MINIMAL SUBMANIFOLDS WITH *M*-INDEX 2

TOMINOSUKE OTSUKI

For a submanifold M in a Riemannian manifold \overline{M} , the minimal index (Mindex) at a point of M is defined by the dimension of the linear space of all 2nd fundamental forms with vanishing trace. The geodesic codimension of M in \overline{M} is defined by the minimum of codimensions of M in totally geodesic submanifolds of \overline{M} containing M.

It is clear that M-index \leq geodesic codimension. In [4, Theorem 1], the author proved that if \overline{M} is of constant curvature, and M is minimal and of M-index 1 at each point, then its geodesic codimension is one. The purpose of the present paper is to investigate an analogous problem for minimal submanifolds with M-index 2. We shall obtain a condition for the geodesic codimension to become 2 (Theorem 1) and some examples (in § 5) of minimal submanifolds with M-index 2 and geodesic codimension 3 in the space forms.

1. Minimal submanifolds with *M*-index 2

Let $\overline{M} = \overline{M}^{n+\nu}$ be a Riemannian manifold of dimension $n + \nu$ and constant curvature \overline{c} , and $M = M^n$ be an *n*-dimensional submanifold in \overline{M} . Let $\overline{\omega}_A$, $\overline{\omega}_{AB} = -\overline{\omega}_{BA} (A, B = 1, 2, \dots, n + \nu)$ be the basic and connection forms of \overline{M} in the orthonormal frame bundle $F(\overline{M})$ which satisfy the structure equations

(1.1)
$$d\overline{\omega}_A = \sum_B \overline{\omega}_{AB} \wedge \overline{\omega}_B$$
, $d\overline{\omega}_{AB} = \sum_C \omega_{AC} \wedge \overline{\omega}_{CB} - \overline{c}\omega_A \wedge \overline{\omega}_B$.

Let B be the subbundle of $F(\overline{M})$ over M such that $b = (x, e_1, \dots, e_n, \dots, e_{n+\nu}) \in F(\overline{M})$ and $(x, e_1, \dots, e_n) \in F(M)$, where F(M) is the orthonormal frame bundle of M with the induced Riemannian metric from \overline{M} . Then deleting the bars of $\overline{\omega}_A$, $\overline{\omega}_{AB}$ in B we have¹

(1.2)
$$\omega_{\alpha} = 0$$
, $\omega_{i\alpha} = \sum_{j} A_{\alpha i j} \omega_{j}$, $A_{\alpha i j} = A_{\alpha j i}$

and

Received June 20, 1970.

¹ In the following, *i*, *j*, *k*, ... run from 1 to *n*, and α , β , γ , ... from n + 1 to $n + \nu$.

(1.3)
$$d\omega_{i} = \sum_{j} \omega_{ij} \wedge \omega_{j} ,$$
$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} - \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{j\alpha} - \bar{c}\omega_{i} \wedge \omega_{j} ,$$
$$d\omega_{i\alpha} = \sum_{k} \omega_{ik} \wedge \omega_{k\alpha} + \sum_{\beta} \omega_{i\beta} \wedge \omega_{\beta\alpha} ,$$
$$d\omega_{\alpha\beta} = -\sum_{i} \omega_{i\alpha} \wedge \omega_{j\beta} + \sum_{\gamma} \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} .$$

For any point $x \in M$, let N_x be the normal component to the tangent space $T_xM = M_x$ of $T_x\overline{M} = \overline{M}_x$. Denoting the set of all symmetric real matrices of order n by S_n , for any $b \in B$ we define a linear mapping $\varphi_b \colon N_x \to S_n$ by

(1.4)
$$\varphi_b(\sum_{\alpha} v_{\alpha} e_{\alpha}) = \sum_{\alpha} v_{\alpha} A_{\alpha}$$
, where $A_{\alpha} = (A_{\alpha ij})$.

