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MINIMAL SUBMANIFOLDS WITH M-INDEX 2

TOMINOSUKE OTSUKI

For a submanifold M in a Riemannian manifold M, the minimal index (M-
index) at a point of M is defined by the dimension of the linear space of all 2nd
fundamental forms with vanishing trace. The geodesic codimension of M in M
is defined by the minimum of codimensions of M in totally geodesic submani-
folds of M containing M. ’ '

It is clear that M-index < geodesic codimension. In [4, Theorem 1], the
author proved that if M is of constant curvature, and M is minimal and of M-
index 1 at each point, then its geodesic codimension is one. The purpose of the
present paper is to investigate an analogous problem for minimal submanifolds
with M-index 2. We shall obtain a condition for the geodesic codimension to
become 2 (Theorem 1) and some examples (in § 5) of minimal submanifolds
with M-index 2 and geodesic codimension 3 in the space forms.

1. Minimal submanifolds with M-index 2

Let M=M"** be a Riemannian manifold of dimension n + v and constant
curvature ¢, and M = M" be an n-dimensional submanifold in M. Let @,
By = —wgy (A,B =1,2,...,n 4 v) be the basic and connection forms of
M in the orthonormal frame bundle F(M) which satisfy the structure equa-
tions '

(1.1) d(T)A—_—- %CT)AB/\@B, d@AB: ;0)40/\@03—50{4/\@3-

Let B be the subbundle of F(M) over M such that b = (x,e,, - - -, €,, - - -,
e,,,) e F(M) and (x,e,, - - -,e,) e F(M), where F(M) is the orthonormal frame
bundle of M with the induced Riemannian metric from M. Then deleting the
bars of @,, @, in B we have!

(1.2) 0w,=0, o,= Z Aaijwj > Aaij = Aaji
J

and

Received June 20, 1970.
1 In the following, i, j, k, --+ run from 1 to n, and «, 8,7, -++ from n4 1 to n 4 v.
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d(t)i:-' Z(l)ij/\a)j,
J
d(l)ij= Zwik/\wk]"— Zwia/\wj,,—-éwi/\wj,
(1.3) k “
dwi, = 35 05 N\ pe + 25 035 N\ @pg s
k B

da)aﬂ:‘—zwia/\a)jﬁ—f-Za)aT/\wTﬁ.
* 7

For any point x € M, let N, be the normal component to the tangent space
T.M = M, of T,M = M. Denoting the set of all symmetric real matrices of
order n by S, for any b ¢ B we define a linear mapping ¢,: N, — S, by

(1.4) os(X v.e) = 2, v, A, , where A, = (4, .

Now suppose that M is minimal in M and of M-index 2 at each point. Then
(1.5) trace4, =0, a=n+1,--..n+ vy,

and N, is decomposed as N, = 03—}-](’35, 0,=¢,710),0, | N, and dim N,=
2, which does not depend on the choice of b over x and is smooth. Let B, be
the set of b such that e,,,, €,,,€ N,. Then in B, we have

(1-6) Wiz = *°° = Wi nyy — 0.
Lemma 1. In B, for fixed f > n + 2 we have

Onyrp = Wnygp = 0 (mod w,, - - -, w,) ,

WDpy1,p = Wnyzp = 0 or WDpy1,8 AN Wny2,p #+0.

Proof. Let N be the vector bundle over M with fibre N - and take a smooth
local cross section (x, é,.,,, é,,,) of the orthonormal frame bundle of N. Then
for b we can put

€ny1 = én+1 cos 01 + én+2 sin 01 s Cpyr = én+1 cos 62 + én+z sin 02 ’
and we have

Oni1,p = Dy1,p COS Oy + Dy SING, @ping = Dpir,pCOSOy + Dpyypsing, ,

where G,,,1,5 = (Dé,,;, €,>, Gn,s,s = {De,.,, >, and D denotes the covariant
differential operator in M. Thus w,,,; = w,,,; = 0 (mod w,, - - -, w,). Next,
from w;; = 0 and (1.3) it follows that

(17) Wi py1 AN Wy 1,8 + Wi, n 42 VAN WDy 42,8 = 0.

By assuming w,,;,; = p®,,1,, at x, (1.7) implies (@;,, .1 + pW;,n42) N\ @iy, =0.
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Since 4,,,, and A4,,, are linearly independentin S,,, 4,,,, + p4,.,#* 0, from
which follows rank (4,,, + pA4,,,) > 1 with trace (4,,,, + pA4,,,) = 0. Hence
Wy 1, = Wpyop = O',. q'e-d-

Now for any v ¢ N, we define a linear mapping +,: M, — O, by

(1.8) Po(X) :ﬁ>2 2<’I), en+lwn+l,ﬁ(X) + en+2wn+2,p(X) > € 5
where b e By, X € M. , is well defined by Lemma 1.

