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SUBSCALAR PAIRS OF METRICS AND HYPERSURFACES
WITH A NONDEGENERATE SECOND

FUNDAMENTAL FORM

ROBERT B. GARDNER

0. Introduction

In this paper we establish an integral formula which holds on any compact
oriented manifold without boundary equipped with a pair of Riemannian
metrics. The natural assumptions needed to exploit this formula depend on
positivity properties of a quadratic form constructed from the difference tensor
of the Levi-Civita connections. We call two metrics satisfying this positivity
property a subscalar pair.

The results are first applied to prove that subscalar pairs of Einstein metrics
inducing the same element of volume are isometric. This generalizes a result
of Munzner [10] on volume-preserving maps of the two-sphere in euclidean
space.

Next we study the pseudo-Riemannian geometry of a hypersurface with a
nondegenerate second fundamental form. In particular, we give a geometric
interpretation of the rank of the difference tensor of the first and second funda-
mental forms, and establish local rigidity theorems on hypersurf aces with a
given second fundamental form. In order to establish global results we assume
that the hypersurfaces are convex, which for us means the second fundamental
form of each convex hypersurf ace is negative definite. Under this assumption
we give characterizations of the euclidean sphere in terms of various integral
inequalities and prove a uniqueness theorem characterizing spheres as the only
compact convex solutions of a differential inequality of 4th order in the deriva-
tives of the position vector.

Finally we study the third fundamental form geometry of a convex hyper-
surface and prove that two compact convex hypersurfaces having the same
second fundamental form and Gauss-Kronecker curvature differ by a rigid
motion. This generalizes a result of Grove [6] on convex surfaces.
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vestigation of hypersurfaces with a nondegenerate second fundamental form,
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and C. C. Hsiung and D. Singley for discussions which influenced the final
form of the paper.

1. Preliminary notations and conventions

Let / be a Riemannian metric on a manifold M, and {wa} be a local coframe
in terms of which φ7

a is the matrix of one-forms defining the Levi-Civita con-
nection. We recall that if / = Σgaβw

awβ then φr

a is characterized by the equa-
tions (see [11])

dw« = Σwr A φ; , dgaβ = Σφ\gyβ + gaΐfβ ,

and the associated curvature tensor is defined by

θί = i>ΣRirλwr Λ wλ ,

where

θί = dφi - Σfi A φ? .

We will adopt the notation that the element of volume defined by / is denoted
by * 1 ; the thus

* 1 = ( d e t g a β ) ι / 2 w ι A ••• A w m .

Now given any real valued functions f:M—>R the equations

df = Σ1aw" , df. - Σfrfa = Σίa)y

define the components fa.β of Hj(f), the Hessian of / with respect to the metric
/ relative to the local coframe {wa}. Taking the exterior derivative of the equa-
tion defining fa gives

0 = Σdfa A wa + faw A φa

r = Σfa;βw
a A w? ,

and implies that fa.β = fβ;a or that Hj(f) is a symmetric matrix.
Matters being so, if / = Σgaβw

awβ and gaβ is the matrix inverse to gaβ, then
we may introduce the Laplacian of / with respect to / as the /-trace of Hz(f),
that is,

L a P / (/) = tr7 Hj(f) = Σgaβfa]β .

2. Difference tensor

Now let /, V be a pair of Riemannian metrics defined on a manifold M, and
{wa} be a local coframe in terms of which φr

a and φrj are the matrices of one-
forms which define the Levi-Civita connections of / and V respectively. Then
since
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dfa - frfa' - (dfa - frφ0 = fr(fa - φrj) ,

we may use the difference of the Hessians of real valued functions to define a
tensor J(7, 70 via the equation

( 1 ) HΓ(f) - #/(/) = <J(7, 70, df) ,

where <,) is the canonical bilinear pairing between the tangent space T and the
cotangent space T*.

If we let

then the symmetry of the Hessians in (1) implies

( 2 ) K'aβ = Krβa.

As a result if we let {er} denote the dual basis of {wa}, we have by (1) and (2)
that

J(7,70 = ΣKr

aβw
a Ow?(g)ere (T* © T*) (g) T .