Now suppose that M is minimal in \overline{M} and of M-index 2 at each point. Then

(1.5)
$$\operatorname{trace} A_{\alpha} = 0, \qquad \alpha = n+1, \cdots, n+\nu,$$

and N_x is decomposed as $N_x = O_x + \hat{N}_x$, $O_x = \varphi_b^{-1}(0)$, $O_x \perp \hat{N}_x$ and dim $\hat{N}_x = 2$, which does not depend on the choice of b over x and is smooth. Let B_1 be the set of b such that e_{n+1} , $e_{n+2} \in \hat{N}_x$. Then in B_1 we have

$$(1.6) \qquad \qquad \omega_{i,n+3} = \cdots = \omega_{i,n+y} = 0$$

Lemma 1. In B_1 for fixed $\beta > n + 2$ we have

$$egin{aligned} &\omega_{n+1,eta}\equiv\omega_{n+2,eta}\equiv 0 &(ext{mod}\;\omega_1,\cdots,\omega_n)\;, \ &\omega_{n+1,eta}=\omega_{n+2,eta}=0 ∨ &\omega_{n+1,eta}\wedge\omega_{n+2,eta}
eq 0\;. \end{aligned}$$

Proof. Let \hat{N} be the vector bundle over M with fibre \hat{N}_x , and take a smooth local cross section $(x, \hat{e}_{n+1}, \hat{e}_{n+2})$ of the orthonormal frame bundle of \hat{N} . Then for b we can put

$$e_{n+1} = \hat{e}_{n+1} \cos \theta_1 + \hat{e}_{n+2} \sin \theta_1$$
, $e_{n+2} = \hat{e}_{n+1} \cos \theta_2 + \hat{e}_{n+2} \sin \theta_2$,

and we have

$$\omega_{n+1,\beta} = \hat{\omega}_{n+1,\beta} \cos \theta_1 + \hat{\omega}_{n+2,\beta} \sin \theta_1 , \quad \omega_{n+2,\beta} = \hat{\omega}_{n+1,\beta} \cos \theta_2 + \hat{\omega}_{n+2,\beta} \sin \theta_2 ,$$

where $\hat{\omega}_{n+1,\beta} = \langle \overline{D}\hat{e}_{n+1}, e_{\beta} \rangle$, $\hat{\omega}_{n+2,\beta} = \langle \overline{D}e_{n+2}, e_{\beta} \rangle$, and \overline{D} denotes the covariant differential operator in \overline{M} . Thus $\omega_{n+1,\beta} \equiv \omega_{n+2,\beta} \equiv 0 \pmod{\omega_1, \cdots, \omega_n}$. Next, from $\omega_{i\beta} = 0$ and (1.3) it follows that

$$(1.7) \qquad \qquad \omega_{i,n+1} \wedge \omega_{n+1,\beta} + \omega_{i,n+2} \wedge \omega_{n+2,\beta} = 0$$

By assuming $\omega_{n+2,\beta} = \rho \omega_{n+1,\beta}$ at x, (1.7) implies $(\omega_{i,n+1} + \rho \omega_{i,n+2}) \wedge \omega_{n+1,\beta} = 0$.

Since A_{n+1} and A_{n+2} are linearly independent in S_n , $A_{n+1} + \rho A_{n+2} \neq 0$, from which follows rank $(A_{n+1} + \rho A_{n+2}) > 1$ with trace $(A_{n+1} + \rho A_{n+2}) = 0$. Hence $\omega_{n+1,\beta} = \omega_{n+2,\beta} = 0$. q.e.d.

Now for any $v \in \hat{N}$, we define a linear mapping $\psi_v \colon M_x \to O_x$ by

(1.8)
$$\psi_{v}(X) = \sum_{\beta > n+2} \langle v, e_{n+1}\omega_{n+1,\beta}(X) + e_{n+2}\omega_{n+2,\beta}(X) \rangle e_{\beta}$$

where $b \in B_1$, $X \in M_x$. ψ_v is well defined by Lemma 1.

The space of relative nullity of M in \overline{M} at x is the set of $X \in M_x$ such that $\omega_{i\alpha}(X) = 0, i = 1, 2, \dots, n; \alpha = n + 1, \dots, n + \nu$, which, in general, is denoted by \mathfrak{l}_x . Put

(1.9)
$$M_x = \mathfrak{w}_x + \mathfrak{l}_x, \qquad \mathfrak{w}_x \perp \mathfrak{l}_x.$$

Lemma 2. If $\omega_{n+1,\beta} \wedge \omega_{n+2,\beta} \neq 0$ for a fixed $\beta > n+2$ in B_1 at $x \in M$, we can choose frames $b \in B_1$ such that $e_1, e_2 \in w_x, e_3, \dots, e_n \in \mathfrak{l}_x$ and

