MINIMAL SUBMANIFOLDS WITH M-INDEX 2

TOMINOSUKE OTSUKI

For a submanifold M in a Riemannian manifold \bar{M}, the minimal index (M index) at a point of M is defined by the dimension of the linear space of all 2 nd fundamental forms with vanishing trace. The geodesic codimension of M in \bar{M} is defined by the minimum of codimensions of M in totally geodesic submanifolds of \bar{M} containing M.

It is clear that M-index \leq geodesic codimension. In [4, Theorem 1], the author proved that if \bar{M} is of constant curvature, and M is minimal and of $M-$ index 1 at each point, then its geodesic codimension is one. The purpose of the present paper is to investigate an analogous problem for minimal submanifolds with M-index 2 . We shall obtain a condition for the geodesic codimension to become 2 (Theorem 1) and some examples (in §5) of minimal submanifolds with M-index 2 and geodesic codimension 3 in the space forms.

1. Minimal submanifolds with M-index 2

Let $\bar{M}=\bar{M}^{n+\nu}$ be a Riemannian manifold of dimension $n+\nu$ and constant curvature \bar{c}, and $M=M^{n}$ be an n-dimensional submanifold in \bar{M}. Let $\bar{\omega}_{A}$, $\bar{\omega}_{A B}=-\bar{\omega}_{B A}(A, B=1,2, \cdots, n+\nu)$ be the basic and connection forms of \bar{M} in the orthonormal frame bundle $F(\bar{M})$ which satisfy the structure equations

$$
\begin{equation*}
d \bar{\omega}_{A}=\sum_{B} \bar{\omega}_{A B} \wedge \bar{\omega}_{B}, \quad d \bar{\omega}_{A B}=\sum_{C} \omega_{A C} \wedge \bar{\omega}_{C B}-\bar{c} \omega_{A} \wedge \bar{\omega}_{B} . \tag{1.1}
\end{equation*}
$$

Let B be the subbundle of $F(\bar{M})$ over M such that $b=\left(x, e_{1}, \cdots, e_{n}, \cdots\right.$, $\left.e_{n+\nu}\right) \in F(\bar{M})$ and $\left(x, e_{1}, \cdots, e_{n}\right) \in F(M)$, where $F(M)$ is the orthonormal frame bundle of M with the induced Riemannian metric from \bar{M}. Then deleting the bars of $\bar{\omega}_{A}, \bar{\omega}_{A B}$ in B we have ${ }^{1}$

$$
\begin{equation*}
\omega_{\alpha}=0, \quad \omega_{i \alpha}=\sum_{j} A_{\alpha i j} \omega_{j}, \quad A_{\alpha i j}=A_{\alpha j i} \tag{1.2}
\end{equation*}
$$

and

[^0]\[

$$
\begin{align*}
d \omega_{i} & =\sum_{j} \omega_{i j} \wedge \omega_{j} \\
d \omega_{i j} & =\sum_{k} \omega_{i k} \wedge \omega_{k j}-\sum_{\alpha} \omega_{i \alpha} \wedge \omega_{j_{\alpha}}-\bar{c} \omega_{i} \wedge \omega_{j} \tag{1.3}\\
d \omega_{i \alpha} & =\sum_{k} \omega_{i k} \wedge \omega_{k_{\alpha}}+\sum_{\beta} \omega_{i \beta} \wedge \omega_{\beta \alpha} \\
d \omega_{\alpha \beta} & =-\sum_{i} \omega_{i \alpha} \wedge \omega_{j_{\beta}}+\sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}
\end{align*}
$$
\]

For any point $x \in M$, let N_{x} be the normal component to the tangent space $T_{x} M=M_{x}$ of $T_{x} \bar{M}=\bar{M}_{x}$. Denoting the set of all symmetric real matrices of order n by S_{n}, for any $b \in B$ we define a linear mapping $\varphi_{b}: N_{x} \rightarrow S_{n}$ by

$$
\begin{equation*}
\varphi_{b}\left(\sum_{\alpha} v_{\alpha} e_{\alpha}\right)=\sum_{\alpha} v_{\alpha} A_{\alpha}, \quad \text { where } \quad A_{\alpha}=\left(A_{\alpha i j}\right) \tag{1.4}
\end{equation*}
$$

Now suppose that M is minimal in \bar{M} and of M-index 2 at each point. Then

$$
\begin{equation*}
\operatorname{trace} A_{\alpha}=0, \quad \alpha=n+1, \cdots, n+\nu \tag{1.5}
\end{equation*}
$$

and N_{x} is decomposed as $N_{x}=O_{x}+\hat{N}_{x}, O_{x}=\varphi_{b}{ }^{-1}(0), O_{x} \perp \hat{N}_{x}$ and $\operatorname{dim} \hat{N}_{x}=$ 2 , which does not depend on the choice of b over x and is smooth. Let B_{1} be the set of b such that $e_{n+1}, e_{n+2} \in \hat{N}_{x}$. Then in B_{1} we have

$$
\begin{equation*}
\omega_{i, n+3}=\cdots=\omega_{i, n+\nu}=0 \tag{1.6}
\end{equation*}
$$

Lemma 1. In B_{1} for fixed $\beta>n+2$ we have

$$
\begin{gathered}
\omega_{n+1, \beta} \equiv \omega_{n+2, \beta} \equiv 0 \quad\left(\bmod \omega_{1}, \cdots, \omega_{n}\right) \\
\omega_{n+1, \beta}=\omega_{n+2, \beta}=0 \quad \text { or } \quad \omega_{n+1, \beta} \wedge \omega_{n+2, \beta} \neq 0 .
\end{gathered}
$$

Proof. Let \hat{N} be the vector bundle over M with fibre \hat{N}_{x}, and take a smooth local cross section $\left(x, \hat{e}_{n+1}, \hat{e}_{n+2}\right)$ of the orthonormal frame bundle of \hat{N}. Then for b we can put

$$
e_{n+1}=\hat{e}_{n+1} \cos \theta_{1}+\hat{e}_{n+2} \sin \theta_{1}, \quad e_{n+2}=\hat{e}_{n+1} \cos \theta_{2}+\hat{e}_{n+2} \sin \theta_{2}
$$

and we have
$\omega_{n+1, \beta}=\hat{\omega}_{n+1, \beta} \cos \theta_{1}+\hat{\omega}_{n+2, \beta} \sin \theta_{1}, \quad \omega_{n+2, \beta}=\hat{\omega}_{n+1, \beta} \cos \theta_{2}+\hat{\omega}_{n+2, \beta} \sin \theta_{2}$, where $\hat{\omega}_{n+1, \beta}=\left\langle\bar{D} \hat{e}_{n+1}, e_{\beta}\right\rangle, \hat{\omega}_{n+2, \beta}=\left\langle\bar{D} e_{n+2}, e_{\beta}\right\rangle$, and \bar{D} denotes the covariant differential operator in \bar{M}. Thus $\omega_{n+1, \beta} \equiv \omega_{n+2, \beta} \equiv 0\left(\bmod \omega_{1}, \cdots, \omega_{n}\right)$. Next, from $\omega_{i \beta}=0$ and (1.3) it follows that

$$
\begin{equation*}
\omega_{i, n+1} \wedge \omega_{n+1, \beta}+\omega_{i, n+2} \wedge \omega_{n+2, \beta}=0 \tag{1.7}
\end{equation*}
$$

By assuming $\omega_{n+2, \beta}=\rho \omega_{n+1, \beta}$ at x, (1.7) implies $\left(\omega_{i, n+1}+\rho \omega_{i, n+2}\right) \wedge \omega_{n+1, \beta}=0$.

Since A_{n+1} and $A_{n_{+2}}$ are linearly independent in $S_{n}, A_{n+1}+\rho A_{n+2} \neq 0$, from which follows rank $\left(A_{n+1}+\rho A_{n+2}\right)>1$ with trace $\left(A_{n+1}+\rho A_{n+2}\right)=0$. Hence $\omega_{n+1, \beta}=\omega_{n+2, \beta}=0$. q.e.d.