In the case that one of the metrics is the induced metric of an immersion in
an arbitrary codimension euclidean space there is a direct definition in terms
of the coordinate functions, which is of interest. Thus let

be an arbitrary codimension immersion of an m-manifold in euclidean (m + p)-
dimensional space, and choose frames with {ea}, 1 < a < m, tangent to X(Mm)
and {ea}, m+l<a<m + p, normal to X(Mm) in such a way that the
restrictions of the dual coframes satisfy

I = dX dX = Σ(τ°)2 , V - 2&/rV .

As such given a fixed vector a € Rm+p

d(X a) = Σ(ea a)τ« ,

and using the structure equations of euclidean space

d{ea.a) - (er-a)fa' = (# - f/)era + φ\era .

Thus the Hessian

Hv(X-a) = A(I,Γ) a + Ha ,

where 77 is the vector-valued second fundamental form. In particular, the ten-
sion field of X with respect to V (see [3]) defined by
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If(X-a) = h* α

is given by

A* = tτ7, (Δ(I,Γ) + II) = ΣgrμKrαβer + Σgα^h%eb ,

where h\β are the components of //. We remark that this calculation simplifies
a calculation in [5].

In particular, if we take / = V we get

and have the direct definition of Δ(I,Γ) as a tangent pencil of symmetric
matrices via the characterization

We now return to the general situation and establish a basic interchange
formula. As we have already noted the difference tensor

Δ = K.raβw* ©w?(g)er€ (T*

can be written as

Δ = {ψa - φrj) ® r ® ^ Γ * ® (Γ* (x) D ,

and as such we naturally define ΔAΔe Λ2T* ® (T* (x) T) by

J Λ Δ = ^ ( ^ ^ - ^ O Λ ( # - ^ 0 ® w ® eβ

= Σ(Kr

aiK*μ - KraμKtλ)wλ A wμ (x) wa (x) eβ .

Proposition 1. Lei J = J(/ ? / ' ) . ΓΛ^n

( 3 ) θ7 - Θ = D z J - J Λ J ,

where DjΔ is the covariant derivative of Δ in the I-metric.
Proof. We differentiate the defining equations

and see

= (dK'aβ - Kraσφ*β - Klβφί + K aβ<fO A τβ

-Φί/\φ'β + φi' A f/ + K'σβφ: Λ r ^ + K*aβφϊ A τ? ,

or
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raβ;λ - K'al.β)τι A τ? + Σ(φ a - φσj) A ( # - # ' )

= -DjΔ + Δ/\Δ

as claimed.
We will often need (3) explicitly in local coframes and hence record that

equation with its contraction. Thus in components (3) reads

( 4 ) Kraβ;l - Krai;β = -Rraβλ + Waβl' + K^K^ - K°aλK^ ,

and its contraction on γ, β gives

( 5 ) K\a,λ - Kraλ;r = -Raλ + RJ + K;aKlλ - K«aλKrσ ,

where Raλ is the Ricci tensor of / which will alternatively be denoted by Ric
when we want to surpress indices.

The tensor

Δ A Δ e Λ2T* (x) (Γ* (x) T)

may be contracted by the action of T on Λ2T* to give

C(Δ ΛJ) =

a symmetric quadratic differential form.
Matters being so we say that / and V form a

subscalar ] ( positive semidefinite
scalar r pair if C(Δ A Δ) is j zero
superscalar ) \ negative semidefinite .

The motivation behind the nomenclature is the following integral formula.
Theorem 2. Let M be a compact oriented manifold without boundary car-

rying a pair of metrics I and V. Then

0 = Γ[tr7 Ric7 - tr7 Ric + tr7 C(Δ A J)]*l .

Proof. Let v = tr7 Δ(I, Γ) e T, and w = tr Δ(I, Γ) e Γ*. Then the inter-
change formula of Proposition 1 gives with Stokes' theorem that

0 = Γ(div7 w - div7 v)*l = Γ[tr7 Ric7 - tr7 Ric + tr7 C(Δ A J)]*l ,

where div7 is of course the divergence with respect to the metric /.
Since the scalar curvature is defined by R = tr7 Ric, by definition and

Theorem 2 we have that if / and Γ are subscalar, then
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f tr7 Ric' *1 < f fl*l , Jtr7, RiRic * Ί

At this point we note that each result stated for a subscalar pair of metrics
has an analog for superscalar pairs of metrics which we leave to the reader to
formulate.

Now we define a difleomorphism of a Riemannian manifold with metric /
to be subscalar if / and /*/ form a subscalar pair, to be scalar if / and /*/ form
a scalar pair, and to be superscalar if / and /*/ form a superscalar pair.