(1.10)
$$\begin{aligned} \omega_{1,n+1} &= \lambda \omega_1 , \quad \omega_{2,n+1} &= -\lambda \omega_2 , \quad \omega_{3,n+1} &= \cdots &= \omega_{n,n+1} &= 0 , \\ \omega_{1,n+2} &= \mu \omega_2 , \quad \omega_{2,n+2} &= \mu \omega_1 , \quad \omega_{3,n+2} &= \cdots &= \omega_{n,n+2} &= 0 , \\ \omega_{n+1,\beta} &\equiv \omega_{n+2,\beta} &\equiv 0 \pmod{\omega_1, \omega_2} , \quad \lambda \neq 0 , \quad \mu \neq 0 . \end{aligned}$$

Proof. From (1.7), we have

$$\omega_{i,n+1} \wedge \omega_{n+1,\beta} \wedge \omega_{n+2,\beta} = \omega_{i,n+2} \wedge \omega_{n+1,\beta} \wedge \omega_{n+2,\beta} = 0$$
.

By the assumption and Lemma 1, we can choose frames (x, e_1, \dots, e_n) such that $\omega_{n+1,\beta} \wedge \omega_{n+2,\beta} = f\omega_1 \wedge \omega_2, f \neq 0$. Then the above equations imply $\omega_{i,n+1} \equiv \omega_{i,n+2} \equiv 0 \pmod{\omega_1, \omega_2}$, and therefore we can choose $b \in B_1$ such that $\langle A_{n+1}, A_{n+2} \rangle = 0$ and

$$\omega_{1,n+1} = \lambda \omega_1$$
, $\omega_{2,n+1} = -\lambda \omega_2$, $\omega_{r,n+1} = \omega_{r,n+2} = 0$, $2 < r \le n$

Then putting $\omega_{1,n+2} = b_1\omega_1 + \mu\omega_2$, $\omega_{2,n+2} = \mu\omega_1 + b_2\omega_2$, we have $n\langle A_{n+1}, A_{n+2} \rangle = \lambda(b_1 - b_2) = 0$, so that $b_1 = b_2 = 0$. Thus we obtain (1.10). It is clear that $e_1, e_2 \in w_x$, and $e_3, \dots, e_n \in I_x$.

Theorem 1. If M^n is minimal and of M-index 2 in a Riemannian manifold $\overline{M}^{n+\nu}$ of constant curvature \overline{c} at each point, then $\psi_v, v \in \hat{N}_x, v \neq 0$, has a common image $\psi_v(M_x)$ whose dimension is at most 2. If the rank of ψ_v is constantly zero for $v \in \hat{N}_x$, then the geodesic codimension of M^n is 2, and M^n is also minimal and of M-index 2 in the geodesic submanifold \overline{M}^{n+2} in $\overline{M}^{n+\nu}$ which contains M^n . If the rank of ψ_v is not zero, then

 $^{2 \}text{ In } S_n$, we define the inner product of any A and B by $\langle A, B \rangle = \text{trace } AB/n$, so that S_n is a Euclidean space.

(i) dim
$$l_x = n - 2$$
, (ii) $\psi_v(l_x) = 0$.

Proof. If ψ_v is trivial for any v, then $\omega_{n+1,\beta} = \omega_{n+2,\beta} = 0$, $\beta > n+2$, in B_1 . On the other hand, the system of Pfaffian equations:

(1.11)
$$\overline{\omega}_{\beta} = 0$$
, $\overline{\omega}_{i\beta} = 0$, $\overline{\omega}_{n+1,\beta} = 0$, $\overline{\omega}_{n+2,\beta} = 0$,
 $i = 1, \cdots, n; \beta = n+3, \cdots, n+\nu$

in $F(\overline{M}^{n+\nu})$ is completely integrable and the image of any maximal integral submanifold under the projection $F(\overline{M}^{n+\nu}) \to \overline{M}^{n+\nu}$ is totally geodesic. Therefore M^n is contained in an (n + 2)-dimensional totally geodesic submanifold \overline{M}^{n+2} of $\overline{M}^{n+\nu}$. It is clear that M^n is minimal and of *M*-index 2 in \overline{M}^{n+2} .