The space of relative nullity of M in M at x is the set of X € M, such that
0;,,X)=0,i=1,2,..-,n;a=n+1,..-,n + v, which, in general, is de-
noted by [,. Put

Lemma 2. If w,,15 A\ 0g45 + O for afixed > n + 2 in B, at xe M, we
can choose frames b € B, such that e, e,e 0., ¢, - - -, e, e, and

Dy,ne1 = Ao, , Wy,np1 = —Aw, , Wy ppy = * 0 = Wy = 0,
(1-10) Wy sy = Py 5 Wy pyp = (PO 5, A3 pip = *** = Wp,nys — 0,

Oniip = Onigs =0 (modo,w), 2#0, p#0.
Proof. From (1.7), we have
OTRIAN Wy 11,8 AN Wy 2,8 = WDi,ny2 A Wy 1,8 AN WDy y2,8 = 0.

By the assumption and Lemma 1, we can choose frames (x,e,, - --,e,) such
that @,,1,5 /\ Wnyss = fo, A\ @, f # 0. Then the above equations imply
Og,ns1 = Opner = 0 (mod 0, ®,), and therefore we can choose b ¢ B, such that?
{Api15Ansry = 0and

Oypp1 = A0, Oypp = —A0, Wppy =0,,,=0, 2<r<n.

Then putting o, ,,, = b0, + pw,, ©, ., = po, + byw,, we have n{A4,,,, A,,,»
= A(b, — b,) =0, so that b, = b, = 0. Thus we obtain (1.10). It is clear
that e, e,ev,, and e;, -+ -, e, el

Theorem 1. If M™ is minimal and of M-index 2 in a Riemannian manifold
Mn+> of constant curvature ¢ at each point, then r,, v ¢ N,, v # 0, has a com-
mon image ,(M,) whose dimension is at most 2. If the rank of ¥, is con-
stantly zero for ve N,, then the geodesic codimension of M™ is 2, and M™ is
also minimal and of M-index 2 in the geodesic submanifold M"** in M™**
which contains M™. If the rank of , is not zero, then

2 In S,, we define the inner product of any 4 and B by (A4, B) = trace AB/n, so
that S, is a Euclidean space.



196 TOMINOSUKE OTSUKI
() dim(,=n-—2, () () =0.

Proof. If 4, is trivial for any v, then w,,,; = @y, =0, f > n + 2, in
B,. On the other hand, the system of Pfaffian equations:

@y =0, @;3=0, Bpp =0, Bpy; =0,

(1.11)
i=1,--,n;f=n+3,---,n+v
in F(M"*) is completely integrable and the image of any maximal integral sub-
manifold under the projection F(M"**) — M™*” is totally geodesic. Therefore
M is contained in an (n 4 2)-dimensional totally geodesic submanifold M"*?
of M=+, It is clear that M" is minimal and of M-index 2 in M™*2,

Now suppose that -, v e Nz, is not trivial. By (1.8) and Lemma 1, there
exists 8 > n + 2 such that w,,, ; /\ ©,,,,, # 0. Choosing a frame b ¢ B,, which
satisfies (1.10), and substituting (1.7) we get, for any y > n + 2,

Ay N\ @p iy, + po, N\ WDy o, = 0, —Awy N\ Wpyy,, + p0; N\ @pyy,, = 0.
Hence we can put
(1.12) Anir, = o + 80p 5 p0n,, = 8o — fo, .

By putting F = 3] fe, G= 3 ge, (1.8) can be written as
>n+2

>n+2

Fo(X) = {%@, en.D0n(X) — %@, en+2>wz<X)} F

(1.13) ) 1
+ {_<v, en.Duy(X) + L, en+z>w1(X)} G
A u

Since w,,,,; N\ 0,4, #+ 0, we have f> + g,> = 0, so that F = 0 or G # 0.
Since

Vs ensp[2 —<V, €00/ , )
det (<v’ e/t v, €n+1>/l) = —< s€ni )t + 2<’t),en+2> >0

for v # 0, the image +,(M,) is the linear space spanned by F and G, which
does not depend on v ¢ N., v # 0. Hence (i) and (ii) are clear by Lemma 2.

Remark. In Theorem 1, the set of x € M such that 4, is not trivial is open.
For such points x, by means of (1.12) the frame b = (x, ¢, - - -, ¢,,,) satisfying
(1.10) does not depend on the choice of g such that @, 5 A @,,,, # 0. In the
above open set of M, F and G give normal vector fields, and the set of such
frames is denoted by B,.



MINIMAL SUBMANIFOLDS 197

2. Minimal submanifolds with M-index 2 and geodesic codimension >2

Using the notations in § 1, we have

Lemma 3. Suppose the rank of v, > 0 for every v # 0. Then the (n — 2)-
dimensional distribution { = {{,, x € IVE} is completely integrable and its integral
submanifolds are totally geodesic in M™**.

Proof. From w, ,,; = @, ,,, = 0 (2 < r < n) it follows that

Oy N\ Oy + Opy N\ Oy = 0 N\ O iz + Oy /\ Wy 505 = 0

in B,, and from (1.10) that w,, A @, — w,; A\ 0, = 0,y N\ @0, +0,, N\ 0, = O.
Thus we can put

(2'1) Wy = P — 4,05 , Wy = ¢, + Dr0y

or oy, + iw,, = (p, + iq,)(w, + iw,). Making use of these relations we can easily
see that dw, = dw, = 0 (mod w,, w,). Hence the Pfaffian equations w, = w, = 0
are completely integrable, and, equivalently, so is the distribution [.