Now for any $v \in \hat{N}$, we define a linear mapping $\psi_{v}: M_{x} \rightarrow O_{x}$ by

$$
\begin{equation*}
\psi_{v}(X)=\sum_{\beta>n+2}\left\langle v, e_{n+1} \omega_{n+1, \beta}(X)+e_{n+2} \omega_{n+2, \beta}(X)\right\rangle e_{\beta}, \tag{1.8}
\end{equation*}
$$

where $b \in B_{1}, X \in M_{x} . \psi_{v}$ is well defined by Lemma 1 .
The space of relative nullity of M in \bar{M} at x is the set of $X \in M_{x}$ such that $\omega_{i \alpha}(X)=0, i=1,2, \cdots, n ; \alpha=n+1, \cdots, n+\nu$, which, in general, is denoted by \mathfrak{l}_{x}. Put

$$
\begin{equation*}
M_{x}=\mathfrak{w}_{x}+\mathfrak{r}_{x}, \quad \mathfrak{w}_{x} \perp \mathfrak{r}_{x} \tag{1.9}
\end{equation*}
$$

Lemma 2. If $\omega_{n+1, \beta} \wedge \omega_{n+2, \beta} \neq 0$ for a fixed $\beta>n+2$ in B_{1} at $x \in M$, we can choose frames $b \in B_{1}$ such that $e_{1}, e_{2} \in \mathfrak{w}_{x}, e_{3}, \cdots, e_{n} \in \mathfrak{l}_{x}$ and

$$
\begin{align*}
& \omega_{1, n+1}=\lambda \omega_{1}, \quad \omega_{2, n+1}=-\lambda \omega_{2}, \quad \omega_{3, n+1}=\cdots=\omega_{n, n+1}=0, \\
& \omega_{1, n+2}=\mu \omega_{2}, \quad \omega_{2, n+2}=\mu \omega_{1}, \quad \omega_{3, n+2}=\cdots=\omega_{n, n+2}=0, \tag{1.10}\\
& \omega_{n+1, \beta} \equiv \omega_{n+2, \beta} \equiv 0 \quad\left(\bmod \omega_{1}, \omega_{2}\right), \quad \lambda \neq 0, \quad \mu \neq 0 .
\end{align*}
$$

Proof. From (1.7), we have

$$
\omega_{i, n+1} \wedge \omega_{n+1, \beta} \wedge \omega_{n+2, \beta}=\omega_{i, n+2} \wedge \omega_{n+1, \beta} \wedge \omega_{n+2, \beta}=0
$$

By the assumption and Lemma 1, we can choose frames (x, e_{1}, \cdots, e_{n}) such that $\omega_{n+1, \beta} \wedge \omega_{n+2, \beta}=f \omega_{1} \wedge \omega_{2}, f \neq 0$. Then the above equations imply $\omega_{i, n+1} \equiv \omega_{i, n+2} \equiv 0\left(\bmod \omega_{1}, \omega_{2}\right)$, and therefore we can choose $b \in B_{1}$ such that ${ }^{2}$ $\left\langle A_{n+1}, A_{n+2}\right\rangle=0$ and

$$
\omega_{1, n+1}=\lambda \omega_{1}, \quad \omega_{2, n+1}=-\lambda \omega_{2}, \quad \omega_{r, n+1}=\omega_{r, n+2}=0, \quad 2<r \leq n
$$

Then putting $\omega_{1, n+2}=b_{1} \omega_{1}+\mu \omega_{2}, \omega_{2, n+2}=\mu \omega_{1}+b_{2} \omega_{2}$, we have $n\left\langle A_{n+1}, A_{n+2}\right\rangle$ $=\lambda\left(b_{1}-b_{2}\right)=0$, so that $b_{1}=b_{2}=0$. Thus we obtain (1.10). It is clear that $e_{1}, e_{2} \in \mathfrak{w}_{x}$, and $e_{3}, \cdots, e_{n} \in \mathfrak{l}_{x}$.

Theorem 1. If M^{n} is minimal and of M-index 2 in a Riemannian manifold $\bar{M}^{n+\nu}$ of constant curvature \bar{c} at each point, then $\psi_{v}, v \in \hat{N}_{x}, v \neq 0$, has a common image $\psi_{v}\left(M_{x}\right)$ whose dimension is at most 2 . If the rank of ψ_{v} is constantly zero for $v \in \hat{N}_{x}$, then the geodesic codimension of M^{n} is 2 , and M^{n} is also minimal and of M-index 2 in the geodesic submanifold \bar{M}^{n+2} in $\bar{M}^{n+\nu}$ which contains M^{n}. If the rank of ψ_{v} is not zero, then

[^1]$$
\text { (i) } \quad \operatorname{dim} \mathfrak{l}_{x}=n-2, \quad \text { (ii) } \quad \psi_{v}\left(\mathfrak{l}_{x}\right)=0 .
$$

Proof. If ψ_{v} is trivial for any v, then $\omega_{n+1, \beta}=\omega_{n+2, \beta}=0, \beta>n+2$, in B_{1}. On the other hand, the system of Pfaffian equations:

$$
\begin{array}{r}
\bar{\omega}_{\beta}=0, \quad \bar{\omega}_{i \beta}=0, \quad \bar{\omega}_{n+1, \beta}=0, \quad \bar{\omega}_{n+2, \beta}=0, \tag{1.11}\\
i=1, \cdots, n ; \beta=n+3, \cdots, n+\nu
\end{array}
$$

in $F\left(\bar{M}^{n+\nu}\right)$ is completely integrable and the image of any maximal integral submanifold under the projection $F\left(\bar{M}^{n+\nu}\right) \rightarrow \bar{M}^{n+\nu}$ is totally geodesic. Therefore M^{n} is contained in an $(n+2)$-dimensional totally geodesic submanifold \bar{M}^{n+2} of $\bar{M}^{n+\nu}$. It is clear that M^{n} is minimal and of M-index 2 in \bar{M}^{n+2}.

Now suppose that $\psi_{v}, v \in \hat{N}_{x}$, is not trivial. By (1.8) and Lemma 1, there exists $\beta>n+2$ such that $\omega_{n+1, \beta} \wedge \omega_{n+2, \beta} \neq 0$. Choosing a frame $b \in B_{1}$, which satisfies (1.10), and substituting (1.7) we get, for any $\gamma>n+2$,

$$
\lambda \omega_{1} \wedge \omega_{n+1, r}+\mu \omega_{2} \wedge \omega_{n+2, r}=0, \quad-\lambda \omega_{2} \wedge \omega_{n+1, r}+\mu \omega_{1} \wedge \omega_{n+2, r}=0
$$

Hence we can put

$$
\begin{equation*}
\lambda \omega_{n+1, r}=f_{r} \omega_{1}+g_{r} \omega_{2}, \quad \mu \omega_{n+2, r}=g_{r} \omega_{1}-f_{r} \omega_{2} . \tag{1.12}
\end{equation*}
$$

By putting $F=\sum_{r>n+2} f_{r} e_{r}, G=\sum_{r>n+2} g_{r} e_{r}$, (1.8) can be written as

$$
\begin{align*}
\psi_{v}(X)= & \left\{\frac{1}{\lambda}\left\langle v, e_{n+1}\right\rangle \omega_{1}(X)-\frac{1}{\mu}\left\langle v, e_{n+2}\right\rangle \omega_{2}(X)\right\} F \tag{1.13}\\
& +\left\{\frac{1}{\lambda}\left\langle v, e_{n+1}\right\rangle \omega_{2}(X)+\frac{1}{\mu}\left\langle v, e_{n+2}\right\rangle \omega_{1}(X)\right\} G .
\end{align*}
$$

Since $\omega_{n+1, \beta} \wedge \omega_{n+2, \beta} \neq 0$, we have $f_{\beta}{ }^{2}+g_{\beta}{ }^{2} \neq 0$, so that $F \neq 0$ or $G \neq 0$. Since

$$
\operatorname{det}\left(\begin{array}{cc}
\begin{array}{c}
\left.v, e_{n+1}\right\rangle / \lambda
\end{array} & -\left\langle v, e_{n+2}\right\rangle / \mu \\
\left\langle v, e_{n+2}\right\rangle / \mu & \left\langle v, e_{n+1}\right\rangle / \lambda
\end{array}\right)=\frac{1}{\lambda^{2}}\left\langle v, e_{n+1}\right\rangle^{2}+\frac{1}{\mu^{2}}\left\langle v, e_{n+2}\right\rangle^{2}>0
$$

for $v \neq 0$, the image $\psi_{v}\left(M_{x}\right)$ is the linear space spanned by F and G, which does not depend on $v \in \hat{N}_{x}, v \neq 0$. Hence (i) and (ii) are clear by Lemma 2.

Remark. In Theorem 1, the set of $x \in M$ such that ψ_{v} is not trivial is open. For such points x, by means of (1.12) the frame $b=\left(x, e_{1}, \cdots, e_{n+\nu}\right)$ satisfying (1.10) does not depend on the choice of β such that $\omega_{n+1, \beta} \wedge \omega_{n+2, \beta} \neq 0$. In the above open set of M, F and G give normal vector fields, and the set of such frames is denoted by \boldsymbol{B}_{2}.

2. Minimal submanifolds with M-index 2 and geodesic codimension >2

Using the notations in $\S 1$, we have
Lemma 3. Suppose the rank of $\psi_{v}>0$ for every $v \neq 0$. Then the ($n-2$)dimensional distribution $\mathfrak{l}=\left\{\mathfrak{l}_{x}, x \in M^{n}\right\}$ is completely integrable and its integral submanifolds are totally geodesic in $\bar{M}^{n+\nu}$.

Proof. From $\omega_{r, n+1}=\omega_{r, n+2}=0(2<r \leq n)$ it follows that

$$
\omega_{r 1} \wedge \omega_{1, n+1}+\omega_{r 2} \wedge \omega_{2, n+1}=\omega_{r 1} \wedge \omega_{1, n+2}+\omega_{r 2} \wedge \omega_{2, n+2}=0
$$

in B_{2}, and from (1.10) that $\omega_{r 1} \wedge \omega_{1}-\omega_{r 2} \wedge \omega_{2}=\omega_{r 1} \wedge \omega_{2}+\omega_{r 2} \wedge \omega_{1}=0$. Thus we can put

$$
\begin{equation*}
\omega_{1 r}=p_{r} \omega_{1}-q_{r} \omega_{2}, \quad \omega_{2 r}=q_{r} \omega_{1}+p_{r} \omega_{1}, \tag{2.1}
\end{equation*}
$$

or $\omega_{1 r}+i \omega_{2 r}=\left(p_{r}+i q_{r}\right)\left(\omega_{1}+i \omega_{2}\right)$. Making use of these relations we can easily see that $d \omega_{1}=d \omega_{2}=0\left(\bmod \omega_{1}, \omega_{2}\right)$. Hence the Pfaffian equations $\omega_{1}=\omega_{2}=0$ are completely integrable, and, equivalently, so is the distribution \mathfrak{l}.