Now suppose that ψ_v , $v \in \hat{N}_x$, is not trivial. By (1.8) and Lemma 1, there exists $\beta > n+2$ such that $\omega_{n+1,\beta} \wedge \omega_{n+2,\beta} \neq 0$. Choosing a frame $b \in B_1$, which satisfies (1.10), and substituting (1.7) we get, for any $\gamma > n+2$,

$$\lambda \omega_1 \wedge \omega_{n+1,\gamma} + \mu \omega_2 \wedge \omega_{n+2,\gamma} = 0 \;, \qquad -\lambda \omega_2 \wedge \omega_{n+1,\gamma} + \mu \omega_1 \wedge \omega_{n+2,\gamma} = 0 \;.$$

Hence we can put

(1.12)
$$\lambda \omega_{n+1,\gamma} = f_{\gamma} \omega_1 + g_{\gamma} \omega_2 , \qquad \mu \omega_{n+2,\gamma} = g_{\gamma} \omega_1 - f_{\gamma} \omega_2 .$$

By putting $F = \sum_{r>n+2} f_r e_r$, $G = \sum_{r>n+2} g_r e_r$, (1.8) can be written as

(1.13)
$$\psi_{v}(X) = \left\{ \frac{1}{\lambda} \langle v, e_{n+1} \rangle \omega_{1}(X) - \frac{1}{\mu} \langle v, e_{n+2} \rangle \omega_{2}(X) \right\} F \\ + \left\{ \frac{1}{\lambda} \langle v, e_{n+1} \rangle \omega_{2}(X) + \frac{1}{\mu} \langle v, e_{n+2} \rangle \omega_{1}(X) \right\} G$$

Since $\omega_{n+1,\beta} \wedge \omega_{n+2,\beta} \neq 0$, we have $f_{\beta}^2 + g_{\beta}^2 \neq 0$, so that $F \neq 0$ or $G \neq 0$. Since

$$\det \begin{pmatrix} \langle v, e_{n+1} \rangle / \lambda & -\langle v, e_{n+2} \rangle / \mu \\ \langle v, e_{n+2} \rangle / \mu & \langle v, e_{n+1} \rangle / \lambda \end{pmatrix} = \frac{1}{\lambda^2} \langle v, e_{n+1} \rangle^2 + \frac{1}{\mu^2} \langle v, e_{n+2} \rangle^2 > 0$$

for $v \neq 0$, the image $\psi_v(M_x)$ is the linear space spanned by F and G, which does not depend on $v \in \hat{N}_x$, $v \neq 0$. Hence (i) and (ii) are clear by Lemma 2.

Remark. In Theorem 1, the set of $x \in M$ such that ψ_v is not trivial is open. For such points x, by means of (1.12) the frame $b = (x, e_1, \dots, e_{n+\nu})$ satisfying (1.10) does not depend on the choice of β such that $\omega_{n+1,\beta} \wedge \omega_{n+2,\beta} \neq 0$. In the above open set of M, F and G give normal vector fields, and the set of such frames is denoted by B_2 .

2. Minimal submanifolds with *M*-index 2 and geodesic codimension >2

Using the notations in § 1, we have

Lemma 3. Suppose the rank of $\psi_v > 0$ for every $v \neq 0$. Then the (n - 2)-dimensional distribution $\mathfrak{l} = {\mathfrak{l}_x, x \in M^n}$ is completely integrable and its integral submanifolds are totally geodesic in $\overline{M}^{n+\nu}$.

Proof. From $\omega_{r,n+1} = \omega_{r,n+2} = 0$ ($2 < r \le n$) it follows that

$$\omega_{r_1} \wedge \omega_{1,n+1} + \omega_{r_2} \wedge \omega_{2,n+1} = \omega_{r_1} \wedge \omega_{1,n+2} + \omega_{r_2} \wedge \omega_{2,n+2} = 0$$

in B_2 , and from (1.10) that $\omega_{r_1} \wedge \omega_1 - \omega_{r_2} \wedge \omega_2 = \omega_{r_1} \wedge \omega_2 + \omega_{r_2} \wedge \omega_1 = 0$. Thus we can put

(2.1)
$$\omega_{1r} = p_r \omega_1 - q_r \omega_2, \qquad \omega_{2r} = q_r \omega_1 + p_r \omega_1,$$

or $\omega_{1r} + i\omega_{2r} = (p_r + iq_r)(\omega_1 + i\omega_2)$. Making use of these relations we can easily see that $d\omega_1 = d\omega_2 = 0 \pmod{\omega_1, \omega_2}$. Hence the Pfaffian equations $\omega_1 = \omega_2 = 0$ are completely integrable, and, equivalently, so is the distribution l.