Proposition 3. Let M be a compact oriented Riemannian manifold. Then
a subscalar diffeomorphism f which preserves the Ricci tensor is a scalar diffeo-
morphism.

Proof. Let / be the given metric and let V = /*/. Then Theorem 2 applies
to give

= 0 ,

which by the positivity of C(Δ A Δ) forces C(Δ A Δ) = 0 as required.

3. Metrics inducing the same volume element

Let /, V be a pair of Riemannian metrics on a manifold M, and let us choose
local coframes {τα} so that

/ = 2 V ) 2 , V = Σgaβ'τ«τ> .

As such the Levi-Civita connection of // satisfies

dga; = garφ/ + Φrjgγ;,

and hence

^(det7 gaβ') = det7 gaβ'Σ tr7 {dgjg^) = 2 det7 gaβ'Σfβ',

or

Therefore, if / and V induce the same volume element so that det7 V = 1, then

( 6 )

As a consequence of equations (6) we see that the quadratic differential form
C(Δ A Δ) simplifies to
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As a first consequence of this observation we have
Theorem 4. Let /, // be two Riemannian metrics which induce the same

volume element of a compact, oriented manifold without boundary. Then

0 = J[(tr 7 , - tr7)(Ric' - Ric) - (tr7 + tr7,)

Proof. With the assumption that / and V induce the same volume element
we may take the integral formula of Theorem 2

0 = Γ[tΓj Ric' - tr7 Ric + tr7 C{Δ Λ J)]*l

and the integral formula resulting from reversing the order of / and V

0 = J[tr 7 , Ric - tr7, Ric7 + tr7, C(J Λ J)]*Ί ,

and add them to get

0 = - J(tr 7 , - tr7)(Ric' - Ric) *1 + J ( t r 7 + tr7,) C{Δ A Δ)*l

as desired.

We note that in local components this last integral formula reads

( 7 ) 0 = J t O T ' - gσμ){Ra; - Rσμ) - (gσμ/ + gσfl)Kλ

aσK°λμ]*l .

4. Einstein metrics

We recall that a metric / is said to be Einstein if Ric = λl, and that if / is
defined on a connected manifold of dimension > 3, then λ is necessarily a con-
stant. We will say that M is a positive Einstein manifold if it admits an Einstein
metric with λ a positive constant.

We now prove a purely algebraic Lemma which will be needed in the next
Theorem.

Lemma 5. Let A be a positive definite symmetric real matrix. Then

tτA + tτA-1 > 2m ,

with equality holding if and only if A is the identity matrix.

Proof. Given any positive real number μ

μ+ l/μ> 2

with equality holding if and only if μ = 1. Therefore applying this result m
times with A diagonal gives the result.
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Theorem 6. Let M be a compact oriented manifold without boundary.
Then a positive Einstein metric and an Einstein metric with arbitrary constant
factor, which are subscalar and induce the same element of volume, are iso-
metric.

Proof. By Theorem 2 with /' the positive Einstein metric

0 = Γ[trj Ric' - trx Ric + tr7 C(Δ A

= J[λ' tr7 Γ - λm + tr7 (C(J Λ

but by Newton's inequality and the hypothesis that / and /' induce the same
element of volume

tr7 V > m(det7 Γ)1/m = m .

Hence

f tr7 C{Δ A Δ)*l < m(λ - X)

and the hypothesis of subscalar implies 7! < λ and proves that / is also positive
Einsteinian. Since the hypothesis on the two Einstein metrics is now symmetric,
we have the reverse inequality λ < λ' and hence the equality of the Einstein
constants.

As such Theorem 4 now gives

λ J(tr 7, - tr7) (/' - /)*1 = J(tr 7 + tr7,) C(Δ A J)*l

or, using the hypothesis of subscalar,

λ f (2ra - tr7 Γ - tr7, /)*1 > 0 ,

but λ > 0 and by Lemma 5 the integrand is nonpositive, hence it must vanish
identically which by Lemma 5 again implies that / = Γ as claimed.