Let L^{n-2} be a maximal integral submanifold of \mathfrak{l}, along which we have $\omega_{1}=\omega_{2}=\omega_{n+1}=\cdots=\omega_{n+\nu}=0$ and $\omega_{1 r}=\omega_{2 r}=\omega_{r, n+1}=\cdots=\omega_{r, n+\nu}=0$ by (2.1), (1.10) and (1.6) in B_{2}. These show that L^{n-2} is totally geodesic in $\bar{M}^{n+\nu}$. q.e.d.

In the proof of Lemma 3, we have two special tangent vector fields defined by

$$
\begin{equation*}
P=\sum_{r=3}^{n} p_{r} e_{r}, \quad Q=\sum_{r=3}^{n} q_{r} e_{r} \tag{2.2}
\end{equation*}
$$

which we call the principal and subprincipal asymptotic vector fields, respectively.

Lemma 4. Under the condition of Lemma 3, the 2-dimensional distribution $\mathfrak{w}=\left\{\mathfrak{w}_{x}, x \in M^{n}\right\}$ is completely integrable if and only if the vector field Q vanishes. When $Q=0$, the integral submanifolds of \mathfrak{w} are totally umbilic in M^{n}.

Proof. \mathfrak{w}_{x} is given by the Pfaffian equations $\omega_{3}=\omega_{4}=\cdots=\omega_{n}=0$ at each point $x \in M^{n}$. By (2.1), in B_{2} we have $d \omega_{r} \equiv-2 q_{r} \omega_{1} \wedge \omega_{2}\left(\bmod \omega_{3}, \cdots, \omega_{n}\right)$, which shows that the distribution \mathfrak{w} is completely integrable if and only if $Q=0$.

When $Q=0$, (2.1) becomes

$$
\begin{equation*}
\omega_{1 r}=p_{r} \omega_{1}, \quad \omega_{2 r}=p_{r} \omega_{2}, \quad r=3, \cdots, n, \tag{2.3}
\end{equation*}
$$

which shows that any integral submanifold of the distribution \mathfrak{w} is totally umbilic in M^{n}. q.e.d.

We will explain the integrability of \mathfrak{w} without using the field Q.
Lemma 5. The distribution \mathfrak{w} is completely integrable if and only if the
following condition is satisfied: For any tangent vector fields $X \subset \mathfrak{w}$, and $Y \subset \mathfrak{l}$, we have $\left(\nabla_{X} Y\right)_{\mathfrak{w}} \| X$, where ∇_{X} denotes the covariant derivative in M^{n} with respect to X and $\left(\nabla_{X} Y\right)_{\mathfrak{w}}$ the \mathfrak{w}-component of the field $\nabla_{X} Y$.
Proof. Putting $X=\sum_{a=1}^{2} X^{a} e_{a}, Y=\sum_{r=3}^{n} Y^{r} e_{r}$ and considering e_{r} as local fields, we have

$$
\begin{aligned}
& \nabla_{X} Y=\sum_{a} X^{a} \sum_{r}\left\{\left(\nabla_{e_{a}} Y^{r}\right) e_{r}+Y^{r}\left(\omega_{r 1}\left(e_{a}\right) e_{1}+\omega_{r 2}\left(e_{a}\right) e_{2}\right)\right. \\
&\left.+\sum_{t>2} \omega_{r t}\left(e_{a}\right) e_{t}\right\} .
\end{aligned}
$$

Thus by (2.1),

$$
\left(\nabla_{X} Y\right)_{\mathfrak{w}}=-\left(X^{1}\langle P, Y\rangle-X^{2}\langle Q, Y\rangle\right) e_{1}-\left(X^{1}\langle Q, Y\rangle+X^{2}\langle P, Y\rangle\right) e_{2},
$$

that is,

$$
\begin{equation*}
\left(\nabla_{X} Y\right)_{\mathfrak{w}}=-\langle P, Y\rangle X-\langle Q, Y\rangle \operatorname{Rot}_{\pi / 2} X \tag{2.4}
\end{equation*}
$$

where $\operatorname{Rot}_{\pi / 2}$ denotes the rotation on \mathfrak{w}_{x} by the angle $\pi / 2$ in the direction from e_{1} to e_{2}. Hence $Q=0$ is equivalent to the statement of this lemma.

Lemma 6. Suppose the rank of $\psi_{v}>0$ for every $v \neq 0$. Then in B_{2},

$$
\begin{equation*}
\left\{d \sigma+i\left(1-\sigma^{2}\right) \hat{\omega}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0 \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
& \left\{(d \lambda-\lambda\langle P, d x\rangle)-i\left(2 \lambda \omega_{12}-\mu \hat{\omega}+\lambda\langle Q, d x\rangle\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0 \tag{2.5}\\
& \left\{(d \mu-\mu\langle P, d x\rangle)-i\left(2 \mu \omega_{12}-\lambda \hat{\omega}+\mu\langle Q, d x\rangle\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0 \tag{2.6}
\end{align*}
$$

$$
\begin{align*}
d \omega_{12} & =-\left\{\|P\|^{2}+\|Q\|^{2}+\bar{c}-\lambda^{2}-\mu^{2}\right\} \omega_{1} \wedge \omega_{2} \tag{2.8}\\
d \hat{\omega} & =-\frac{1}{\lambda \mu}\left\{2 \lambda^{2} \mu^{2}-\|F\|^{2}-\|G\|^{2}\right\} \omega_{1} \wedge \omega_{2} \tag{2.9}
\end{align*}
$$

where $\langle P, d x\rangle=\sum_{r=3}^{n} p_{r} \omega_{r},\langle Q, d x\rangle=\sum_{r=3}^{n} q_{r} \omega_{r}, \hat{\omega}=\omega_{n+1, n+2}$ and $\sigma=\mu / \lambda$.
Proof. From (1.10), (1.12) and (2.1) we get

$$
\begin{aligned}
& d \omega_{1, n+1}=-\lambda \omega_{12} \wedge \omega_{2}+\mu \hat{\omega} \wedge \omega_{2}=d \lambda \wedge \omega_{1}+\lambda \sum_{j=1}^{n} \omega_{1 j} \wedge \omega_{j} \\
& d \omega_{2, n+1}=-\lambda \omega_{12} \wedge \omega_{1}+\mu \hat{\omega} \wedge \omega_{1}=-d \lambda \wedge \omega_{2}-\lambda \sum_{j=1}^{n} \omega_{2 j} \wedge \omega_{j}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \left(d \lambda-\lambda \sum_{r} p_{r} \omega_{r}\right) \wedge \omega_{1}+\left(2 \lambda \omega_{12}-\mu \hat{\omega}+\lambda \sum_{r} q_{r} \omega_{r}\right) \wedge \omega_{2}=0 \\
& \left(d \lambda-\lambda \sum_{r} p_{r} \omega_{r}\right) \wedge \omega_{2}-\left(2 \lambda \omega_{12}-\mu \hat{\omega}+\lambda \sum_{r} q_{r} \omega_{r}\right) \wedge \omega_{1}=0
\end{aligned}
$$

which can be written as (2.5). Analogously we can get (2.6) from $d \omega_{1, n+2}$ and $d \omega_{2, n+2}$. From (2.5) and (2.6) it is easily seen that

$$
\left\{(\lambda d \mu-\mu d \lambda)+i\left(\lambda^{2}-\mu^{2}\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0
$$

which is equivalent to (2.7). We have also

$$
\begin{gathered}
d \omega_{12}=\sum_{r} \omega_{1 r} \wedge \omega_{r 2}+\omega_{1, n+1} \wedge \omega_{n+1,2}+\omega_{1, n+2} \wedge \omega_{n+2,2}-\bar{c} \omega_{1} \wedge \omega_{2} \\
=-\left\{\sum_{r}\left(p_{r}^{2}+q_{r}^{2}\right)+\bar{c}-\lambda^{2}-\mu^{2}\right\} \omega_{1} \wedge \omega_{2} \\
d \hat{\omega}=\sum_{a=1}^{2} \omega_{n+1, a} \wedge \omega_{a, n+2}+\sum_{\beta>n+2} \omega_{n+1, \beta} \wedge \omega_{\beta, n+2} \\
=-\frac{1}{\lambda \mu}\left\{2 \lambda^{2} \mu^{2}-\sum_{\beta}\left(f_{\beta}^{2}+g_{\beta}^{2}\right)\right\} \omega_{1} \wedge \omega_{2}
\end{gathered}
$$

which can be written as (2.8) and (2.9), respectively. q.e.d.
A curve in a Riemannian manifold of constant curvature is said to be even if its geodesic codimension ≤ 1.

Theorem 2. Under the conditions of Theorem 1 with non-trivial ψ_{v} for any $v \in \hat{N}, v \neq 0$, the following statements hold.

