s} \subset U$ if $s_{1}<s<t^{\prime}$.
(H) For all $t, P_{t} \cap \phi(M)$ is a union of (C^{0}) generalized circles; each generalized circle is either an isolated point or a convex $\left(C^{0}\right)$ curve, and no one of the generalized circles intersects the interior of any other.

To verify (H), recall statement (B): if $t \notin\left\{t_{1}, \cdots, t_{m}\right\}$, then $P_{t} \cap \phi(M)$ is a union of disjoint convex plane curves. The uniform limit of convex plane curves is a convex plane curve and hence a $\left(C^{0}\right)$ generalized circle (note that convexity is essential for this conclusion concerning the uniform limit: the uniform limit of arbitrary generalized circles is not necessarily a generalized circle). Then (G) combined with (E) and (F) implies that, for any $t, P_{t} \cap \phi(M)$ is a union of convex generalized circles. That no one of these convex curves intersects the interior of any other is a consequence of Lemma 2 and the fact, easily derived from the observations used to prove (B), that the interior in P_{t} of any of the generalized circles in $P_{t} \cap \phi(M), t \notin\left\{t_{1}, \cdots, t_{m}\right\}$, is contained in the interior of $\phi(M)$. Since every point of $\phi(M)$ is a boundary point of the interior of $\phi(M)$ by Lemma 2, these generalized circles cannot intersect one another's interiors in P_{t}. The same conclusion then follows for $t \in\left\{t_{1}, \cdots, t_{m}\right\}$ by a limit argument using (G).
(I) Any two of the generalized circles of (H) can intersect only at one of the $\phi\left(p_{1}\right), \cdots, \phi\left(p_{n}\right)$.

To verify this assertion, it suffices to observe that an intersection point in $\phi\left(M^{\prime}\right)$ would have to be a critical point of h, but that each critical point of h in $P_{t} \cap \phi\left(M^{\prime}\right)$, being a nondegenerate maximum or minimum of h, is an isolated point in $P_{t} \cap \phi\left(M^{\prime}\right)$.

Now a relation on the nondegenerate generalized circles in all the level sets $P_{t} \cap \phi(M)$ can be defined as follows:

Two nondegenerate generalized circles C^{\prime} and $C^{\prime \prime}$ in $P_{s_{1}} \cap \phi(M)$ and $P_{s_{2}} \cap \phi(M)$, respectively, are deformation-related if there is a chain $C^{\prime}=C_{1}$, $C_{2}, \cdots, C_{l-1}, C_{l}=C^{\prime \prime}$ of nondegenerate convex curves satisfying
(1) $C_{1} \subseteq P_{s^{\prime}} \cap \phi(M), C_{2} \subseteq P_{s^{\prime \prime}} \cap \phi(M), \cdots, C_{l} \subseteq P_{s^{(l)}} \cap \phi(M)$ with either $s_{1}=s^{\prime}>s^{\prime \prime}>\cdots>s^{(l)}=s_{2}$ or $s_{1}=s^{\prime}<s^{\prime \prime}<\cdots<s^{(l)}=s_{2}$.
(2) If $s_{1}>s_{2}$, then for all i either $C_{i} \downarrow \eta_{t}\left(C_{i}\right)=C_{i+1}$ or $C_{i+1} \uparrow \eta_{t}\left(C_{i+1}\right)=C_{i}$ for some t. If $s_{1}<s_{2}$, then for all i either $C_{i} \uparrow \eta_{t}\left(C_{i}\right)=C_{i+1}$ or $C_{i+1} \downarrow \eta\left(C_{i+1}\right)$ $=C_{i}$ for some t.
The symmetry and reflexiveness of this relation are obvious; that the relation is transitive and hence is an equivalence relation follows from the observation that by (H) the generalized circles in each $P_{t} \cap \phi(M)$ have disjoint interiors in P_{t} and hence that a given nondegenerate generalized circle $C_{t^{\prime}} \subseteq P_{t^{\prime}} \cap \phi(M)$ cannot be the limit from below (and similarly from above) of two distinct families of generalized circles $C_{t} \subseteq P_{t} \cap \phi(M)$ and $C_{t}^{*} \subseteq P_{t} \cap \phi(M)$ as $t \uparrow t^{\prime}$.