Let L^{n-2} be a maximal integral submanifold of l, along which we have $\omega_1 = \omega_2 = \omega_{n+1} = \cdots = \omega_{n+\nu} = 0$ and $\omega_{1r} = \omega_{2r} = \omega_{r,n+1} = \cdots = \omega_{r,n+\nu} = 0$ by (2.1), (1.10) and (1.6) in B_2 . These show that L^{n-2} is totally geodesic in $\overline{M}^{n+\nu}$. q.e.d.

In the proof of Lemma 3, we have two special tangent vector fields defined by

(2.2)
$$P = \sum_{r=3}^{n} p_r e_r , \qquad Q = \sum_{r=3}^{n} q_r e_r ,$$

which we call the *principal* and *subprincipal asymptotic vector fields*, respectively.

Lemma 4. Under the condition of Lemma 3, the 2-dimensional distribution $\mathfrak{w} = \{\mathfrak{w}_x, x \in M^n\}$ is completely integrable if and only if the vector field Qvanishes. When Q = 0, the integral submanifolds of \mathfrak{w} are totally umbilic in M^n .

Proof. w_x is given by the Pfaffian equations $\omega_3 = \omega_4 = \cdots = \omega_n = 0$ at each point $x \in M^n$. By (2.1), in B_2 we have $d\omega_r \equiv -2q_r\omega_1 \wedge \omega_2 \pmod{\omega_3, \cdots, \omega_n}$, which shows that the distribution w is completely integrable if and only if Q = 0.

When Q = 0, (2.1) becomes

(2.3)
$$\omega_{1r} = p_r \omega_1, \quad \omega_{2r} = p_r \omega_2, \quad r = 3, \dots, n,$$

which shows that any integral submanifold of the distribution w is totally umbilic in M^n . q.e.d.

We will explain the integrability of w without using the field Q.

Lemma 5. The distribution to is completely integrable if and only if the

following condition is satisfied: For any tangent vector fields $X \subset w$, and $Y \subset \mathfrak{l}$, we have $(\nabla_X Y)_w || X$, where ∇_X denotes the covariant derivative in M^n with respect to X and $(\nabla_X Y)_w$ the w-component of the field $\nabla_X Y$.

Proof. Putting $X = \sum_{a=1}^{2} X^{a} e_{a}$, $Y = \sum_{r=3}^{n} Y^{r} e_{r}$ and considering e_{r} as local fields, we have

$$egin{aligned}
abla_X Y &= \sum\limits_a X^a \sum\limits_r \left\{ (
abla_{e_a} Y^r) e_r + Y^r(\omega_{r1}(e_a) e_1 + \omega_{r2}(e_a) e_2)
ight. \ &+ \sum\limits_{t>2} \omega_{rt}(e_a) e_t
ight\}. \end{aligned}$$

Thus by (2.1),

$$(V_XY)_{\mathfrak{w}} = -(X^1\langle P, Y \rangle - X^2\langle Q, Y \rangle)e_1 - (X^1\langle Q, Y \rangle + X^2\langle P, Y \rangle)e_2$$

that is,

(2.4)
$$(\nabla_X Y)_{\mathfrak{w}} = -\langle P, Y \rangle X - \langle Q, Y \rangle \operatorname{Rot}_{\pi/2} X$$

where $\operatorname{Rot}_{\pi/2}$ denotes the rotation on \mathfrak{w}_x by the angle $\pi/2$ in the direction from e_1 to e_2 . Hence Q = 0 is equivalent to the statement of this lemma.

Lemma 6. Suppose the rank of $\psi_v > 0$ for every $v \neq 0$. Then in B_2 ,

(2.5)
$$\{(d\lambda - \lambda \langle P, dx \rangle) - i(2\lambda\omega_{12} - \mu\hat{\omega} + \lambda \langle Q, dx \rangle)\} \wedge (\omega_1 + i\omega_2) = 0$$
,

$$(2.6) \quad \{(d\mu - \mu \langle P, dx \rangle) - i(2\mu\omega_{12} - \lambda\hat{\omega} + \mu \langle Q, dx \rangle)\} \land (\omega_1 + i\omega_2) = 0$$