Let L™ be a maximal integral submanifold of [, along which we have
W= W= Wpy="++=p,, =0 and 0, = @, = Orny1 =" = @y gy, = 0
by (2.1), (1.10) and (1.6) in B,. These show that L*? is totally geodesic in
M . q.e.d.

In the proof of Lemma 3, we have two special tangent vector fields defined
by

n

(2~2) P = Z_:3prer ) Q = Z_:3q'rer s
which we call the principal and subprincipal asymptotic vector fields, respec-
tively. ‘

Lemma 4. Under the condition of Lemma 3, the 2-dimensional distribu-
tion v = {iv,, x e M"} is completely integrable if and only if the vector field Q
vanishes. When Q = 0, the integral submanifolds of tv are totally umbilic in M™.

Proof. v, is given by the Pfaffian equations w; = w, = - : - = w, = 0 at each
point x e M*. By (2.1), in B, we have do, = —2q,0, \ 0, (mod w;, - - -, ®,),
which shows that the distribution v is completely integrable if and only if
0=0.

When Q = 0, (2.1) becomes

(2.3) w11‘=prwl’ w27'=pr(02, r=3,"‘,n,

which shows that any integral submanifold of the distribution iv is totally um-
bilic in M*. q.e.d.

We will explain the integrability of v without using the field Q.

Lemma 5. The distribution v is completely integrable if and only if the
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following condition is satisfied: For any tangent vector fields X C v, and
Y C I, we have (V yY)y, || X, where IV x denotes the covariant derivative in M"
with respect to X and (V 3Y)y, the to-component of the field V ;Y .

2 n
Proof. Putting X = }, X%,, Y = >, Y"e, and considering e, as local
a=1 r=3

fields, we have
PaY = £ X 2 {7, Y e, + Y(on(ede, + ontene)
+ Z wrt(ea.)et} .
t>2

Thus by (2.1),

FxY)y = —(XP, Yy — XXQ,Y))e, — (XXQ,Y)> + XXP,Y))e,,
that is,
2.4) FxY)y = —<P,YOX —<Q,Y>Rot,, X,
where Rot, , denotes the rotation on fv, by the angle z/2 in the direction from
e, to e,. Hence Q = 0 is equivalent to the statement of this lemma.

Lemma 6. Suppose the rank of «, > 0 for every v # 0. Then in B,,

(2.5) {(d2 — 2{P,dx)) — iQAwy, — pd + KQ,dx))} N (0, + iw) =0,
(2.6) {(dyp — KP,dx>) — iQQuwy, — 20 + KQ,dx))} N (0, + iw)) =0,

2.7 {do + i(1 — dDd} N (o, + iw) =0,
2.9 do, = —{|PIF+|QIF + ¢ — 2* — tflo, N\ o, ,
2.9) do = —%{2@2 — IF[F — |G o, A w, ,

where (P, dx) = f} p,w,,{Q,dx) = Zn] Gy, @ = Wpyy,pye and @ = pfA.
r=3 r=3
Proof. From (1.10),(1.12) and (2.1) we get

dwl,n+l= “waz/\wz‘l‘#@/\wz:dz/\wl+2i:wlj/\wj’
j=1
Aoy = —Aop Aoy + pd A oy = —dAA @, — 13 0y A w5
i=1

and therefore
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dr— 23 po) N\ o, + QRlw, — pd + 2] q0,) N w,=0,
dr— 23 p,o) N\ o, — Qlwy, — pd + 2 go,) N o, =0.

which can be written as (2.5). Analogously we can get (2.6) from Jw, ,,, and
dw, ., From (2.5) and (2.6) it is easily seen that

{Qdp — pdd) + i — DY N\ (0 + i0) =0,
which is equivalent to (2.7). We have also

dw,, = Z Oy N\ Opy + Oy N Opyry + Opnys A\ Opyyy — C0p N\ 0;
r

—{Z @’ + 9, -I-E—Zz—yz}a)l/\wz,

2
do = Z Opi1,a /\ Ogyniz + x WDny1,p N Wp, 712
a=1 B>n+2

- _ L{zzz P (4 g,f)}w1 A o,
Ay E v

which can be written as (2.8) and (2.9), respectively. q.e.d.

A curve in a Riemannian manifold of constant curvature is said to be even
if its geodesic codimension <1.

Theorem 2. Under the conditions of Theorem 1 with non-trivial +, for any
veN, v+ 0, the following statements hold.

1) The set of all asymptotic tangent vectors of M™ in M™** constitute a
completely integrable (n — 2)-dimensional distribution | and its integral sub-
manifolds are totally geodesic in M™*".

2) The 2-dimensional distribution v orthogonally complement to | is com-
pletely integrable if and only if the subprincipal asymptotic vector field Q of
M™ vanishes, and then its integral surfaces are totally umblic in M™.

3) The principal and subprincipal asymptotic vector fields P and Q of M™
are involutive.