5. The second fundamental form geometry

Let X: Mm —* Rm+ι be an immersion of an m-manifold Mm with the property
that the normal vector em+ι may be chosen so that the second fundamental
form

/ / = -dX dem+ι

is nondegenerate, and hence so that —// defines an abstract pseudo-Rieman-
nian structure on Mm.
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We will now study the pseudo-Riemannian geometry of this metric and the
natural geometric problem of finding conditions under which two hypersurfaces
inducing the same nondegenerate second fundamental form differ by a motion,
a program previously only considered for m = 2 and // negative definite (see
[2], [4], [6]), which is the case of convex surfaces in R3.

We fix the range of indices so that the capital Latin letters run from 1 to
m+ 1 and small Greek letters run from 1 torn, and study the family of local
coframes {ωa} on Mm satisfying

- / / = Σεa(ωa)2 ,

where εα = ± 1 . The induced metric / = dX-dX is then expressible in the form

/ - Σgaβω
aωβ .

We analyze the geometry of the metric —// by studying the local liftings into
the space of affine frames on Rm+ι having the last leg em+ί normal to the image
and having e19 , em the images of the local frames dual to {ωa}. As a result
for the euclidean dot product we have

The space of affine frames on Rm+1 supports linear differential forms ωA,ωA

obtained from right invariant forms on the affine group of Rm+1 via an idedtifi-
cation unique up to right translation.

In particular, if (X, eA) denotes an affine frame with X the base point and
{eA} the (m + 1) legs, then we have the structure equations

dX = ΣωAeA , dωA = ΣωB A ωA

B ,

deA = ΣωAeB , dωA = ΣωA Λ ωc

B .

The confusion in notation between the local coframes on Mm and the
coframes on the space of affine frames is intentional, since the local liftings are
so chosen that the restriction of of to the affine frames of a local lifting equals
the ωa on M m , and as a result we can suppress notation indicating pullbacks
of local liftings without fear of confusion.

Matters being so the pullbacks of our local liftings satisfy

( 8 ) ω™
 + 1 = 0 ,

and

( 9 ) - / / = Σεa(ωa)2 .

Taking the exterior derivative of (8) gives
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0 = dωm+1 = ΣωaΛω™+1 ,

which by Cartan's lemma implies

< + 1 = Σhaβω
βhaβ = hβa ,

but

- / / = dx-dem+1 = Σωaωτ

m+1ea-er = Σgarω
aωr

m+1 ,

and

0 = d(en+ι.er) = Σωβ

m+ιgβr + ω™+1

hence

- / / = — 2α>βω?+ 1 = -Σhaβω
aωβ ,

which by comparison with (9) gives

— haβ = εaδaβ ,

and results in

(10) < + 1 = ~εaω
a .

Now differentiation of (10) gives

eadω« = -dωT1 = -Σωβ

aAωf + ι

= IΌIJ Λ ε X = -2Ό)" Λ eβω
β

a ,

but the structure equations give

(12) dof = 2 V Λ ω^ .

Therefore letting

ψa

β = ϊ(o)a

β - eaεβω0

and adding εa times (11) and (12) we get

dωβ = I'ω" Λ ^J, and εaφβ + ε^f = 0

which implies (see [11]) that the Levi-Civita connection of —// in these
coframes is given by φa

β.

In the same way it follows from (12) and

(13) dgaβ = Σgaΐωrβ + ω%β
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that the Levi-Civita connection of / in these coframes is given by ωa

β.
As such it follows by definition that the difference tensor Δ = ΣKβ

arω
r be-

tween the Levi-Civita connections of / and —// is given by

Δ = ωr

a - φr

a = $(ωr

a + εaε7ω
a

r) .

We note for future reference that this computation immediately implies the
symmetry

(14) εβεaK«βΐ = Waγ .

Next let us recall that the mean curvature H and the Gauss-Kronecker
curvature K are defined by

(15) mH = trace, // , K = detz //

hence

(16) mH = -Σεag
aa ,

(17) K = (-irπ(εJ/(detgaβ) .

It will also be convenient to recall that the third fundamental form /// of a
hypersurface is the metric induced from the Gauss map

em+ι:Mn->Rm+1.

Thus

(18) /// = den+ί'dem+ί = 2 g α r α 4 + 1 < + 1 = Σεσeλg
σλω*ωλ ,

where gaβ is the matrix inverse to gaβ.