1) The set of all asymptotic tangent vectors of M^{n} in $\bar{M}^{n+\nu}$ constitute a completely integrable $(n-2)$-dimensional distribution \mathfrak{l} and its integral submanifolds are totally geodesic in $\bar{M}^{n+\nu}$.
2) The 2-dimensional distribution \mathfrak{w} orthogonally complement to \succeq is completely integrable if and only if the subprincipal asymptotic vector field Q of M^{n} vanishes, and then its integral surfaces are totally umblic in M^{n}.
3) The principal and subprincipal asymptotic vector fields P and Q of M^{n} are involutive.
4) When $P \neq 0$, the integral curves of P are even in $\bar{M}^{n+\nu}$, and they are geodesic of $\bar{M}^{n+\nu}$ if and only if $\langle P, Q\rangle=0$ or $P \| Q$.

Proof. 1) and 2) are evident from Lemmas 3 and 4. By (2.1) and (1.3) we obtain

$$
\begin{aligned}
d\left(\omega_{1 r}\right. & \left.+i \omega_{2 r}\right) \\
& =\sum_{j}\left(\omega_{1 j} \wedge \omega_{j r}+i \omega_{2 j} \wedge \omega_{j r}\right)-\bar{c}\left(\omega_{1}+i \omega_{2}\right) \wedge \omega_{r} \\
& =\left(d p_{r}+i d q_{r}\right) \wedge\left(\omega_{1}+i \omega_{2}\right)+\left(p_{r}+i q_{r}\right) \sum_{j}\left(\omega_{1 j} \wedge \omega_{j}+i \omega_{2 j} \wedge \omega_{j}\right)
\end{aligned}
$$

and therefore

$$
\begin{gather*}
\left\{d p_{r}+i d q_{r}+\sum_{t}\left(p_{t}+i q_{r}\right) \omega_{t r}-\left(p_{r}+i q_{r}\right) \sum_{t}\left(p_{t}+i q_{t}\right) \omega_{t}-\bar{c} \omega_{r}\right\} \tag{2.10}\\
\wedge\left(\omega_{1}+i \omega_{2}\right)=0
\end{gather*}
$$

from which it follows that for any tangent vector field $X \subset \mathfrak{l}$,

$$
\begin{gather*}
\bar{\nabla}_{X} P=\nabla_{X} P=\langle P, X\rangle P-\langle Q, X\rangle Q+\bar{c} X, \tag{2.11}\\
\bar{\nabla}_{X} Q=\nabla_{X} Q=\langle Q, X\rangle P+\langle P, X\rangle Q \tag{2.12}
\end{gather*}
$$

where \bar{V}_{X} denotes the covariant derivative in $\bar{M}^{n+\nu}$ with respect to X. In particular, we get $\nabla_{Q} P=\langle P, Q\rangle P-\|Q\|^{2} Q+\bar{c} Q, \nabla_{P} Q=\langle P, Q\rangle P+\|P\|^{2} Q$, and therefore $[P, Q]=\nabla_{P} Q-\nabla_{Q} P=\left\{\|P\|^{2}+\|Q\|^{2}-\bar{c}\right\} Q$, which shows that P and Q are involutive.

For part 4) of the theorem we notice the following equations derived from (2.11) and (2.12):

$$
\bar{\nabla}_{P} P=\left(\|P\|^{2}+\bar{c}\right) P-\langle P, Q\rangle Q, \quad \bar{\nabla}_{Q} Q=\|Q\|^{2} P+\langle P, Q\rangle Q
$$

which clearly show that if $P \wedge Q \neq 0$, then the integral surfaces of the distribution spanned by P and Q are totally geodesic in $\bar{M}^{n+\nu}$. Hence, when $P \neq 0$, the integral curves of P are even, and they are geodesics in $\bar{M}^{n+\nu}$ if and only if $\langle P, Q\rangle Q \| P$, that is, if and only if $\langle P, Q\rangle=0$ or $Q \| P$.

3. Minimal submanifolds with M-index 2 and vanishing subprincipal asymptotic vector field Q

In this section, we shall consider M^{n} in $\bar{M}^{n+\nu}$ as in Theorem 2 under the additional conditions $P \neq 0$ and $Q=0$, and suppose $n \geq 3$. Denote the integral surface of \mathfrak{w} and the integral curve of P through x by $W^{2}(x)$ and $\Gamma^{1}(x)$ respectively.

Lemma 7. The integral curves Γ^{1} of P are the orthogonal trajectories of a family of hypersurfaces of M^{n} containing the integral surfaces W^{2} of \mathfrak{w}.

Proof. Since $Q \equiv 0$, (2.10) is reduced to

$$
\begin{equation*}
d p_{r}+\sum_{t>2} p_{t} \omega_{t r}-p_{r} \sum_{t>2} p_{t} \omega_{t}-\bar{c} \omega_{r}=0 \tag{3.1}
\end{equation*}
$$

Since $P \neq 0$, we use only such frames b of B_{2} that

$$
\begin{equation*}
P=p e_{3}, \quad p>0 \tag{3.2}
\end{equation*}
$$

and denote the submanifold of these frames by B_{3}, in which

$$
\begin{equation*}
\omega_{a 3}=p \omega_{a}, \quad \omega_{a t}=0, \quad a=1,2 ; 3<t \leq n, \tag{3.3}
\end{equation*}
$$

and (3.1) becomes

$$
\begin{gather*}
d p=\left(p^{2}+\bar{c}\right) \omega_{3} \tag{3.4}\\
p \omega_{3 r}=\bar{c} \omega_{r}, \quad 3<r \leq n . \tag{3.5}
\end{gather*}
$$

By means of (3.3) and (3.5) we obtain $d \omega_{3}=0$ in B_{3}, so that there exists a local function v such that

$$
\begin{equation*}
\omega_{3}=d v \tag{3.6}
\end{equation*}
$$

(3.2) and (3.6) show that the family of level hypersurfaces of v is the required one.

Remark. By denoting the level hypersurface $v=c$ by $V^{n-1}(c)$, the function v may be considered as the arclength of the geodesics Γ^{1} measured from $V^{n-1}(0)$. Integrating (3.4), we easily have

Lemma 8. The norm p of the principal asymptotic vector field P is a function of v as follows:

$$
\begin{align*}
& p=(\bar{c})^{-1 / 2} \tan (v+a) \sqrt{\bar{c}}, \quad 0<v+a<\pi /(2 \sqrt{\bar{c}}), \quad(\bar{c}>0) \tag{1}\\
& p=1 /(a-v), \quad v<a, \quad(\bar{c}=0) \\
& p= \begin{cases}\sqrt{-\bar{c}} \tanh (a-v) \sqrt{-\bar{c}}, & (0<p<\sqrt{-\bar{c}}), \quad v<a,(\bar{c}<0) \\
\sqrt{-\bar{c}} \operatorname{coth}(a-v) \sqrt{-\bar{c}}, & (\sqrt{-\bar{c}}<p),\end{cases}
\end{align*}
$$

Here a is a constant on M^{n}.
Lemma 9. Let X be a Jacobi field along F^{1} determined by a family of integral geodesics of P. If $X(0) \in \mathfrak{F}$, then $\|X\| \rightarrow 0$ and $p \rightarrow+\infty$ when $v+a$ $\rightarrow \pi /(2 \sqrt{\bar{c}})$ for $\bar{c}>0$ and $v \rightarrow a$ for $\bar{c}=0$, or $\bar{c}<0$ and $\sqrt{-\bar{c}}<p$.

Proof. Let $x=x(v, \varepsilon)$ be a family of integral geodesics of P such that $x(v, \varepsilon) \in V^{n-1}(v)$. Putting $X=\partial x / \partial \varepsilon$, we obtain $X^{2}=\sum_{j \neq 3} \omega_{j}(X) \omega_{j}(X)$ and $\partial\|X\|^{2} / \partial v=2 \sum_{j \neq 3} \omega_{j}(X) \partial \omega_{j}(X) / \partial v$. On the other hand, we have

$$
\begin{aligned}
\partial \omega_{j}(X) / \partial v & =e_{3}\left(\omega_{j}(X)\right)=X\left(\omega_{j}\left(e_{3}\right)\right)-d \omega_{j}\left(X, e_{3}\right)-\omega_{j}\left(\left[X, e_{3}\right]\right) \\
& =-\sum_{k} \omega_{j k} \wedge \omega_{k}\left(X, e_{3}\right)
\end{aligned}
$$

since $[\partial / \partial v, \partial / \partial \varepsilon]=0$ and so $\omega_{j}\left(\left[X, e_{3}\right]\right)=0$. Thus
$\partial\|X\|^{2} / \partial v=-2 \sum_{a} \omega_{j}(X) \omega_{j 3}(X)=-2 \sum_{a} \omega_{a}(X) \omega_{a 3}(X)+2 \sum_{r>3} \omega_{r}(X) \omega_{3 r}(X)$.
Using (3.3) and (3.5), we have

$$
\begin{equation*}
\partial\|X\|^{2} / \partial v=-2 p\left\|X_{\mathfrak{t}}\right\|^{2}+2(\bar{c} / p)\left\|X_{\mathfrak{Y}}\right\|^{2} \tag{3.8}
\end{equation*}
$$

where $X_{\mathfrak{w}}$ and $X_{\mathfrak{l}}$ are the \mathfrak{w} and \mathfrak{l} components of X.