4) When P =+ 0, the integral curves of P are even in M"**, and they are
geodesic of M™** if and only if (P, Q> = 0 or P|Q.

Proof. 1) and 2) are evident from Lemmas 3 and 4. By (2.1) and (1.3) we
obtain

d(o,, + iw,)
= 2 (0 N\ oy + loy; N w;,) — o, + iv) N o,
7

= (dp, + idq,) N\ (o, + iw) + (b, + ig,) X (03 N\ 0; + iy, N\ o)) ,
! J

and therefore
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{dpr + idq, + ; (p: + ig)w,, — (0, + iq,) ; P + ig)o, — éwr}
A (o, + iv,) =0.

(2.10)

from which it follows that for any tangent vector field X C I,
2.11) PxP =P = (P,X>P — {Q,X>0 + X ,
(2.12) VxQ =VxQ =<0, X)P + (P, X)Q0,

where 7 denotes the covariant derivative in M"** with respect to X. In par-
ticular, we get VoP = <P, Q)P — ||Q|F Q + ¢Q, V,Q = (P, Q)P + ||P|’ Q,
and therefore [P, Q] = VpQ — VP = {|P| + ||Q|F — ¢}Q, which shows that
P and Q are involutive.

For part 4) of the theorem we notice the following equatlons derived from

(2.11) and (2.12):
VpP = (IPIF + &P — <P, 00, Vo0 =|QIFP + <P, Q0 ,

which clearly show that if P A Q # 0, then the integral surfaces of the distri-
bution spanned by P and Q are totally geodesic in M"**. Hence, when P # 0,
the integral curves of P are even, and they are geodesics in M”*” if and only if
{P,Q>Q || P, that is, if and only if <P, Q> = 0 or Q|| P.

3. Minimal submanifolds with M-index 2 and vanishing
subprincipal asymptotic vector field Q

In this section, we shall consider M® in M"** as in Theorem 2 under the
additional conditions P = 0 and Q = 0, and suppose n > 3. Denote the
integral surface of fv and the integral curve of P through x by W*(x) and I"'(x)
respectively.

Lemma 7. The integral curves I'' of P are the orthogonal trajectories of a
family of hypersurfaces of M™ containing the integral surfaces W* of tv.

Proof. Since Q = 0, (2.10) is reduced to

3.D dp, + ;}21%% — D, E}zpth —Co, =0.
Since P # 0, we use only such frames b of B, that

3.2 P = pe;, p>0,

and denote the submanifold of these frames by B,, in which
(3.3) Was =P0o , e =0, a=1,2;3<t<n,

and (3.1) becomes
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(3.4) dp = (P* + Ow; ,
3.5) pw,;, = Cw, , 3<r<n.

By means of (3.3) and (3.5) we obtain dw, = 0 in B,, so that there exists a local
function v such that

(3.6) 0, =dv.

(3.2) and (3.6) show that the family of level hypersurfaces of v is the required
one.

Remark. By denoting the level hypersurface v = ¢ by V*7(c), the func-
tion v may be considered as the arclength of the geodesics I™ measured from
V*-1(0). Integrating (3.4), we easily have

Lemma 8. The norm p of the principal asymptotic vector field P is a func-
tion of v as follows:

(B3.7) p=@ Vtam@w+ave, 0<v+a<r/2Ve), €>0).
3.7) p=1/a@a—-v, v<a, €=0).

v —¢tanh(@a — v)vV—¢, O<p<+V/—=0,

3.7) p=4 — —z —c
(B.7) p V—c¢coth(@a — v)v—¢, (W—¢<p),

v<a,<0.

Here a is a constant on M™.

Lemma 9. Let X be a Jacobi field along I'* determined by a family of
integral geodesics of P. If X(0) e v, then | X|| — 0 and p — + o when v + a
—n/@yv¢e)foré>0and v —aforc=0,o0rc<0and+—¢<p.

Proof. Let x = x(v,¢) be a family of integral geodesics of P such that
x(v,¢) e V*"'(v). Putting X = 0x/de, we obtain X? = ) 0;(X)w;(X) and

#3

i
0| X|P/ov = 2 Y w)(X)dw,(X)/dv. On the other hand, we have
J#3

00,(X) [0V = ey(w,(X)) = X(w(e))) — dwy(X, &) — w;([X, &)
= — ; @ik A\ (Uk(X, e3) N

since [d/0v, d/de] = 0 and so w,;([X, e,]) = 0. Thus
| X|F/ov = =2 3 0;(X)wu(X) = —2 3 0o(X)wg(X) + 2 §3 0,(X)w;,(X) .

Using (3.3) and (3.5), we have ‘
(3.8) X /ov = —2p || X + 2(¢/p) | X1l

where Xy, and Xy are the v and [ components of X.
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On the other hand, in B, we have dw, = (€/p)o; N\ o, + X 0,; /\ @, SO
t>3

that the Pfaffian equations o, = --- = w, = 0 are completely integrable.
Thus, if X e v for a value of v, then so is for any ». For such X from (3.8) it
follows that 9| X|?/dv = —2p || X |7 Integrating this and using Lemma 8, we
have

1XOW1XO] = exp — [ pav)

(cos (v + a)y/ € [cosay € e>0,
(@—v/ac=0),
sinh (@ — v)y/ —¢/sinh ay/ —¢C (< 0and —¢ < p),
cosh(a — v)4/—¢/coshay —¢ (€< 0and0< p < —0),

3.9

which implies this lemma.