(2.7)
$$\{d\sigma + i(1-\sigma^2)\hat{\omega}\} \wedge (\omega_1 + i\omega_2) = 0 ,$$

(2.8)
$$d\omega_{12} = -\{\|P\|^2 + \|Q\|^2 + \bar{c} - \lambda^2 - \mu^2\}\omega_1 \wedge \omega_2,$$

(2.9)
$$d\hat{\omega} = -\frac{1}{\lambda\mu} \{2\lambda^2\mu^2 - \|F\|^2 - \|G\|^2\}\omega_1 \wedge \omega_2 ,$$

where $\langle P, dx \rangle = \sum_{r=3}^{n} p_r \omega_r, \langle Q, dx \rangle = \sum_{r=3}^{n} q_r \omega_r, \hat{\omega} = \omega_{n+1,n+2}$ and $\sigma = \mu/\lambda$. *Proof.* From (1.10), (1.12) and (2.1) we get

$$egin{aligned} &d\omega_{1,n+1}=-\lambda\omega_{12}\wedge\omega_2+\,\mu\hat\omega\wedge\omega_2=d\lambda\wedge\omega_1+\lambda\sum\limits_{j=1}^n\omega_{1j}\wedge\omega_j\;,\ &d\omega_{2,n+1}=-\lambda\omega_{12}\wedge\omega_1+\,\mu\hat\omega\wedge\omega_1=-d\lambda\wedge\omega_2-\lambda\sum\limits_{j=1}^n\omega_{2j}\wedge\omega_j\;,\end{aligned}$$

and therefore

MINIMAL SUBMANIFOLDS

$$(d\lambda - \lambda \sum_r p_r \omega_r) \wedge \omega_1 + (2\lambda \omega_{12} - \mu \hat{\omega} + \lambda \sum_r q_r \omega_r) \wedge \omega_2 = 0,$$

 $(d\lambda - \lambda \sum_r p_r \omega_r) \wedge \omega_2 - (2\lambda \omega_{12} - \mu \hat{\omega} + \lambda \sum_r q_r \omega_r) \wedge \omega_1 = 0.$

which can be written as (2.5). Analogously we can get (2.6) from $d\omega_{1,n+2}$ and $d\omega_{2,n+2}$. From (2.5) and (2.6) it is easily seen that

$$\{(\lambda d\mu - \mu d\lambda) + i(\lambda^2 - \mu^2)\} \wedge (\omega_1 + i\omega_2) = 0 \; ,$$

which is equivalent to (2.7). We have also

$$egin{aligned} d \omega_{12} &= \sum \limits_{r} \omega_{1r} \wedge \omega_{r2} + \omega_{1,n+1} \wedge \omega_{n+1,2} + \omega_{1,n+2} \wedge \omega_{n+2,2} - ar{c} \omega_{1} \wedge \omega_{2} \ &= - \left\{ \sum \limits_{r} \left(p_{r}^{\ 2} + q_{r}^{\ 2}
ight) + ar{c} - \lambda^{2} - \mu^{2}
ight\} \omega_{1} \wedge \omega_{2} \ , \ &d \hat{\omega} &= \sum \limits_{a=1}^{2} \omega_{n+1,a} \wedge \omega_{a,n+2} + \sum \limits_{eta > n+2} \omega_{n+1,eta} \wedge \omega_{eta,n+2} \ &= - rac{1}{\lambda \mu} \left\{ 2 \lambda^{2} \mu^{2} - \sum \limits_{eta} \left(f_{eta}^{\ 2} + g_{eta}^{\ 2}
ight) \right\} \omega_{1} \wedge \omega_{2} \ , \end{aligned}$$

which can be written as (2.8) and (2.9), respectively. q.e.d.

A curve in a Riemannian manifold of constant curvature is said to be *even* if its geodesic codimension ≤ 1 .

Theorem 2. Under the conditions of Theorem 1 with non-trivial ψ_v for any $v \in \hat{N}, v \neq 0$, the following statements hold.

1) The set of all asymptotic tangent vectors of M^n in $\overline{M}^{n+\nu}$ constitute a completely integrable (n-2)-dimensional distribution \mathfrak{l} and its integral submanifolds are totally geodesic in $\overline{M}^{n+\nu}$.

2) The 2-dimensional distribution to orthogonally complement to l is completely integrable if and only if the subprincipal asymptotic vector field Q of M^n vanishes, and then its integral surfaces are totally umblic in M^n .