Let $I_{1}, \cdots, I_{\alpha}, \cdots$ be the subsets of $\phi(M)$ obtained by taking, for each distinct equivalence class of nondegenerate generalized circles under the deforma-tion-relatedness equivalence relation, the union of the sets of points of the generalized circles. It is then easily verified from statements (A) and (I) that $I_{\alpha} \cap I_{\beta} \subseteq\left\{\phi\left(p_{1}\right), \cdots, \phi\left(p_{n}\right)\right\}$ if $I_{\alpha} \neq I_{\beta}$.

To complete the proof that $P_{t} \cap \phi(M)$ consists of at most a single generalized circle, consider the set A obtained by deleting from $\phi(M)$ the critical points of h in $\phi\left(M^{\prime}\right)$ and the points $\phi\left(p_{1}\right), \cdots, \phi\left(p_{n}\right)$. The deleted set is countable because the critical points of h are isolated, and hence it has topological dimension 0 , while $\phi(M)$ has topological dimension 2 ; therefore, A is connected by a theorem of Hurewicz and Wallman [8, p. 48]. Moreover, $I_{\alpha} \cap A$ is open in A by statement (D) and the existence of box-like neighborhoods in $\phi(M)$ of points in $I_{\alpha} \cap A$. But $I_{\alpha} \cap I_{\beta} \subseteq\left\{\phi\left(p_{1}\right), \cdots, \phi\left(p_{n}\right)\right\}$ for $I_{\alpha} \neq I_{\beta}$, so that $\left(I_{\alpha} \cap A\right)$ $\cap\left(I_{\beta} \cap A\right)=\phi$ for $I_{\alpha} \neq I_{\beta}$. Thus the connectedness of A implies that there is at most one distinct nonempty $I_{\alpha} \cap A$. If $I_{\alpha} \cap A$ is empty so is I_{α} since I_{α} is either empty or nondenumerable. Thus there is only one nonempty I_{α}, say I. Here for any $t, P_{t} \cap \phi(M)$ contains at most one generalized circle which is nondegenerate.

Suppose that, for some $t \neq t_{1}, \cdots, t_{m}, P_{t} \cap \phi(M)$ consisted of more than one generalized circle. If one of these circles were nondegenerate, then, for some $t^{\prime} \neq t_{1}, \cdots, t_{m}$ near $t, P_{t^{\prime}} \cap \phi(M)$ would contain two nondegenerate generalized circles. Thus, if $P_{t} \cap \phi(M)$ contains more than one generalized circle, then $P_{t} \cap \phi(M)$ most consist only of isolated points, say $q_{1}, \cdots, q_{k}, k \geq 2$, each q
being either a maximum or a minimum of h. If two of the q 's are maxima, then for some $t^{\prime} \neq t_{1}, \cdots, t_{m}$ slightly less than $t, P_{t^{\prime}} \cap \phi(M)$ would contain two nondegenerate generalized circles; thus there cannot be two maxima among the q 's. Similarly there cannot be two minima among the q 's. Thus there can be but two q 's, one a maximum and one a minimum of h. But then the connected set $\phi(M)-\left\{q_{1}, q_{2}\right\}$ is separated by the plane P_{t}. This contradiction shows that $P_{t} \cap \phi(M)$ contains at most one generalized circle and is hence connected for $t \neq t_{1}, \cdots, t_{m}$. Since the limit of a single family of convex generalized circles can be only a single generalized circle, it follows then from statements (E), (F), and (G) that $P_{t} \cap \phi(M)$ is at most a single generalized circle and is hence connected for $t=t_{1}, \cdots, t_{m}$ as well. Hence the proof of Lemma 4 is complete.

To resume the proof of the theorem, observe that if $p \in M^{\prime}$ and U is a sufficiently small neighborhood in R^{3} of $\phi(p)$, then $U \cap \phi\left(M^{\prime}\right)=U \cap \phi(M)$. If the Gaussian curvature is positive at p, then such a U can be so chosen as to satisfy the additional condition that the intersection of the tangent plane of $\phi\left(M^{\prime}\right)$ at $\phi(p)$ with $U \cap \phi\left(M^{\prime}\right)$ (and hence with $U \cap \phi(M)$) contains only the single point p. If in addition $\eta(p)$ is in the set (A) of vectors \vec{N} in S^{2} for which the function h_{N} has only nondegenerate critical points, it follows from Lemma 4 that the intersection of the tangent plane of $\phi\left(M^{\prime}\right)$ at $\phi(p)$ with all of $\phi(M)$ contains only the single point p. From the connectedness of $M-\{p\}$, it follows then that $\phi(M)$ lies entirely in one of the (closed) half-spaces of R^{3} determined by the tangent plane of $\phi\left(M^{\prime}\right)$ at $\phi(p)$. Let (B) be the set of points $p \in M^{\prime}$ such that the Gaussian curvature of M^{\prime} is positive at p and $\eta(p) \in(A)$. Note that (B) is not empty; in fact, since (A) is everywhere dense in S^{2} and η is an open mapping wherever the Gaussian curvature is positive, (B) is dense in the set of points of M^{\prime} at which the Gaussian curvature is positive. If $p \in \mathbb{B}$, then since $\phi(M)$ lies entirely in one of the closed half-spaces determined by the tangent plane of $\phi\left(M^{\prime}\right)$ at $\phi(p)$, so does $I \cup \phi(M)$.