Lemma 10. Let X be a Jacobi field along I'* as in Lemma 9. If X(0) e,
{X(0), Py =0, then

) || X||—>0and p— 0, when v + a — 0 for ¢ > 0,

i) [ X(@)|| =X for ¢ =0,

i) || X||—0andp— 0, or | X|| — | X(0)||/cos a ¥ —C and p — o when
v —aforc <O0.

Proof. By Lemmas 3 and 7, we have X C [ and (X, P) = O for any .
Thus (3.8) implies 3| X |?/ov = 2(¢/p) | X|[?>, from which it follows that

1X@)||/IX©)]| = exp (e [ ”(1/p)dv)

sin (v + a)v/ ¢ [sinay ¢ c>0,

1 =0,

cosh (@ — v)4/—¢/coshay —¢ (< Oand ¥ —2<p),
sinh (@ — v)y/ —¢/sinhay —¢ (€< 0and 0 < p <+ —0) .

(3.10)

These relations and Lemma 8 imply i), ii) and iii). q.e.d.

By means of Lemmas 7, 9 and Theorem 2, we obtain

Theorem 3. Let M" (n > 3) be a maximal minimal submanifold® in an
(n + v)-dimensional space form M"** which is of M-index 2 at each point,
whose associate mapping r, is nontrivial for any v e N,v # 0, and subprincipal
asymptotic vector field vanishes identically. Then M™ is a locus of (n — 2)-
dimensional totally geodesic subspaces in L*"*(y) in M™** through points y of

3 ““maximal”’ means here that M” is not contained in a larger submanifold with the
same properties.
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a surface W? lying in a Riemannian hypersphere in M"** with center z, such
that

i) L™ *(y) contains the geodesic from z, to y,

ii) the (n — 3)-dimensional tangent spaces to the intersection of L™ *(y) and
the hypersphere at y are parallel along W* in M™*>,

Proof. 1t is sufficient to prove ii). In B,, for 3 < r < n, by (3.3) and (3.5)

we have De, = —(¢/p)w,e; + 3, w,.e;. Thus, along W?, De, = i} ,.€;, which
t>3

shows that the tangent space in ii), i.e., the space spanned by ¢, ¢;, - - -, ¢,, is

parallel along W2 q.e.d.

This theorem tells us how to construct a minimal submanifold in a space form
as in the statement.

4. Minimal submanifolds with M-index 2, vanishing Q and +, of rank 1

In this section, we shall investigate M™ in M"** as in Theorem 3 under the
condition that 4,, v e N, v % 0, is of rank 1 everywhere. By this assumption
and (1.13), we can choose frames b in B, such that

(4°1) F = fen+3 s G = 8€,.3 fz + g2 #* 0.

Denoting the set of these frames by B,, from (1.12) we get

A0 i1,mes = fo, + 80, , YOz nyz = 80 — fo, ,

“4.2)
Wpit,y = Wpygy = 0 (T >n+3).

Theorem 4. If M™ is minimal and of M-index 2 in M™** of constant cur-
vature, r, is of rank 1 for any nonzero v e N, and Q = 0, then there exists a
totally geodesic submanifold M"** of M"** containing M*, in which M has
the same properties*. ‘

Proof. Using the same notations as in § 3, it is sufficient to show w,,;, =0
(y > n + 3) in B,. From (4.2), we get

Aoy, = (1 Do, + go) N Onysr =0,
dwy s, = (1/ (g0, — fo,) N\ Wnys, =0,

which imply ,,,, = 0 since (fo, + gw,) A (g0, — fw,) # 0. q.e.d.

By virtue of the above theorem, we may put v = 3 in our case from the local
point of view.

Lemma 11. Under the conditions of Theorem 4, in B, we have the follow-
ing:

+ We have supposed n > 3, but Theorem 4 is also true for n=2.
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4.3 {(dlog 2 — pdv) — i2wy, — ad)} A (0, + iw) =0,
4.4 do, = —@P*+ ¢ -2 — o, N\ o,,
4.5) do = —(1/Qu)Q2 — f — 8o, N\ o, ,

{dlog (f — ig) — dlog 2 — pdv — iw,} N (0 + iw,)

(4.6) B _l gl {f((za B %)“" + é%)

_ ig(lwl + i<20 _ l) w2>} ~0.
g g

Proof. By (3.3), (3.6) and Q = 0, we get (4.3) immediately from (2.5).
(4.4) and (4.5) are trivial from (2.8) and (2.9).
Now from (4.2) exterior derivation gives

df \ w, + dg \ w, — (dlog 2 + pdv) N\ (fo, + gw,)
- (wlz + %0‘)) VAN (gw1 - fwz) =0,

df N\ w, —dg N\ o, + (dlog p + pdv) N\ (g, — fw,)
— (@, + gd) A\ (fo, + 8w)) =0,

which can be written as, in consequence of d log y = dlog 2 + dlog o,
{d(f — ig) — (dlog 2 + pdv + iw,)(f — ig)} N (o, + iwy)
+ (id loga — icu) A (gw, — fw,) — ied N\ (fo, + gw,) = O .
ag

Since we have, from (2.7),

dloga/\wlz(l—a)a‘)/\wz, dloga/\wz=—(i—a)ca/\wl,

g ag

substituting these in the above last equation we get (4.6).