On the other hand, in B_{3} we have $d \omega_{r}=(\bar{c} / p) \omega_{3} \wedge \omega_{r}+\sum_{t>3} \omega_{r t} \wedge \omega_{t}$, so that the Pfaffian equations $\omega_{4}=\cdots=\omega_{n}=0$ are completely integrable. Thus, if $X \in \mathfrak{w}$ for a value of v, then so is for any v. For such X from (3.8) it follows that $\partial\|X\|^{2} / \partial v=-2 p\|X\|^{2}$. Integrating this and using Lemma 8, we have

$$
\begin{align*}
& \|X(v)\| /\|X(0)\|=\exp \left(-\int_{0}^{v} p d v\right) \\
& \quad= \begin{cases}\cos (v+a) \sqrt{\bar{c}} / \cos a \sqrt{\bar{c}} & (\bar{c}>0), \\
(a-v) / a(\bar{c}=0), \\
\sinh (a-v) \sqrt{-\bar{c}} / \sinh a \sqrt{-\bar{c}} & (\bar{c}<0 \text { and }-\bar{c}<p), \\
\cosh (a-v) \sqrt{-\bar{c}} / \cosh a \sqrt{-\bar{c}} & (\bar{c}<0 \text { and } 0<p<-\bar{c}),\end{cases} \tag{3.9}
\end{align*}
$$

which implies this lemma.
Lemma 10. Let X be a Jacobi field along Γ^{1} as in Lemma 9. If $X(0) \in \mathfrak{l}$, $\langle X(0), P\rangle=0$, then
i) $\|X\| \rightarrow 0$ and $p \rightarrow 0$, when $v+a \rightarrow 0$ for $\bar{c}>0$,
ii) $\quad\|X(v)\|=\|X(0)\|$ for $\bar{c}=0$,
iii) $\|X\| \rightarrow 0$ and $p \rightarrow 0$, or $\|X\| \rightarrow\|X(0)\| / \cos a \sqrt{-\bar{c}}$ and $p \rightarrow \infty$ when $v \rightarrow a$ for $\bar{c}<0$.
Proof. By Lemmas 3 and 7, we have $X \subset \mathfrak{l}$ and $\langle X, P\rangle=0$ for any v. Thus (3.8) implies $\partial\|X\|^{2} / \partial v=2(\bar{c} / p)\|X\|^{2}$, from which it follows that

$$
\begin{align*}
& \|X(v)\| /\|X(0)\|=\exp \left(\bar{c} \int_{0}^{v}(1 / p) d v\right) \\
& = \begin{cases}\sin (v+a) \sqrt{\bar{c}} / \sin a \sqrt{\bar{c}} \quad(\bar{c}>0), \\
1 \quad(\bar{c}=0), & \\
\cosh (a-v) \sqrt{-\bar{c}} / \cosh a \sqrt{-\bar{c}} \quad(\bar{c}<0 \text { and } \sqrt{-\bar{c}}<p), \\
\sinh (a-v) \sqrt{-\bar{c}} / \sinh a \sqrt{-\bar{c}} \quad(\bar{c}<0 \text { and } 0<p<\sqrt{-\bar{c}}) .\end{cases} \tag{3.10}
\end{align*}
$$

These relations and Lemma 8 imply i), ii) and iii). q.e.d.
By means of Lemmas 7, 9 and Theorem 2, we obtain
Theorem 3. Let $M^{n}(n \geq 3)$ be a maximal minimal submanifold ${ }^{3}$ in an $(n+\nu)$-dimensional space form $\bar{M}^{n+\nu}$ which is of M-index 2 at each point, whose associate mapping ψ_{v} is nontrivial for any $v \in \hat{N}, v \neq 0$, and subprincipal asymptotic vector field vanishes identically. Then M^{n} is a locus of $(n-2)$ dimensional totally geodesic subspaces in $L^{n-2}(y)$ in $\bar{M}^{n+\nu}$ through points y of

[^2]a surface W^{2} lying in a Riemannian hypersphere in $\bar{M}^{n+\nu}$ with center z_{0} such that
i) $\quad L^{n-2}(y)$ contains the geodesic from z_{0} to y,
ii) the $(n-3)$-dimensional tangent spaces to the intersection of $L^{n-2}(y)$ and the hypersphere at y are parallel along W^{2} in $\bar{M}^{n+\nu}$.

Proof. It is sufficient to prove ii). In B_{3}, for $3<r \leq n$, by (3.3) and (3.5) we have $\bar{D} e_{r}=-(\bar{c} / p) \omega_{r} e_{3}+\sum \omega_{r t} e_{t}$. Thus, along $W^{2}, \bar{D} e_{r}=\sum_{t>3}^{n} \omega_{r t} e_{t}$, which shows that the tangent space in ii), i.e., the space spanned by $e_{4}, e_{5}, \cdots, e_{n}$, is parallel along W^{2}. q.e.d.

This theorem tells us how to construct a minimal submanifold in a space form as in the statement.

4. Minimal submanifolds with M-index 2, vanishing Q and ψ_{v} of rank 1

In this section, we shall investigate M^{n} in $\bar{M}^{n+\nu}$ as in Theorem 3 under the condition that $\psi_{v}, v \in \hat{N}, v \neq 0$, is of rank 1 everywhere. By this assumption and (1.13), we can choose frames b in B_{3} such that

$$
\begin{equation*}
F=f e_{n+3}, \quad G=g e_{n+3}, \quad f^{2}+g^{2} \neq 0 \tag{4.1}
\end{equation*}
$$

Denoting the set of these frames by B_{4}, from (1.12) we get

$$
\begin{gather*}
\lambda \omega_{n+1, n+3}=f \omega_{1}+g \omega_{2}, \quad \mu \omega_{n+2, n+3}=g \omega_{1}-f \omega_{2} \tag{4.2}\\
\omega_{n+1, \gamma}=\omega_{n+2, r}=0 \quad(\gamma>n+3)
\end{gather*}
$$

Theorem 4. If M^{n} is minimal and of M-index 2 in $\bar{M}^{n+\nu}$ of constant curvature, ψ_{v} is of rank 1 for any nonzero $v \in \hat{N}$, and $Q \equiv 0$, then there exists a totally geodesic submanifold \bar{M}^{n+3} of $\bar{M}^{n+\nu}$ containing M^{n}, in which M^{n} has the same properties ${ }^{4}$.

Proof. Using the same notations as in \S 3, it is sufficient to show $\omega_{n+3, \gamma}=0$ $(\gamma>n+3)$ in B_{4}. From (4.2), we get

$$
\begin{aligned}
& d \omega_{n+1, \gamma}=(1 / \lambda)\left(f \omega_{1}+g \omega_{2}\right) \wedge \omega_{n+3, \gamma}=0, \\
& d \omega_{n+2, r}=(1 / \mu)\left(g \omega_{1}-f \omega_{2}\right) \wedge \omega_{n+3, \gamma}=0,
\end{aligned}
$$

which imply $\omega_{n+3, \gamma}=0$ since $\left(f \omega_{1}+g \omega_{2}\right) \wedge\left(g \omega_{1}-f \omega_{2}\right) \neq 0$. q.e.d.
By virtue of the above theorem, we may put $\nu=3$ in our case from the local point of view.

Lemma 11. Under the conditions of Theorem 4, in B_{4} we have the following:

[^3]\[

$$
\begin{gather*}
\left\{(d \log \lambda-p d v)-i\left(2 \omega_{12}-\sigma \hat{\omega}\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0 \tag{4.3}\\
d \omega_{12}=-\left(p^{2}+\bar{c}-\lambda^{2}-\mu^{2}\right) \omega_{1} \wedge \omega_{2} \tag{4.4}\\
d \hat{\omega}=-(1 /(\lambda \mu))\left(2 \lambda^{2} \mu^{2}-f^{2}-g^{2}\right) \omega_{1} \wedge \omega_{2} \tag{4.5}\\
\left\{d \log (f-i g)-d \log \lambda-p d v-i \omega_{12}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right) \\
-\frac{i}{f-i g} \hat{\omega} \wedge\left\{f\left(\left(2 \sigma-\frac{1}{\sigma}\right) \omega_{1}+\frac{i}{\sigma} \omega_{2}\right)\right. \tag{4.6}\\
\left.\quad-i g\left(\frac{1}{\sigma} \omega_{1}+i\left(2 \sigma-\frac{1}{\sigma}\right) \omega_{2}\right)\right\}=0
\end{gather*}
$$
\]

Proof. By (3.3), (3.6) and $Q \equiv 0$, we get (4.3) immediately from (2.5). (4.4) and (4.5) are trivial from (2.8) and (2.9).