The curvature matrix of the metric —// is easily computed to give

4 = Σ(ω°β - φl) A « - ψθ + iεβ(ωr A ω?m+1 - ωβ A α4+ 1) ,

and as a result the Riemann-Christoffel curvature tensor defined by

A\ = \ΣS*βλμω
λ A ω"

is

S ^ = Σ(K'βtKrμ - K'βμKrJ

+ ϊ(dβμ

The Ricci tensor defined by Sβl = ΣSr

βrl is

(20) Stι = -Σ(K'βMr ~ K'βrKrJ + idm - 2hβεig^ + εβ3βiΣε,g") ,

or using the notation of § 2 and the above remarks we may express this in an
index free way by
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Ric_7 7 = C{Δ Λ J ) + \(m - 2)/// + \mHU .

The scalar curvature defined by

tr_7 7 Ric_7 7 = ΣεβSββ

is

(21) - Σ ε β ( K ° β β K r β ΐ - K°βΐKrσβ) + ( m - l ) β

which we may express in an index free way by

tr_7 7 Ric_7 7 = tr_7 7 C(J /\Δ) — m(m —

Finally, it is natural to consider the expressions for the curvature matrix of
/ and its invariants relative to the local coframes {ωa}. The curvature matrix of
the metric / is easily computed to give

and hence the Riemann-Christofϊel curvature tensor defined by

Θr

a = %ΣRr

aβλω
β A ωλ

is

(22) Rraβi = eaeβδaλg^ - εaελδaβ8
ΐλ ,

and the Ricci tensor is

(23) Ra> = eA A s " - εAΣδaβ^
1 ,

which we may express in an index free way by

Ric7 = mHII - III .

The scalar curvature is

tr7 Ric7 = m2H2 - S ,

where S — tr7 /// is known as the length of the second fundamental form.

An important result of these calculations is the following characterization of
umbilics.

Proposition 7. Let x: Mm —> Rm+1 be an immersion with a nondegenerate
second fundamental form. Then

tr7 Ric_77 - tr7 Ric7 - tr7 C ( J Λ J ) > 0 ,

with equality holding if and only if the point is an umbilίc.
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Proof.

tr7 Ric_7 7 — tr7 Ric7 — tr7 C(Δ A Δ)

= tr7 C(Δ A Δ) + \(m - 2)5 + \m2H2 - mΉ2 + S - tr7 C(Δ A Δ)

which by the Cauchy inequality is greater than or equal to zero with equality
to zero if and only if the point is an umbilic.

Let Mm > Rm+1 be two immersions of a piece of hypersurface which in-

Rm+ι

duce the same nondegenerate second fundamental form. We will make the
added convention that geometric quantities computed relative to the second im-
mersion x* are denoted with a #.

As such we have three possible metrics

/ = dx dx, P = dx* dx, -II = -IP .

It is well known (see [8]) that x and x* differ by a euclidean motion if and only
if the local conditions / = P, II = IP are satisfied. Our problem is to find
other conditions which imply I = P.

Proposition 8. Let Mm • R™+I ^e t w o immersions of a n m-manίfold

Mm with m>3 which induce the same nondegenerate second fundamental form
and the same quadratic form C(Δ A Δ). Then x and x# differ by a motion.

Proof. Since // = IP, the Ricci tensors

or writing C(Δ A Δ) as Cβ

Cβλ -

which since Cβλ — Oβλ implies gβλ = gβλ\ or equivalently / = /* as required.
x

Proposition 9. Let Mm—> i? m + 1 be two immersions of an m-manifold

Mm which induce the same nondegenerate second fundamental form and have
induced metrics with the same Ricci tensor. Then x and x* differ by a motion.
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Proof. Since the induced metrics have the same Ricci tensor, (23) gives

(24) -mHεaδaλ - εaελg
aλ = -mH*eaδai - εaελg

aλ* ,

and taking the trace with respect to —/we get

-m(m-l)H = -m(m - ΐ)H*,

which together with (24) yields gaλ — gaλ* as desired.
As a result it is natural to ask for which pieces of hypersurface does Ric7 =

Ric_7 7. The question is natural since the last proposition asserts that given a
nondegenerate second fundamental form there is up to motions at most one
such piece of hypersurf ace. The present author was unable to settle this as a
local problem, but if the hypersurface is required to be compact, it follows
from Corollary 15 that the only solutions are spheres.

6. The rank of Δ(I, -II)

Next we derive some algebraic and geometric properties of Δ, the difference
tensor of / and —//. Let Ze T be a tangent vector locally defined by Z =
2 zaea. Since Δ e (Γ* © T*) <g) T, we may define Z- Δ € Γ* © Γ* to be the
symmetric tensor locally defined by

Z Δ = ΣεγKlβZ7ω
a©ωβ .