Lemma 5. I $\cup \phi(M)$ is a compact convex body in R^{3}.
Proof. A plane P in R^{3} containing a point x in the boundary of a set in R^{3} is called a local support plane of the set at x if there is some neighborhood of x in R^{3} such that the intersection of the set with the neighborhood lies entirely in one of the closed half-spaces determined by P. A theorem of E. Schmidt is that if a connected set with nonempty interior has a local support plane at each of its boundary points then the set is convex. Thus for the proof of the lemma it suffices (since I is open and nonempty) to show that $I \cup \phi(M)$ has a local support plane at each point of its boundary $\phi(M)$.
Denote by $P_{p}\left(p \in M^{\prime}\right)$ the tangent space in R^{3} of $\phi\left(M^{\prime}\right)$ at $\phi(p)$. The constancy of the sign of the semidefinite second fundamental form of $\phi^{\prime}: M^{\prime} \rightarrow R^{3}$ implies that in a neighborhood of each $\phi(p), p \in M^{\prime}$, the surface $\phi\left(M^{\prime}\right)$ lies in one of the closed half-spaces determined by P_{p}. To verify this implication, observe that in a neighborhood of $\phi(p)$ the surface $\phi\left(M^{\prime}\right)$ is representable as the graph of a function, that by the constancy of the sign of the second fundamental form
this function is convex, and that the graph of a convex function lies locally on one side of its tangent plane. Let H_{p} be the closed half-space determined by P_{p} which contains $\phi\left(M^{\prime}\right)$ in a neighborhood of $\phi(p)$. It was shown previously that if $p \in\left(B\right.$, then $I \cup \phi(M)$ lies in H_{p}. Since (B) is not empty and H_{p} varies continuously with p, it follows that for every $p \in M^{\prime}, I \cup \phi(M)$ lies in H_{p} in some neighborhood of $\phi(p)$. It remains to show that $I \cup \phi(M)$ has a local support plane at each of the $\phi\left(p_{i}\right), i=1, \cdots, n$. For a given i, there is a sequence $\left\{q_{j} \mid j=1,2, \cdots ; q_{j} \in(B)\right\}$ of points of (B) approaching p_{i}, since (B) is dense in the set of points of M^{\prime} of positive curvature. There is a subsequence $\left\{q_{j}^{\prime}\right\}$ such that $\left\{P_{q_{j}^{\prime}}\right\}$ is a convergent sequence of planes in R^{3}. The limit P of $\left\{P_{q_{j}^{\prime}}\right\}$ is a (local) support plane at $\phi\left(p_{i}\right)$, for if $I \cup \phi(M)$ did not lie in one of the closed half-spaces determined by P, then for q_{j}^{\prime} sufficiently near $p_{i}, I \cup \phi(M)$ could not lie entirely in $H_{q_{j}^{\prime}}$. (Note that this argument depends upon the fact that $I \cap \phi(M)$ lies in $H_{q_{j}^{\prime}}$ altogether, not just in some neighborhood of q_{j}^{\prime}; a limit of local support planes is not necessarily a local support plane.) q.e.d.

It was observed earlier that the continuous map ϕ is one-to-one except for possible identities among the $\phi\left(p_{1}\right), \cdots, \phi\left(p_{n}\right)$. Since $\phi(M)$ is the boundary of a compact convex body, it is homeomorphic to S^{2} and $H_{1}(\phi(M) ; Z)=0$. But it is easy to see by using the triangulations of M and $\phi(M)$ described in the proof of Lemma 2, that if identifications among the p_{i} occur under ϕ then $H_{1}(\phi(M) ; Z) \neq 0$. Hence $\phi: M \rightarrow \phi(M)$ must be one-to-one and, being then a one-to-one continuous map from one compact Hausdorff space to another, must be a homeomorphism.