Now from (4.2) exterior derivation gives

$$
\begin{aligned}
d f \wedge & \omega_{1}+d g \wedge \omega_{2}-(d \log \lambda+p d v) \wedge\left(f \omega_{1}+g \omega_{2}\right) \\
& \quad-\left(\omega_{12}+\frac{1}{\sigma} \hat{\omega}\right) \wedge\left(g \omega_{1}-f \omega_{2}\right)=0 \\
d f \wedge & \omega_{2}-d g \wedge \omega_{1}+(d \log \mu+p d v) \wedge\left(g \omega_{1}-f \omega_{2}\right) \\
& \quad-\left(\omega_{12}+\sigma \hat{\omega}\right) \wedge\left(f \omega_{1}+g \omega_{2}\right)=0
\end{aligned}
$$

which can be written as, in consequence of $d \log \mu=d \log \lambda+d \log \sigma$,

$$
\begin{aligned}
\{d(f-i g) & \left.-\left(d \log \lambda+p d v+i \omega_{12}\right)(f-i g)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right) \\
& +\left(i d \log \sigma-\frac{1}{\sigma} \hat{\omega}\right) \wedge\left(g \omega_{1}-f \omega_{2}\right)-i \sigma \hat{\omega} \wedge\left(f \omega_{1}+g \omega_{2}\right)=0
\end{aligned}
$$

Since we have, from (2.7),

$$
d \log \sigma \wedge \omega_{1}=\left(\frac{1}{\sigma}-\sigma\right) \hat{\omega} \wedge \omega_{2}, \quad d \log \sigma \wedge \omega_{2}=-\left(\frac{1}{\sigma}-\sigma\right) \hat{\omega} \wedge \omega_{1}
$$

substituting these in the above last equation we get (4.6).
Remark. $\hat{N}=\bigcup_{x \in M} \hat{N}_{x}$ introduced in $\S 2$ is considered as a vector bundle over M^{n} with 2-dimensional fibre and has a metric connection induced from $\bar{M}^{n+\nu} . \hat{\omega}=\omega_{n+1, n+2}$ is its connection form and $d \hat{\omega}$ is its curvature form. Therefore $\hat{\omega}$ is a geometrical quantity of M^{n} in \bar{M}^{n+3}, which may be called the minimal torsion form of M^{n}.
Lemma 12. Under the condition of Theorem 4 and the additional conditions:
(α) $\hat{\omega} \neq 0$, and $\sigma=\mu / \lambda$ is constant on W^{2},
(β) W^{2} is of constant curvature,
where W^{2} is an integral surface of the distribution \mathfrak{w}, for W^{2} we have the following:

$$
\begin{equation*}
\sigma=1 \text { or }-1 \text { and } 2 \lambda^{2}=p^{2}+\bar{c} \tag{4.7}
\end{equation*}
$$

W^{2} is flat,
and, by supposing $\sigma=1$ and $\omega_{12}=d \theta$ on W^{2},

$$
\begin{gather*}
\hat{\omega}=2 d \theta \tag{4.9}\\
d x=R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right), \tag{4.10}\\
\bar{D}\left(e_{1}^{*}+i e_{2}^{*}\right)=e_{3} p d z+\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) \lambda d \bar{z} \tag{4.11}\\
\bar{D} e_{3}=-p R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right), \tag{4.12}\\
\bar{D}\left(e_{n+1}^{*}+i e_{n+2}^{*}\right)=-\left(e_{1}^{*}+i e_{2}^{*}\right) \lambda d z+e_{n+3} \sqrt{2} \lambda d \bar{z} \tag{4.13}\\
\left.\bar{D} e_{n+3}=-\sqrt{2} \lambda R\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) d z\right), \tag{4.14}
\end{gather*}
$$

where z is an isothermal coordinate of W^{2} such that

$$
\begin{equation*}
\omega_{1}+i \omega_{2}=\exp (-i \theta) d z \tag{4.15}
\end{equation*}
$$

$$
\begin{equation*}
e_{1}^{*}+i e_{2}^{*}=\exp (i \theta)\left(e_{1}+i e_{2}\right), e_{n+1}^{*}+i e_{n+2}^{*}=\exp (2 i \theta)\left(e_{n+1}+i e_{n+2}\right) \tag{4.16}
\end{equation*}
$$

Proof. From (2.7) and (α), we get $1-\sigma^{2}=0$, i.e., $\sigma=1$ or -1 , so that we may suppose $\sigma=1$. By means of (β), on W^{2} we put $d \omega_{12}=-c \omega_{1} \wedge \omega_{2}$, where c is a constant. Then (4.4) implies $2 \lambda^{2}=p^{2}+\bar{c}-c$, and λ is constant on W^{2} by Lemma 8 and Theorem 3. Therefore (4.3) implies $\hat{\omega}=2 \omega_{12}$ on W^{2}, from which we have $f^{2}+g^{2}=2 \lambda^{2}\left(\lambda^{2}-c\right)$ by (4.5), so that $f^{2}+g^{2}$ is also constant on W^{2}. Putting $f-i g=\sqrt{2} \lambda \sqrt{\lambda^{2}-c} \exp (-i \varphi)$, from (4.6) we get the relation $\omega_{12}+\hat{\omega}+d \varphi=0$, i.e., $3 \omega_{12}+d \varphi=0$. Thus we have $d \omega_{12}=d \hat{\omega}=0$ on W^{2}, from which follows $c=0$.

Hence W^{2} must be flat, and we may put

$$
\begin{equation*}
f+i g=\sqrt{2} \lambda^{2} \exp (-3 i \theta), \quad \varphi=-3 \theta \tag{4.17}
\end{equation*}
$$

On the other hand, we have $d\left(\omega_{1}+i \omega_{2}\right)=-i \omega_{12} \wedge\left(\omega_{1}+i \omega_{2}\right)=i d \theta \wedge\left(\omega_{1}+i \omega_{2}\right)$, and therefore there exists a local isothermal coordinate z as (4.15). Using (4.15) and (4.17), (4.2) can be written as

$$
\begin{equation*}
\omega_{n+1, n+3}+i \omega_{n+2, n+3}=\sqrt{2} \lambda \exp (-2 i \theta) d \bar{z} \quad \text { on } W^{2} . \tag{4.18}
\end{equation*}
$$

Now, to derive the Frenet formulas of W^{2}, we first have

$$
d x=e_{1} \omega_{1}+e_{2} \omega_{2}=R\left(\left(e_{1}+i e_{2}\right)\left(\omega_{1}-i \omega_{2}\right)\right)=R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right)
$$

By means of (3.3), (1.10), (4.15) and (4.16), we obtain

$$
\begin{aligned}
\bar{D}\left(e_{1}+i e_{2}\right)= & -\left(e_{1}+i e_{2}\right) i d \theta+e_{3} p\left(\omega_{1}+i \omega_{2}\right) \\
& +\left(e_{n+1}+i e_{n+2}\right) \lambda\left(\omega_{1}-i \omega_{2}\right)
\end{aligned}
$$

which is equivalent to (4.11). Analogously,

$$
\bar{D} e_{3}=-e_{1} \omega_{13}-e_{2} \omega_{23}=-p R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right)
$$

From the relations

$$
\begin{aligned}
& \bar{D} e_{n+1}=-\lambda\left(e_{1} \omega_{1}-e_{2} \omega_{2}\right)+2 e_{n+2} d \theta+e_{n+3} \omega_{n+1, n+3} \\
& \bar{D} e_{n+2}=-\lambda\left(e_{1} \omega_{2}+e_{2} \omega_{1}\right)-2 e_{n+2} d \theta+e_{n+3} \omega_{n+2, n+3}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\bar{D}\left(e_{n+1}+i e_{n+2}\right)= & -\left(e_{1}+i e_{2}\right) \lambda\left(\omega_{1}+i \omega_{2}\right)-2\left(e_{n+1}+i e_{n+2}\right) i d \theta \\
& +e_{n+3}\left(\omega_{n+1, n+3}+i \omega_{n+2, n+3}\right)
\end{aligned}
$$

which is equivalent to (4.13) by (4.15), (4.16) and (4.18). Finally,

$$
\begin{aligned}
\bar{D} e_{n+3} & =-R\left(\left(e_{n+1}+i e_{n+2}\right)\left(\omega_{n+1, n+3}-i \omega_{n+2, n+3}\right)\right. \\
& =-R\left(\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) \sqrt{2} \lambda d z\right) .
\end{aligned}
$$

5. Examples of minimal submanifolds of M-index 2

In this section, we shall find, as in Theorem 4, minimal submanifolds in space forms, for which a W^{2} satisfies the conditions (α) and (β) in Lemma 12, and we shall suppose $n \geq 3$.