Matters being so we may introduce a symmetric bilinear form B in each
tangent space defined for Z, Y β T by

Thus for a local frame {ea}

B(ea, eβ) = ΣεaεβK"σμK?μ .

Definition. The rank of Δ is the rank of B as a bilinear form.
Now let us assume this symmetric bilinear form B has rank q at a point p,

and choose a local frame {ea} as above but with the additional property that
eq+i> - * J ̂ m span the conjugate subspace of B at p. We will call such a local
basis an adapted local basis.

Thus, if we fix the ranges of indices

1 < a, b, c < q, q + 1 < r,s,t < m, 1 < a, β, γ < m ,

then we have for an adapted local basis at the point p that

0 = B(er, er) =

and hence that 0 = Kr

πa.
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Proposition 10. dim {<pβ

a — ωβ

a} = rank Δ.
l<a,β<m

Proof. This follows immediately from the symmetry Kβ

ar — εaεβK
a

βr

Lemma 11. Let the rank of Δ be q on an open set U. Then in an adapted
local basis Θs

r = A'r.
Proof. For an adapted local basis ωr

a = φr

a and ωa

r — φ* hence

Θs

r = dωs

r - Σω% A ωs

a = dφ\ - Σφa

r A φs

a = ^ίs

r .

Prroposition 12. Lei ίΛe ra/i^ of Δ be q on an open set U. Then
(1) U is (m — q)-umbilical, and
(2) ί/ze principal curvature associated to the (m — q)-umbilical directions is

constant.
Proof. Let us choose an adapted local basis. Then by the last lemma and

equations (19) and (22)

rεμδ
rίl - εrεμδrλg^ - εrελδsμg

rλ + εrελδrμg
sλ)

and taking account of Kσ

rλ = 0 w e have

0 = ελδrμg
sλ ~ *Mμ ~ eμδsλg

rti + μ

As such taking r — s we have

0 = ελδrμg
rλ ~ eμδrχgrμ ,

and taking λ Φ r and μ = r we see 0 = grλ for λ Φ r.
Similarly, taking λ = s, μ = r and s Φ r we have

and since gaa > 0, this implies εs = εr and

grr _ gss for q + 1 < r,s < m .

We have now shown that the matrix for the inverse of / in an adapted local
basis has the form

/8ab

0

\

A

0 \

A)
m — q

m — q

which implies that the neighborhood U in (m — ^-umbilical.



452 ROBERT B. GARDNER

Assuming (1) we have grλ = Aδrλ; hence

dgri = -grμωλ

μ - ωr

rg
λ

implies

dAδrl = -Λω a

r - ω y = ωr

r(ΛδrJl - grλ) - A(ωλ

r + ω\) ,

or taking account of (1) again we have

(25) AK\^ = -dAδrλ + ω'a(Aδal - gaλ) ,

which for Λ = r gives 0 = — dA proving that A is constant and establishing (2).
Corollary 13. Let Δ = 0 on an open set U. Then U is a piece of a hyper-

sphere.
Proof. Since J Ξ O , the rank of Δ is 0 and the last proposition implies that

every point is umbilical. The conclusion is now classical.

7. Uniqueness theorems for convex hypersurfaces

In this section we study compact hypersurfaces with a nondegenerate second
fundamental form. The compactness implies that the second fundamental form
is actually negative definite since it must be negative definite at the furthest point
from an interior origin. As a result the compact hypersurfaces with a non-
degenerate second fundamental form are convex hypersurfaces (see [8, Vol. II,
p. 41]).

We next investigate an important facet of the quadratic differential form
C(Δ Λ Δ) constructed as in § 2 from the difference tensor of the first funda-
mental form / and the negative of the second fundamental form — //, which is
the behaviour of its /-trace at umbilical points.