Remark. N = U Nx introduced in §2 is considered as a vector bundle
TEM
over M™ with 2-dimensional fibre and has a metric connection induced from

M™*. & = @y, n,, s its connection form and dé is its curvature form. There-
fore & is a geometrical quantity of M” in M***, which may be called the mini-
mal torsion form of M™.
"Lemma 12. Under the condition of Theorem 4 and the additional condi-
tions:
(@) & # 0, and ¢ = p/2 is constant on W?,
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(p) W:*is of constant curvature,
where W? is an integral surface of the dzstrzbutzon tv, for W? we have the
following:

4.7 c=1or —1 and 222 =p* + ¢,
4.8) W2 is flat,

and, by supposing ¢ = 1 and w,, = df on W?,

4.9) @& =12df ,

(4.10) dx = R((e} + ief)dz) ,

4.11) D(ex + ie¥) = e,pdz + (e¥,, + ie*, )2dZ
(4.12) De, = —pR((ef + ie¥)d7) ,

(4.13) D(et,, + ie¥,)) = —(ef + ief)Adz + e,/ 22dZ,

(4.14) De,,; = —v 2 R(e},, + ie},)dz) ,

where z is an isothermal coordinate of W? such that

4.15) o, + iw, = exp (—if)dz ,

(4.16) ef + ief = exp (10)(e1 + iey) , ef,, + iek,, = exp Qib)(e,,; + ie,,,) .

Proof. From (2.7) and (&), we get 1—¢*=0,ie.,,0=1o0r —1, so that
we may suppose ¢ = 1. By means of (f), on W? we put do,, = —co; A @,
where c is a constant. Then (4.4) implies 24* = p* 4+ ¢ — ¢, and 2 is constant
on W*? by Lemma 8 and Theorem 3. Therefore (4.3) implies & = 2w,, on W?,
from which we have f* + g* = 222> — ¢) by (4.5), so that f* + g* is also con-
stant on W?. Putting f — ig = +/ 2 /& — c exp (— ip), from (4.6) we get the
relation w;, + & + dp = 0, i.e., 3w;, + dp = 0. Thus we have dw,, = dd =0
on W?, from which follows ¢ = 0.

Hence W* must be flat, and we may put

4.17) f+ig=v2Rexp(—3i0), ¢=—30.

On the other hand, we have d(w, + iw,) = —iw, A (0, + iw,) = idf N (0, + iv,),
and therefore there exists a local isothermal coordinate z as (4.15). Using (4.15)
and (4.17), (4.2) can be written as
(4.18) Onirnes + 0nyons = v 2 2€xp (—2i0)dZ on W2 .

Now, to derive the Frenet formulas of W?, we first have
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dx = ew, + e,w, = R((e, + ie,))(w, — iw,)) = R((e¥ + ief)dZ) .
By means of (3.3), (1.10), (4.15) and (4.16), we obtain
D(e, + ie)) = —(e, + ie)idd + e;p(w, + iw,)
+ (ens1 + €120 — iw) ,
which is equivalent to (4.11). Analogously,
De, = —ew,; — e;w; = —pR((ef + ie})d7) .
From the relations
De,,, = —New, — ew) + 2€,,,d0 + €,,:0n,1.n43
De,,., = —New, + e;w) — 2€,,,d0 + €,,0p,31.3 >
it follows that
Dlen,s + ien,) = — (& + ie)Aw, + iw) — 2en,, + iey,idd
+ €n13(@ns1,nes + WWOnianis) 5
which is equivalent to (4.13) by (4.15), (4.16) and (4.18). Finally,

De,,, = —R((e,,, + ien+2)(wn+l,7r.+3 — iWnyans)

= —R((e*,, + ie*, )V 2 dz) .

5. Examples of minimal submanifolds of M-index 2

In this section, we shall find, as in Theorem 4, minimal submanifolds in
space forms, for which a W? satisfies the conditions () and () in Lemma 12,
and we shall suppose n > 3.

Case 1. M™*? is the Euclidean space E***. By Lemmas 12 and 8 the Frenet
formulas for W? are

dx = R((e¥ + ief)d2)
(e} + ief) = epdz + (e, + iek,)idZ
G0 de, = —pR((ef + ie})d2) ,
d(ek,, + iet,) = —(ef + ieP)Adz + e,,,(v 2 2dD)
de,,s = —v 2 AR((ek,, + i€, )d2)

where

(5.2) p=1/@a—v), 2=p/v2, v<a,0<a.
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From (5.1) it follows that x + e;/p is a fixed point and so we may suppose
that it is the origin O of E*** = R"*%. Then we have

(5.3) X = —e/p.