Case 1. \bar{M}^{n+3} is the Euclidean space E^{n+3}. By Lemmas 12 and 8 the Frenet formulas for W^{2} are

$$
\begin{align*}
d x & =R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right), \\
d\left(e_{1}^{*}+i e_{2}^{*}\right) & =e_{3} p d z+\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) \lambda d \bar{z}, \\
d e_{3} & =-p R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right), \tag{5.1}\\
d\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) & =-\left(e_{1}^{*}+i e_{2}^{*}\right) \lambda d z+e_{n+3}(\sqrt{2} \lambda d \bar{z}), \\
d e_{n+3} & =-\sqrt{2} \lambda R\left(\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) d z\right),
\end{align*}
$$

where

$$
\begin{equation*}
p=1 /(a-v), \quad \lambda=p / \sqrt{2}, \quad v<a, 0<a \tag{5.2}
\end{equation*}
$$

From (5.1) it follows that $x+e_{3} / p$ is a fixed point and so we may suppose that it is the origin O of $E^{n+3}=R^{n+3}$. Then we have

$$
\begin{equation*}
x=-e_{3} / p \tag{5.3}
\end{equation*}
$$

From (5.1) again it is easily seen that $e_{3}, e_{1}^{*}+i e_{2}^{*}, e_{n+1}^{*}+i e_{n+2}^{*}, e_{n+3}$ are all solutions of the partial differential equation

$$
\frac{\partial^{2} X}{\partial z \partial \bar{z}}=-\lambda^{2} X
$$

Noticing this fact, we shall give a solution of (5.1).
In C^{3} we choose 3 fixed constant vectors A_{1}, A_{2} and A_{3} such that

$$
\begin{align*}
& A_{j} \cdot A_{j}=0, \quad A_{j} \cdot A_{k}=A_{j} \cdot \bar{A}_{k}=0 \\
& A_{1} \cdot \bar{A}_{1}+A_{2} \cdot \bar{A}_{2}+A_{3} \cdot \bar{A}_{3}=1 / 2 \tag{5.4}\\
& \quad i, k=1,2,3 ; j \neq k
\end{align*}
$$

and put

$$
\begin{align*}
U=\sum_{j=1}^{3} & \left\{A_{j} \exp \lambda\left(z \exp \left(i \alpha_{j}\right)-\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right. \tag{5.5}\\
& \left.+\bar{A}_{j} \exp \lambda\left(-z \exp \left(i \alpha_{j}\right)+\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right\}
\end{align*}
$$

where the bar denotes the complex conjugate. It is clear that $U=\bar{U}$ and $U \cdot U=1$ by (5.4). Next putting $\partial U / \partial \bar{z}=-\lambda \xi / \sqrt{2}$, we have

$$
\begin{align*}
\xi=\sqrt{2} \sum_{j} \exp \left(-i \alpha_{j}\right) & \left\{A_{j} \exp \lambda\left(z \exp \left(i \alpha_{j}\right)-\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right. \tag{5.6}\\
& \left.-\bar{A}_{j} \exp \lambda\left(-z \exp \left(i \alpha_{j}\right)+\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right\}
\end{align*}
$$

It is easily seen that $\xi \cdot \bar{\xi}=2, U \cdot \xi=0$ and

$$
\begin{equation*}
\xi \cdot \xi=-4 \sum_{j} A_{j} \cdot \bar{A}_{j}\left(\cos 2 \alpha_{j}-i \sin 2 \alpha_{j}\right) \tag{5.7}
\end{equation*}
$$

Putting $\partial \xi / \partial \bar{z}=\lambda \eta$, we obtain

$$
\begin{align*}
\eta=-\sqrt{2} \sum_{j} \exp \left(-2 i \alpha_{j}\right) & \left\{A_{j} \exp \lambda\left(z \exp \left(i \alpha_{j}\right)-\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right. \tag{5.8}\\
& \left.+\bar{A}_{j} \exp \lambda\left(-z \exp \left(i \alpha_{j}\right)+\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right\}
\end{align*}
$$

and therefore $\eta \cdot \bar{\eta}=2, \xi \cdot \eta=\xi \cdot \bar{\eta}=0$,

$$
\begin{gather*}
\eta \cdot \eta=4 \sum_{j} A_{j} \cdot \bar{A}_{j}\left(\cos 4 \alpha_{j}-i \sin 4 \alpha_{j}\right), \tag{5.9}\\
U \cdot \eta=\xi \cdot \xi / \sqrt{2} . \tag{5.10}
\end{gather*}
$$

Finally putting $\partial \eta / \partial \bar{z}=\sqrt{2} \lambda V$, we have

$$
\begin{align*}
& V=\sum_{j} \exp \left(-3 i \alpha_{j}\right)\left\{A_{j} \exp \lambda\left(z \exp \left(i \alpha_{j}\right)-\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right. \tag{5.11}\\
&\left.-\bar{A}_{j} \exp \lambda\left(-z \exp \left(i \alpha_{j}\right)+\bar{z} \exp \left(-i \alpha_{j}\right)\right)\right\}
\end{align*}
$$

Thus $V \cdot \bar{V}=1, U \cdot V=U \cdot \bar{V}=0, \eta \cdot V=\bar{\eta} \cdot V=0$ and

$$
\begin{gather*}
V \cdot V=-2 \sum_{j} A_{j} \cdot \bar{A}_{j}\left(\cos 6 \alpha_{j}-i \sin 6 \alpha_{j}\right) \tag{5.12}\\
\xi \cdot V=-\eta \cdot \eta / \sqrt{2}, \quad \bar{\xi} \cdot V=-\xi \cdot \xi / \sqrt{2} . \tag{5.13}
\end{gather*}
$$

By means of the above calculation, in addition to (5.4), if $A_{j}, \alpha_{j}, j=1,2,3$, satisfy

$$
\begin{gather*}
\sum_{j} A_{j} \cdot \bar{A}_{j}\left(\cos 2 \alpha_{j}-i \sin 2 \alpha_{j}\right)=0, \tag{5.14}\\
\sum_{j} A_{j} \cdot \bar{A}_{j}\left(\cos 4 \alpha_{j}-i \sin 4 \alpha_{j}\right)=0, \tag{5.15}\\
3 \alpha_{j} \equiv \pi / 2 \quad(\bmod \pi) \tag{5.16}
\end{gather*}
$$

then we obtain a solution of (5.1). by putting $e_{3}=U, e_{1}^{*}+i e_{2}^{*}=\xi, e_{n+1}^{*}+i e_{n+2}^{*}$ $=\eta, e_{n+3}=V$ and considering $C^{3}=R^{6}$.

Condition (5.14) means that the broken segment $P_{0} P_{1} P_{2} P_{3}$ in the plane such that $P_{j-1} P_{j}=A_{j} \cdot \bar{A}_{j}$ and $\arg P_{j-1} P_{j}=2 \alpha_{j}, j=1,2,3$, is closed, i.e., $P_{0}=P_{3}$. Condition (5.15) also has an analogous meaning. By an elementary consideration, we see that the triangle $P_{1} P_{2} P_{3}$ must be equilateral, i.e.,

$$
\begin{equation*}
A_{j} \cdot \bar{A}_{j}=1 / 6, \quad j=1,2,3 . \tag{5.17}
\end{equation*}
$$

Conversely, the above meanings are also sufficient for the validity of (5.14) and (5.15) respectively. Now, using the triangle $P_{1} P_{2} P_{3}$, and interchanging A_{j} with $\bar{A}_{j}, j=1,2,3$, and the order of the index j, we may have the unique values of α_{j}, namely,

$$
\begin{equation*}
\alpha_{1}=\pi / 6, \quad \alpha_{2}=\pi / 2, \quad \alpha_{3}=5 \pi / 6 \tag{5.18}
\end{equation*}
$$

Thus we have a W^{2} in $R^{6}=C^{3}$ given by

$$
\begin{align*}
x=-(a-v) & \left\{A_{1} \exp \frac{i\left(u_{1}+\sqrt{3} u_{2}\right)}{\sqrt{2}(a-v)}+\bar{A}_{1} \exp \frac{-i\left(u_{1}+\sqrt{3} u_{2}\right)}{\sqrt{2}(a-v)}\right. \\
& +A_{2} \exp \frac{2 i u_{1}}{\sqrt{2}(a-v)}+\bar{A}_{2} \exp \frac{-2 i u_{1}}{\sqrt{2}(a-v)} \tag{5.19}\\
& \left.+A_{3} \exp \frac{i\left(u_{1}-\sqrt{3} u_{2}\right)}{\sqrt{2}(a-v)}+\bar{A}_{3} \exp \frac{-i\left(u_{1}-\sqrt{3} u_{2}\right)}{\sqrt{2}(a-v)}\right\}
\end{align*}
$$

where $z=u_{1}+i u_{2}$, and A_{1}, A_{2}, A_{3} are complex vectors satisfying the conditions (5.4) and (5.17). Hence, by virtue of Theorem 3, we can construct a minimal submanifold M^{n} in E^{n+3}, as mentioned at the beginning of this section, as follows: Consider $E^{n+3}=R^{n+3}=R^{6} \times R^{n-3}$, and take a W^{2} given by (5.19) in R^{6} and, at each point $y \in W^{2}$, the $(n-2)$-dimensional linear subspace $L^{n-2}(y)$ parallel to $e_{3}=U$ and R^{n-3}. Then the locus of the moving $L^{n-2}(y)$ forms a submanifold M^{n} mentioned above.