Let D_{ε} be the disc of radius ε in M about a fixed point p, and E_{ε} be the set of all oriented unit normals to the planes of support of $\phi(M)$ at points of $\phi\left(D_{\varepsilon}\right)$. (A (global) plane of support P at a point of a surface is a plane through p such that the surface lies entirely in one of the closed half-spaces determined by P.) Define

$$
\tilde{K}(\phi(p))=\lim _{\varepsilon \rightarrow 0} \int_{E_{\varepsilon}} \Omega_{S} / \int_{D_{\varepsilon}} \Omega_{M},
$$

where Ω_{M} is the volume element of M, and Ω_{S} is the volume element of the unit sphere S^{2} of R^{3}. It will now be shown that $\tilde{K}(\phi(p))=K(p)$, the Gaussian curvature of M at p. Since $I \cup \phi(M)$ is convex, a local support plane of $I \cup \phi(M)$ is necessarily a global support plane of $\phi(M)$. It was shown in the proof of Lemma 5 that for any $p \in M^{\prime}$ the tangent plane to $\phi\left(M^{\prime}\right)$ at $\phi(p)$ was a local support plane of $I \cup \phi(M)$; clearly no plane other than this tangent plane can be a local support plane of $I \cup \phi(M)$ at $\phi(p)$. It now follows easily from the interpretation of the Gaussian curvature as the Jacobian of the Gauss map and the continuity of the Gaussian curvature of M that $\tilde{K}(\phi(p))=K(p)$ if $p \in M^{\prime}$. To see that $\tilde{K}(\phi(p))=K(p)$ if $p \in M-M^{\prime}$, note that the Gauss map is one-
to-one on the set (B); this fact is a consequence of the previous observations that if $q \in(B)$, then the tangent plane to $\phi\left(M^{\prime}\right)$ at $\phi(q)$ intersects $I \cup \phi(M)$ only at the point $\phi(q)$ and that $I \cup \phi(M)$ lies everywhere on the same side (relative to the oriented normal) of the tangent planes of $\phi\left(M^{\prime}\right)$. Now $\eta\left(M^{\prime}\right)-\eta(B)$ has measure 0 in S^{2}, because $\eta\left(M^{\prime}\right)-\eta\left(M_{+}^{\prime}\right) \subset \mathbb{C}$ has measure zero and $\eta\left(M_{+}^{\prime}\right)-\eta(\mathbb{B}) \subset \mathbb{C} \cup-\mathbb{C}$ has measure 0 , where M_{+}^{\prime} is the set of points of M^{\prime} of positive curvature. Since

$$
\int_{M} K \Omega_{M}=\int_{M^{\prime}} K \Omega_{M^{\prime}}=\int_{M^{\prime}} \eta^{*}\left(\Omega_{S}\right)=4 \pi,
$$

the fact that $\eta\left(M^{\prime}\right)-\eta(B)$ has measure 0 implies that

$$
4 \pi=\int_{B} \eta^{*}\left(\Omega_{S}\right)
$$

Thus, since $\eta \mid$ (B) is one-to-one, the measure of $\eta(B)$ in S^{2} is 4π. Hence

$$
\begin{gathered}
\int_{E_{\varepsilon}} \Omega_{S}=\int_{\eta(\mathbb{B}) \cap E_{\varepsilon}} \Omega_{S}=\int_{\left(B \cap D_{\varepsilon}\right.} \eta^{*} \Omega_{S}=\int_{D_{\varepsilon}} K \Omega_{M}, \\
\tilde{K}(\phi(p))=\lim _{\varepsilon \rightarrow 0}\left(\int_{E_{\varepsilon}} \Omega_{S} / \int_{D_{\varepsilon}} \Omega_{M}\right)=\lim _{\varepsilon \rightarrow 0}\left(\int_{D_{\varepsilon}} K \Omega_{M} / \int_{D_{\varepsilon}} \Omega_{M}\right)=K(p) .
\end{gathered}
$$

Thus $\tilde{K}(\phi(p))$ is equal to $K(p)$ for all $p \in M$, and \tilde{K} is consequently bounded everywhere from above, and in a neighborhood of each p_{i} is bounded away from zero as well. By a theorem of Alexandrov [1](see also [12, p. 27]), $\phi(M)$ is a C^{1} submanifold of $R^{3} . \phi: M \rightarrow \phi(M)$ is an isometry except at (possibly) a finite number of points. Thus ϕ is a distance preserving map in the sense that both ϕ and ϕ^{-1} map rectifiable curves to rectifiable curves and that the length of rectifiable curves is preserved under ϕ and ϕ^{-1}. The following regularity theorem [13] of Pogorelov implies that M is a C^{4} submanifold of R^{3}.