From (5.1) again it is easily seen that e,, ef + ief, ef,, + ief.,, e,.; are all
solutions of the partial differential equation
X _
0202

—2X .

Noticing this fact, we shall give a solution of (5.1).
In C* we choose 3 fixed constant vectors 4,, A, and A4, such that

Aj'Aj:O, Aj-Ak=Aj-Zk=0,
5.4 A A + A, A, + A, A, =1]2,
i’k=132,3;j:rék,

and put

U = ), {4, exp A(z exp (ix;) — Z exp (—ia;))
(5.5) =t

+ A; exp A(—zexp (i) + Z exp (—iwy))} ,

where the bar denotes the complex conjugate. It is clear that U = U and
U-U = 1 by (5.4). Next putting 9U/6Z = —2§/+/ 2, we have

5.6 E=42 Zj} exp (—ia;){A; exp A(z exp (ix;) — Z exp (—ia;))
. — A; exp A(—z exp (i) + Z exp (—ia,))} .

It is easily seen that £-& = 2, U-§ = 0 and
(5.7 &= —4 %} Aj;-Aj(cos 2a; — isin2a;y) .
Putting 9&/9Z = 27, we obtain
5.8 p=—+2 Zj: exp (—2ia;){A4; exp A(z exp (iet;) — Z exp (—ia;))
+ A, exp A(—zexp (ia;) + Z exp (—ix)))} ,
and therefore -7 = 2, .9 = £.7 = 0,
5.9 77 =4§]Aj-Zj(cos4a,—isin4aj) ,
(5.10) Ug=¢8-8/42 .
Finally putting dy/0Z = +/ 2 2V, we have
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V = 3] exp (—3ia;){A; exp A(z exp (ia;) — Z exp (—ia;))
(5.11) 7 B
— Ajexp A(—zexp (iw;) + Zexp (—iay)} .
Thus V.V =1, U-V=U-V=0,9V =%V =0and

(5.12) V.V =—2Y A, 4,cos 6a, — isin 6a,) ,
J

(5.13) EV=—pp/V2, EV=—8EV2.

By means of the above calculation, in addition to (5.4), if 4;, a;, j=1,2,3,
satisfy

(5.14) Z AJ'ZJ(COS 2“1 — isin 2“]) =0 ’
7

(5.15) > A;-Aj(cos 4a; — isinda;) =0,
7

(5.16) 3a; = x/2 (mod ) ,

then we obtain a solution of (5.1). by putting e, = U, e} + ie} =&, e¥,, + ie¥,,
=7, e,,; = V and considering C* = R®.

Condition (5.14) means that the broken segment P,P,P,P, in the plane such
that P,_\P,=A;-A, and arg P,_\P, =2a;, j =1, 2, 3, is closed, i.e., P,=P,.
Condition (5.15) also has an analogous meaning. By an elementary considera-
tion, we see that the triangle P,P,P, must be equilateral, i.e.,

AV A, A, =1/6, j=1,2,3.

‘Conversely, the above meanings are also sufficient for the validity of (5.14)
and (5.15) respectively. Now, using the triangle P,P,P,, and interchanging A;
with 4,, j=1,2, 3, and the order of the mdex j, we may have the unique

values of «;, namely,
(5.18) a,==rnl6, ay==n/2, a=5x/6.

Thus we have a W* in R® = C* given by

i(u, + v/ 3 u,) + 4, exp —i(u, + v 3 uy)

x=—(a—v) {AICXP V2@ —) ! v2(@@—w

2iu, = —2iu,
(5.19) MR Sve yoames SR vy prmpny
A, i(u, — \/?uz) i —1(14_1_ \/?uz)
+ Ao VTa—n T a }
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where z = u, + iu,, and A4,, A,, A; are complex vectors satisfying the condi-
tions (5.4) and (5.17). Hence, by virtue of Theorem 3, we can construct a
minimal submanifold M” in E**3, as mentioned at the beginning of this section,
as follows: Consider E*** = R"**= R® X R""3, and take a W? given by (5.19)
in R® and, at each point y e W?, the (n — 2)-dimensional linear subspace L*~*(y)
parallel to e, = U and R™3. Then the locus of the moving L*~%(y) forms a
submanifold M™ mentioned above.

Case 2. M™"*3 is the unit sphere S***. We may consider $*** C E"*!, By
putting x = e,,,, the Frenet formulas for W? are

dx = R((ef + ie)d2) ,
d(ef + ief) = epdz + (e}, + ief,)2dT — e, dz ,
(5.20) de;, = —pR((e¥ + ie})dz) ,
dek,, + ie¥,,) = —(ef + ie)adz + e, (v 2 2d2) ,
de,,; = —v 2 2R(e},, + ief,)d7) ,

where

p=tan(v+a, 1=1/W2cos®+a),

5.21
0<v+a<na/2, 0<a<m/2.