Theorem 14. Let X: Mm —• Rm+1 be a compact hypersurface with a negative
definite second fundamental form, and let *1 denote the volume element in-
duced by X. Then

(26) Γtr7 C(Δ A J ) * l = (1/4) C(mΉ2 - mS)*l ,

where H is the mean curvature, and S is the length of II defined in any set of
frames by S — tr7 ///, and as a result

(27) Jtr 7 C(JΛJ)*l > 0

if and only if X(Mm) is a euclidean sphere.
Proof. By the integral formula of Theorem 2 and Proposition 7
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0 = f [tr7 Ric_7 7 - tr7 Ricj - tr7 C(Δ Λ Δ) + 2 tr7 C(Δ Λ

= ΓfiCwS - m2ff) + 2 tr77 Λ 4)1*1 ,

which establishes (26).
The second result follows since Cauchy's inequality implies m2H2 — mS < 0

with equality holding only at umbilic points. Therefore assuming (27) every
point is an umbilic, and the image is a euclidean sphere.

Corollary 15. Let X: Mm —> ,Rm+1 be a compact hypersurface with a nega-
tive definite second fundamental form. Then

Γtr7 Ric_77 *1 < Γtr7 Ric7 *1

if and only if X(Mm) is a euclidean sphere.
Proof. By Theorem 2

Jtr 7 C(JΛ J)*l = J(tr7Ric7 - tr7Ric_77)*l

hence the hypothesis forces

Γtr 7 C(JΛJ)*l > 0 ,Γt

and the result follows by the last theorem.
We will now show that a direct analysis of tr7 C(Δ Λ Δ) leads to an integral

formula proof of a theorem on Weingarten hypersurfaces. (For the best results
in this direction see [1].)

First let us observe that equations (16) and (17) with

dgaβ = gaγ

imply

(28) d(mH/2) = -d(Σg"/2) =

(29) \ 2 κ * 2 d e t ^ 2

As a result

tr7 C(Δ AΔ) =

= Ύtrace

2

lμ - grad (m#/2).grad (1 log (ί/K)) .
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Theorem 16. The only compact O-hypersurfaces having a nondegenerate
second fundamental form and having the mean curvature H and Gauss-
Kronecker curvature K satisfying a fnuctίonal relationship f(H, K) = 0, where
K(df/dH)(df/dK) < 0, are euclidean spheres.

Proof. f(H, K) = 0 implies

3H dK

or

-JU|gradtf||2 = JU - grad K grad H)
oίi oK

- 4K df gradfllog(l/X))-grad(mfl/2).
m dK σ \2

Therefore the hypothesis K(3f/dH)(df/dK) < 0 implies

grad (wfl/2) -grad (J log (1/JK)) < 0 ,

which forces tr7 C(J Λ Δ) > 0, and the result follows from Theorem 14.
Finally, we give a characterization of the sphere, which generalizes the result

of Liebmann [9] that a compact convex hypersurface with constant A! is a
sphere.

By equation (28)

d(mH/2) = Σg°*K;βω?

hence the Laplacian with respect to the —// metric is computed from

and results in the integral formula

(30) 0 = Jh^_II(mH/2)dA_II = j>(£}„.,. - 2K^μa)dA_u .

Lemma 17. Let —II be positive definite. Then

(31) Kiβ;λ - KJaλ,β = ϊ(g*δaβ - g*δal + gaλδβr -

where; denotes covariant differentiation relative to —II.
Proof. We differentiate
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i ( α ί + ωa

r) = ΣK'aβω
β

to get

Σ(dKraβ - Krσβφ°a + K°aβφrσ - K^φj) A CO?

= K + 1 Λ < + 1 + K + 1 Λ < + i
= Σ( — igrσω* A ωσ - \gaσo? A ω°) ,

and the result follows.
Now utilizing equation (31), (30) becomes

(32) 0 = f[2Σg»Kla.r - 4ΣgHKfiμaKrμa - mΣ(rβ)2 + (Σgaa)2]dA_n .

Theorem 18. Let X: Mm —> Rm+1 be a convex immersion of a compact
manifold Mm with

ΣgβrKίair < 0 .

Then X(Mm) is a euclidean sphere.
Proof. By the Cauchy inequality

(33) -mΣ(g«y + (Σga«)2 < 0

with equality holding if and only if there is a change of frames {τa} in which

- / / = Σ(τ«y , r* = λδaβ.

Now the hypothesis with the observation that

rμa > 0 ,

since it is a sum of lengths of vectors, forces the sign of the integrand in (32)
to be negative and therefore forces the equality in (33). As a result, —// = I/λ
which proves that every point is an umbilic. Hence X(Mm) is a euclidean sphere.