3) The principal and subprincipal asymptotic vector fields P and Q of M^n are involutive.

4) When $P \neq 0$, the integral curves of P are even in $\overline{M}^{n+\nu}$, and they are geodesic of $\overline{M}^{n+\nu}$ if and only if $\langle P, Q \rangle = 0$ or P ||Q.

Proof. 1) and 2) are evident from Lemmas 3 and 4. By (2.1) and (1.3) we obtain

$$egin{aligned} d(\omega_{1r}+i\omega_{2r})\ &=\sum\limits_{j}\,(\omega_{1j}\wedge\omega_{jr}+i\omega_{2j}\wedge\omega_{jr})-ar{c}(\omega_{1}+i\omega_{2})\wedge\omega_{r}\ &=(dp_{r}+idq_{r})\wedge(\omega_{1}+i\omega_{2})+(p_{r}+iq_{r})\sum\limits_{j}\,(\omega_{1j}\wedge\omega_{j}+i\omega_{2j}\wedge\omega_{j})\;, \end{aligned}$$

and therefore

(2.10)
$$\begin{cases} dp_r + idq_r + \sum_t (p_t + iq_r)\omega_{tr} - (p_r + iq_r) \sum_t (p_t + iq_t)\omega_t - \bar{c}\omega_r \\ \wedge (\omega_1 + i\omega_2) = 0 \end{cases}$$

from which it follows that for any tangent vector field $X \subset l$,

(2.11)
$$\overline{V}_{X}P = \overline{V}_{X}P = \langle P, X \rangle P - \langle Q, X \rangle Q + \overline{c}X ,$$

(2.12)
$$\overline{V}_{\mathcal{X}}Q = V_{\mathcal{X}}Q = \langle Q, X \rangle P + \langle P, X \rangle Q ,$$

where \overline{V}_x denotes the covariant derivative in $\overline{M}^{n+\nu}$ with respect to X. In particular, we get $V_Q P = \langle P, Q \rangle P - \|Q\|^2 Q + \overline{c}Q, \ \nabla_P Q = \langle P, Q \rangle P + \|P\|^2 Q$, and therefore $[P, Q] = V_P Q - V_Q P = \{\|P\|^2 + \|Q\|^2 - \overline{c}\}Q$, which shows that P and Q are involutive.

For part 4) of the theorem we notice the following equations derived from (2.11) and (2.12):

$$ar{
u}_P P = (\|P\|^2 + ar{c})P - \langle P, Q
angle Q , \qquad ar{
u}_Q Q = \|Q\|^2 P + \langle P, Q
angle Q ,$$

which clearly show that if $P \wedge Q \neq 0$, then the integral surfaces of the distribution spanned by P and Q are totally geodesic in $\overline{M}^{n+\nu}$. Hence, when $P \neq 0$, the integral curves of P are even, and they are geodesics in $\overline{M}^{n+\nu}$ if and only if $\langle P, Q \rangle Q \parallel P$, that is, if and only if $\langle P, Q \rangle = 0$ or $Q \parallel P$.

3. Minimal submanifolds with *M*-index 2 and vanishing subprincipal asymptotic vector field *Q*

In this section, we shall consider M^n in $\overline{M}^{n+\nu}$ as in Theorem 2 under the additional conditions $P \neq 0$ and Q = 0, and suppose $n \geq 3$. Denote the integral surface of w and the integral curve of P through x by $W^2(x)$ and $\Gamma^1(x)$ respectively.

Lemma 7. The integral curves Γ^1 of P are the orthogonal trajectories of a family of hypersurfaces of M^n containing the integral surfaces W^2 of w.

Proof. Since $Q \equiv 0$, (2.10) is reduced to

(3.1)
$$dp_r + \sum_{t>2} p_t \omega_{tr} - p_r \sum_{t>2} p_t \omega_t - \bar{c} \omega_r = 0.$$

Since $P \neq 0$, we use only such frames b of B_2 that

$$(3.2) P = pe_3, p > 0,$$

and denote the submanifold of these frames by B_3 , in which

(3.3)
$$\omega_{a3} = p\omega_a$$
, $\omega_{at} = 0$, $a = 1, 2; 3 < t \le n$,

and (3.1) becomes

$$(3.4) dp = (p^2 + \bar{c})\omega_3$$

$$(3.5) p\omega_{3r} = \bar{c}\omega_r , 3 < r \le n .$$

By means of (3.3) and (3.5) we obtain $d\omega_3 = 0$ in B_3 , so that there exists a local function v such that

$$(3.6) \qquad \qquad \omega_3 = dv \; .$$

(3.2) and (3.6) show that the family of level hypersurfaces of v is the required one.