Theorem (Pogorelov). Let N be a convex surface of class C^{1} in R^{3}. Suppose that in a neighborhood of some point p in N the generalized Gaussian curvature is positive and finite and that moreover there is a distance-preserving homeomophism of some neighborhood of p in N onto a Riemannian manifold whose metric is of class $C^{k}(k \geq 2)$. Then N is necessarily a C^{k-1} submanifold of R^{3} in some neighborhood of p.

Pogorelov considers explicitly only the case in which the generalized Gaussian curvature of N is everywhere positive and finite, and in which a distance-preserving homeomorphism onto a Riemannian manifold with C^{k} metric is defined on all of N. However, his proof that the surface N is C^{k-1} in a neighborhood of an arbitrary point $p \in N$ uses these assumptions only locally, in a neighbor-
hood of p, and it is easy to verify that the same arguments yield the local result stated here.

Since $\phi(M)$ is a C^{4} submanifold of R^{3}, the Riemannian metric induced on $\phi(M)$ is of class C^{3}. The Myers-Steenrod theorem (cf. Palais [11]) implies that the distance-preserving map $\phi: M \rightarrow \phi(M)$ is an isometry of class C^{2} at least. Thus $\phi: M \rightarrow R^{3}$ is a C^{2} isometric embedding. By the rigidity theorem of Sacksteder [15] and Voss [18], the map ϕ is rigid in the class of C^{2} isometric embeddings of M. Hence ϕ^{\prime} is necessarily rigid in the class of C^{3} isometric embeddings of M^{\prime}.

References

[1] A. D. Alexandrov, Smoothness of the convex surface of bounded Gaussian curvature, Dokl. Akad. Nauk SSSR 36 (1942) 195-199, (Russian).
[2] S. S. Chern \& R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957) 306-318; II, Michigan Math. J. 5 (1958) 5-12.
[3] S. Cohn-Vossen, The isometric deformability of surfaces in the large, Uspehi Mat. Nauk, No. 1 (1936) 33-76, (Russian).
[4] R. E. Greene \& H. Wu, On the rigidity of punctured ovaloids, Ann. of Math., 94 (1971) 1-20.
[5] J. Hadamard, Sur certaines propriétés des trajectoires en dynamique, J. Math. Pures Appl. 3 (1897) 331-387.
[6] G. Herglotz, Über die Starrheit der Eiflüchen, Abh. Math. Sem. Hamburg 15 (1943) 127-129.
[7] N. J. Hicks, Notes on differential geometry, Van Nostrand, Princeton, New Jersey, 1964.
[8] W. Hurewicz \& H. Wallman, Dimension theory, Princeton University Press, Princeton, 1948.
[9] A. P. Morse, The behavior of a function on its critical set, Ann. of Math. 40 (1939) 62-70.
[10] M. H. A. Newman, Elements of the topology of plane sets of points, 2nd ed., Cambridge University Press, Cambridge, 1954.
[11] R. S. Palais, On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957) 805-807.
[12] A. V. Pogorelov, Die Verbiegung konvexer Flächen, Akademie-Verlag, Berlin, 1957.
[13] - On the regularity of a convex surface with a regular metric in Euclidean space, Dokl. Akad. Nauk SSSR 139 (1961) 1056-1058.
[14] R. Sacksteder, On hypersurfaces with non-negative sectional curvatures, Amer. J. Math. 82 (1960) 609-630.
[15] ——, The rigidity of hypersurfaces, J. Math. Mech. 11 (1962) 929-939.
[16] R. Sacksteder, E. G. Straus \& F. A. Valentine, A generalization of a theorem of Tietze and Nakajima on local convexity, J. London Math. Soc. 36 (1961) 52-56.
[17] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942) 883-890.
[18] K. Voss, Differential geometrie geschlossener Flächen im Euclidischen Raum, Jber, Deutsch. Math. Verein. 63 (1960-61) 117-136.
[19] T. J. Willmore, An introduction to differential geometry, Oxford University Press, Oxford, 1959.
[20] A. Wintner, On isometric surfaces, Amer. J. Math. 74 (1952) 198-214.

[^0]: Received September 13, 1971. The work of the first author was largely carried out under partial support of a Sloan Foundation Grant to the Courant Institute of Mathematical Sciences. The second author was a Sloan Fellow with a partial support by the National Science Foundation.