From (5.20) it follows that x + (1/p)e; = x + e,cot (v + a) is a fixed point,
so that e, cos (v + a) + e,,,sin (v + a) = ¢, is a fixed unit vector and x is in
an (n+ 3)-dimensional linear subspace EY*® through the point O,=e¢, sin (v + a)
and perpendicular to e,. Thus W? lies in the (n + 2)-dimensional sphere

S**3 N Ep*s = Sp*¥(cos (v + a)) of radius cos (v + a), and we get O_l_;c =
—ej¥ cos (v + a), where ef = e,sin (v + @) — e,,,cos (v + a). Using e} we
can easily obtain

d(e;“ + ie;") = e;“«/_fldz + (efu + i3:+2)2dz s
de3 = —'\/TZR((e:‘:H + ie:+2)ez) s

and therefore the same equations with respect to ef + ief, ef, e¥ , + ie¥,,, e, .,
as (5.1). Hence we can take a W? in E7*3, which is a solution of (5.20), and,
at each point y ¢ W?, an (n — 2)-dimensional linear subspace L*"~*(y) in E?*+?
through y as described in the previous case. Next, we project these L*"~%(y)
onto $*** from O and denote the images by L*~*(y). The locus of the moving
L™ *(y) forms a minimal submanifold M™ in S™*3, which satisfies the conditions
in Theorem 4 and («) and (B) in Lemma 12.

Case 3. M™% is the hyperbolic (n + 3)-space H"** of curvature —1. We
use the Poincaré representation of H"*® in the unit disk in R™** with the can-
onical coordinates x,, - - -, X,,;. The Riemannian metric H"*? is given by
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(5.22) ds* = 4dx-dx[(1 — x-x)*,

where “.” denotes the Euclidean inner product. Since the components of the
Riemannian metric are

8y = 40,;/h*, gi=~rnol4, h=1—x-x,
the Christoffel symbols are I'¥; = 2(dx; + d%x; — d,;%;) /h. For any vector field
X = 3 X79/dx,, its covariant differential with respect to the Riemannian con-
necti01]1 of H"** is given by
(5.23) DX = hla(2X |h) + 4{(x-X)dx — x(X -dx)}/Ah*]/2 .

For any two tangent vector fields X, Y, we have <X,Y)> = 4X .Y /h?, where
“{,»” denotes the inner product in H**3. Therefore, if b = (x, e, - - -, €,,,) is
an orthonormal base in H**?, then (x, 2e,/h, - - -, 2e,,,/h) is the one in R"**.

Now we describe the Frenet formulas for W? in H*** by means of the
Poincaré representation (5.22). By putting

& =2 + ief)/h, U =2¢/h,

(5.24) :
7] = z(etﬂ. + le1>l:+2)/h 3 V = 2en+3/h ’

(4.10), - - -, (4.14) become

dx = h(&dZ + Ed2) |4 ,
dé = {(Up — (x-9)E&/2 + x}dz + {nA — (x-£)&/2}dZ ,
(5.25) dU = —{p + (x-U)}(&dz + &dz)/2,
dp = —{62 + (x-E&/2}dz + (V4 2 2 — (x-9)&/2}dZ ,
AV = —(/vV 2 + (x-V)E/2}dz — {74/V/ 2 + (x-V)E/2}dZ ,

in consequence of (5.23) and

§-dx = h{(¢-8)dZ + (¢§-8)dz}/4 = hdz[2 ,

where
(5.26) =coth(a—v), A=+pP—1/¥/2, v<a.
On the other hand, any geodesic starting from the origin O = (0, - - -, 0) in

H"** is a Euclidean straight line segment in the unit disk. The arc lengths v
and r in H*** and R"** have the relation as v =log (1 + /(1 — r) and r =
tanh (v/2). Since any W? is congruent to others under hyperbolic motions, we
may suppose the focal point (z, in Theorem 3) of W? is the point O. Then we
have
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(5.27) x = —Ur = —Utanh (v/2) .

Replacing a — v in (5.26) by v gives h =1 — x-x = 1/cosh? (v/2), 2/h =
coshv + 1,2 =1/(v/ 2 sinhv),p —r = 1/sinhv =4/ 22and x-§ = x.9 =
x-V =0, x-U = —r for W2 Hence (5.25) is simplified as follows:

dx = (£dZ + &dz)[/(2(1 + cosh v)) ,

dg = Uy 2 2dz + 7padZ
(5.28) dU = —/ 2 2(&dZ + Ed2) /2,

dp = —&dz + Vv 22dZ,

AV = —/2(ydz + 7d2)[2 .

This system of equations except the first one is the system of equations (5.1)
except its first one. Thus we see that we can construct a W? in H**? by making
use of result in case M"** = E**3, In fact, considering R"** = R® X R""%, we
take a surface W? satisfying (5.28), and, at each point y of W?, the (n — 2)-
dimensional linear subspace £»-*(y) through y and parallel to U and R,

Let L*~*(y) be the totally geodesic subspace of H+* tangent to L»~*(y) at y.
Then the locus of the moving L*~*(y), y € W?, is a minimal submanifold M" in
H"*3, which satisfies the required conditions.
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