8. The third fundamental form geometry

We will continue to work with the frames in § 5 and study the Gauss map

em+i'.rNn >Rm+1

of a hypersurface with a negative definite second fundamental form.
As we have already noted, the induced metric of the Gauss map is called the

third fundamental form and is given by

/// = dem+1 dem+1 = Σgaβωaωβ .

Now
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dωr = Σωβ A ωj = Σωβ A ( - < > - 2 V Λ K*βaω
a ,

which by the symmetry of K α̂ in β, a gives

and

dgaβ = r r ( - ω f ) + (-ωr

β)$tf

imply that the Levi-Civita connection for /// is

Vί = ~ωa

β .

The curvature is given by

dηi - Σft A ηβ = ΣTβ

aλμω
λ A ω* ,

and we see

As a result the Ricci tensor

Tai = -ΣR«ββλ = (m - l ) r 2 ,

or invariantly Ric 7 J 7 = (m — 1)///, which implies that /// is an Einstein metric.
Next we note that the difference tensor of /// and —// is given by

— ωa

β — £(ω£ — ωa

β) = — £(ω£ + α>j) = — J ,

where as usual J is the difference tensor of / and —//.
As a result of these calculations we have a characterization of umbilics which

is similar to Proposition 7.
Proposition 19. Let X: Mm —* Rm+1 be an immersion with a negative

definite second fundamental form. Then

tr 7 7 7 Ric_7 7 - tr 7 7 7 Ric 7 7 7 - tr 7 7 7 C(J Λ Δ) > 0

with equality holding if and only if the point is an umbilίc.
Proof. tTjjj R i c _ 2 7 — t r 7 7 7 R i c 7 7 7 — t r 7 7 7 C ( J Λ Δ)

but the Arithmetic-Geometric mean inequality implies that positive definite
symmetric matrices A satisfy

trA trA-1 > m(det A)ι/mm(det A~ψm > m2
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with equality holding if and only if there is a change of basis with A equal to
a multiple of the identity. Hence letting A = H~ιI gives the result.

Theorem 20. // Mm > Rm+1 are two imbeddings of a compact manifold

Rm+ι

without boundary inducing the same negative definite second fundamental forms
and the same Gauss-Kronecker curvatures, then they differ by a euclidean
motion.

Proof. Now the volume element of the Gauss metric or third fundamental
form is given by

(άet gaψ2wι /\ Λwm ,

and the Gauss-Kronecker curvature is defined by

K = det7 // = ( - l) m l/det_ 7 7 / = ( - l ) m det gaβ .

Therefore, if 111 and 11V are the third fundamental forms of a pair of convex
immersions having the same second fundamental forms and the same Gauss-
Kronecker curvatures, then they are Einstein metrics which induce the same
volume element.

The difference tensor / of /// and IIP is given by

which is symmetric in all three indices. Since /// and ///* induce the same ele-
ment of volume, and Jr

aβ is symmetric in all indices,

is positive semi-definite proving that /// and ///* are subscalar. The result now
follows from Theorem 6.

Corollary 21. // Mm > R™<+I a r e t w o imbeddings of a compact manifold

Rm+1

without boundary inducing the same negative definite second fundamental forms
and the same volume element, then X and X* differ by a motion.

Proof. X and X* induce the same volume element if and only if

det_77 gaβ = det_77 g*aβ ,

and hence by (17) if and only if K — KK Now we may apply Theorem 20 and

the result follows.

Utilizing Proposition 19 we may prove the following results in exact analogy

to Theorem 14 and Corollary 15.
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Theorem 22. Let X: Mm -^Rm+1 be compact hyper surf ace with a negative

definite second fundamental form. Then

v J)*l > 0 ,

with *1 the volume element of HI, if and only if X(Mm) is a euclidean sphere.

Corollary 23. Let X: Mm -+Rm+1 be a compact hyper surf ace with a nega-

sive definite second fundamental form. Then

Γtr 7 7 7Ric_ 7 / *1 < m(m - 1) Γ*l ,
where * 1 is the volume element of HI, if and only if X(Mm) is a euclidean sphere.

Finally, if we let P1 = H/K and Pm = 1/K, then we may prove the follow-

ing in exact analogy to Theorem 16.

Theorem 24. The only compact O-hypersurf aces having a nondegenerate

second fundamental form and satisfying a functional relationship f(P17 Pm) = 0,

where Pm(dfldP^(dfldPm) < 0, are euclidean spheres.
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