Case 2. \bar{M}^{n+3} is the unit sphere S^{n+3}. We may consider $S^{n+3} \subset E^{n+4}$. By putting $x=e_{n+4}$, the Frenet formulas for W^{2} are

$$
\begin{align*}
d x & =R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right), \\
d\left(e_{1}^{*}+i e_{2}^{*}\right) & =e_{3} p d z+\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) \lambda d \bar{z}-e_{n+4} d z, \\
d e_{3} & =-p R\left(\left(e_{1}^{*}+i e_{2}^{*}\right) d \bar{z}\right), \tag{5.20}\\
d\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) & =-\left(e_{1}^{*}+i e_{2}^{*}\right) \lambda d z+e_{n+3}(\sqrt{2} \lambda d \bar{z}), \\
d e_{n+3} & \left.=-\sqrt{2} \lambda R\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) d z\right),
\end{align*}
$$

where

$$
\begin{array}{r}
p=\tan (v+a), \quad \lambda=1 /(\sqrt{2} \cos (v+a)), \\
0<v+a<\pi / 2, \quad 0<a<\pi / 2 . \tag{5.21}
\end{array}
$$

From (5.20) it follows that $x+(1 / p) e_{3}=x+e_{3} \cot (v+a)$ is a fixed point, so that $e_{3} \cos (v+a)+e_{n+4} \sin (v+a)=e_{0}$ is a fixed unit vector and x is in an $(n+3)$-dimensional linear subspace E_{1}^{N+3} through the point $O_{1}=e_{0} \sin (v+a)$ and perpendicular to e_{0}. Thus W^{2} lies in the $(n+2)$-dimensional sphere $S^{n+3} \cap E_{1}^{n+3}=S_{1}^{n+2}(\cos (v+a))$ of radius $\cos (v+a)$, and we get $\overrightarrow{O_{1} x}=$ $-e_{3}^{*} \cos (v+a)$, where $e_{3}^{*}=e_{3} \sin (v+a)-e_{n+4} \cos (v+a)$. Using e_{3}^{*} we can easily obtain

$$
\begin{aligned}
d\left(e_{1}^{*}+i e_{2}^{*}\right) & =e_{3}^{*} \sqrt{2} \lambda d z+\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) \lambda d \bar{z} \\
d e_{3}^{*} & =-\sqrt{2} \lambda R\left(\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) e \bar{z}\right)
\end{aligned}
$$

and therefore the same equations with respect to $e_{1}^{*}+i e_{2}^{*}, e_{3}^{*}, e_{n+1}^{*}+i e_{n+2}^{*}, e_{n+3}$ as (5.1). Hence we can take a W^{2} in E_{1}^{n+3}, which is a solution of (5.20), and, at each point $y \in W^{2}$, an ($n-2$)-dimensional linear subspace $L^{* n-2}(y)$ in E_{1}^{n+3} through y as described in the previous case. Next, we project these $L^{* n-2}(y)$ onto S^{n+3} from O and denote the images by $L^{n-2}(y)$. The locus of the moving $L^{n-2}(y)$ forms a minimal submanifold M^{n} in S^{n+3}, which satisfies the conditions in Theorem 4 and (α) and (β) in Lemma 12.

Case 3. \bar{M}^{n+3} is the hyperbolic $(n+3)$-space H^{n+2} of curvature -1 . We use the Poincaré representation of H^{n+3} in the unit disk in R^{n+3} with the canonical coordinates x_{1}, \cdots, x_{n+3}. The Riemannian metric H^{n+3} is given by

$$
\begin{equation*}
d s^{2}=4 d x \cdot d x /(1-x \cdot x)^{2} \tag{5.22}
\end{equation*}
$$

where "." denotes the Euclidean inner product. Since the components of the Riemannian metric are

$$
g_{i j}=4 \delta_{i j} / h^{2}, \quad g^{i j}=h^{2} \delta^{i j} / 4, \quad h=1-x \cdot x
$$

the Christoffel symbols are $\Gamma_{i j}^{k}=2\left(\delta_{i}^{k} x_{j}+\delta_{j}^{k} x_{i}-\delta_{i j} x_{k}\right) / h$. For any vector field $X=\sum_{j} X^{j} \partial / \partial x_{j}$, its covariant differential with respect to the Riemannian connection of H^{n+3} is given by

$$
\begin{equation*}
D X=h\left[a(2 X / h)+4\{(x \cdot X) d x-x(X \cdot d x)\} / h^{2}\right] / 2 \tag{5.23}
\end{equation*}
$$

For any two tangent vector fields X, Y, we have $\langle X, Y\rangle=4 X \cdot Y / h^{2}$, where " \langle,$\rangle " denotes the inner product in H^{n+3}$. Therefore, if $b=\left(x, e_{1}, \cdots, e_{n+3}\right)$ is an orthonormal base in H^{n+3}, then $\left(x, 2 e_{1} / h, \cdots, 2 e_{n+3} / h\right)$ is the one in R^{n+3}.

Now we describe the Frenet formulas for W^{2} in H^{n+3} by means of the Poincaré representation (5.22). By putting

$$
\begin{array}{ll}
\xi=2\left(e_{1}^{*}+i e_{2}^{*}\right) / h, & U=2 e_{3} / h \tag{5.24}\\
\eta=2\left(e_{n+1}^{*}+i e_{n+2}^{*}\right) / h, & V=2 e_{n+3} / h
\end{array}
$$

(4.10), \cdots, (4.14) become

$$
\begin{aligned}
d x & =h(\xi d \bar{z}+\bar{\xi} d z) / 4 \\
d \xi & =\{U p-(x \cdot \xi) \bar{\xi} / 2+x\} d z+\{\eta \lambda-(x \cdot \xi) \xi / 2\} d \bar{z} \\
d U & =-\{p+(x \cdot U)\}(\xi d \bar{z}+\bar{\xi} d z) / 2 \\
d \eta & =-\{\xi \lambda+(x \cdot \eta) \bar{\xi} / 2\} d z+\{V \sqrt{2} \lambda-(x \cdot \eta) \xi / 2\} d \bar{z} \\
d V & =-\{\eta \lambda / \sqrt{2}+(x \cdot V) \xi \bar{z} / 2\} d z-\{\bar{\eta} \lambda / \sqrt{2}+(x \cdot V) \xi / 2\} d \bar{z}
\end{aligned}
$$

in consequence of (5.23) and

$$
\xi \cdot d x=h\{(\xi \cdot \xi) d \bar{z}+(\xi \cdot \bar{\xi}) d z\} / 4=h d z / 2,
$$

where

$$
\begin{equation*}
p=\operatorname{coth}(a-v), \quad \lambda=\sqrt{p^{2}-1} / \sqrt{2}, \quad v<a \tag{5.26}
\end{equation*}
$$

On the other hand, any geodesic starting from the origin $O=(0, \cdots, 0)$ in H^{n+3} is a Euclidean straight line segment in the unit disk. The arc lengths v and r in H^{n+3} and R^{n+3} have the relation as $v=\log (1+r) /(1-r)$ and $r=$ $\tanh (v / 2)$. Since any W^{2} is congruent to others under hyperbolic motions, we may suppose the focal point (z_{0} in Theorem 3) of W^{2} is the point O. Then we have

$$
\begin{equation*}
x=-U r=-U \tanh (v / 2) \tag{5.27}
\end{equation*}
$$

Replacing $a-v$ in (5.26) by v gives $h=1-x \cdot x=1 / \cosh ^{2}(v / 2), 2 / h=$ $\cosh v+1, \lambda=1 /(\sqrt{2} \sinh v), p-r=1 / \sinh v=\sqrt{2} \lambda$ and $x \cdot \xi=x \cdot \eta=$ $x \cdot V=0, x \cdot U=-r$ for W^{2}. Hence (5.25) is simplified as follows:

$$
\begin{align*}
d x & =(\xi d \bar{z}+\bar{\xi} d z) /(2(1+\cosh v)) \\
d \xi & =U \sqrt{2} \lambda d z+\eta \lambda d \bar{z} \\
d U & =-\sqrt{2} \lambda(\xi d \bar{z}+\bar{\xi} d z) / 2 \tag{5.28}\\
d \eta & =-\xi \lambda d z+V \sqrt{2} \lambda d \bar{z} \\
d V & =-\sqrt{2} \lambda(\eta d z+\bar{\eta} d \bar{z}) / 2
\end{align*}
$$

This system of equations except the first one is the system of equations (5.1) except its first one. Thus we see that we can construct a W^{2} in H^{n+3} by making use of result in case $\bar{M}^{n+3}=E^{n+3}$. In fact, considering $R^{n+3}=R^{6} \times R^{n-3}$, we take a surface W^{2} satisfying (5.28), and, at each point y of W^{2}, the ($n-2$)dimensional linear subspace $\hat{L}^{n-2}(y)$ through y and parallel to U and R^{n-3}.

Let $L^{n-2}(y)$ be the totally geodesic subspace of H^{n+3} tangent to $\hat{L}^{n-2}(y)$ at y. Then the locus of the moving $L^{n-2}(y), y \in W^{2}$, is a minimal submanifold M^{n} in H^{n+3}, which satisfies the required conditions.

References

[1] S. S. Chern, M. Do Carmo \& S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin, 1970, 60-75.
[2] T. Otsuki, A theory of Riemannian submanifolds, Kōdai Math. Sem. Rep. 20 (1968) 282-295.
[3] , Pseudo-umbilical submanifolds with M-index <1 in Euclidean spaces, Kōdai Math. Sem. Rep. 20 (1968) 296-304.
[4] -, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970) 145-173.
[5] -- On principal normal vector fields of submanifolds in a Riemannian manifold of constant curvature, J. Math. Soc. Japan 22 (1970) 35-46.
[6] -, Submanifolds with a regular principal normal vector field in a sphere, J. Differential Geometry 4 (1970) 121-131.

[^0]: Received June 20, 1970.
 ${ }^{1}$ In the following, i, j, k, \ldots run from 1 to n, and $\alpha, \beta, \gamma, \cdots$ from $n+1$ to $n+\nu$.

[^1]: ${ }^{2}$ In S_{n}, we define the inner product of any A and B by $\langle A, B\rangle=\operatorname{trace} A B / n$, so that S_{n} is a Euclidean space.

[^2]: ${ }^{3}$ "maximal" means here that M^{n} is not contained in a larger submanifold with the same properties.

[^3]: ${ }^{4}$ We have supposed $n \geq 3$, but Theorem 4 is also true for $n=2$.