Remark. By denoting the level hypersurface v = c by $V^{n-1}(c)$, the function v may be considered as the arclength of the geodesics Γ^1 measured from $V^{n-1}(0)$. Integrating (3.4), we easily have

Lemma 8. The norm p of the principal asymptotic vector field P is a function of v as follows:

$$(3.7_1) \quad p = (\bar{c})^{-1/2} \tan (v + a) \sqrt{\bar{c}} , \quad 0 < v + a < \pi/(2\sqrt{\bar{c}}), \quad (\bar{c} > 0)$$

$$(3.7_2)$$
 $p = 1/(a - v)$, $v < a$, $(\bar{c} = 0)$.

$$(3.7_3) \quad p = \begin{cases} \sqrt{-\bar{c}} \tanh{(a-v)}\sqrt{-\bar{c}} , & (0$$

Here a is a constant on M^n .

Lemma 9. Let X be a Jacobi field along Γ^1 determined by a family of integral geodesics of P. If $X(0) \in w$, then $||X|| \to 0$ and $p \to +\infty$ when $v + a \to \pi/(2\sqrt{\overline{c}})$ for $\overline{c} > 0$ and $v \to a$ for $\overline{c} = 0$, or $\overline{c} < 0$ and $\sqrt{-\overline{c}} < p$.

Proof. Let $x = x(v, \varepsilon)$ be a family of integral geodesics of P such that $x(v, \varepsilon) \in V^{n-1}(v)$. Putting $X = \partial x/\partial \varepsilon$, we obtain $X^2 = \sum_{j \neq 3} \omega_j(X) \omega_j(X)$ and $\partial ||X||^2/\partial v = 2 \sum_{j \neq 3} \omega_j(X) \partial \omega_j(X)/\partial v$. On the other hand, we have

$$\partial \omega_j(X)/\partial v = e_3(\omega_j(X)) = X(\omega_j(e_3)) - d\omega_j(X, e_3) - \omega_j([X, e_3])$$

= $-\sum_i \omega_{jk} \wedge \omega_k(X, e_3)$,

since $[\partial/\partial v, \partial/\partial \varepsilon] = 0$ and so $\omega_j([X, e_3]) = 0$. Thus

$$\partial \|X\|^2/\partial v = -2\sum_a \omega_j(X)\omega_{j3}(X) = -2\sum_a \omega_a(X)\omega_{a3}(X) + 2\sum_{r>3} \omega_r(X)\omega_{3r}(X) \ .$$

Using (3.3) and (3.5), we have

(3.8)
$$\partial \|X\|^2 / \partial v = -2p \|X_{\mathfrak{w}}\|^2 + 2(\bar{c}/p) \|X_{\mathfrak{l}}\|^2,$$

where $X_{\mathfrak{w}}$ and $X_{\mathfrak{l}}$ are the \mathfrak{w} and \mathfrak{l} components of X.

On the other hand, in B_3 we have $d\omega_r = (\bar{c}/p)\omega_3 \wedge \omega_r + \sum_{t>3} \omega_{rt} \wedge \omega_t$, so that the Pfaffian equations $\omega_4 = \cdots = \omega_n = 0$ are completely integrable. Thus, if $X \in w$ for a value of v, then so is for any v. For such X from (3.8) it follows that $\partial ||X||^2 / \partial v = -2p ||X||^2$. Integrating this and using Lemma 8, we have

$$\|X(v)\|/\|X(0)\| = \exp\left(-\int_{0}^{v} p dv\right)$$
(3.9)
$$=\begin{cases} \cos(v+a)\sqrt{\overline{c}}/\cos a\sqrt{\overline{c}} & (\overline{c} > 0), \\ (a-v)/a (\overline{c} = 0), \\ \sinh(a-v)\sqrt{-\overline{c}}/\sinh a\sqrt{-\overline{c}} & (\overline{c} < 0 \text{ and } -\overline{c} < p), \\ \cosh(a-v)\sqrt{-\overline{c}}/\cosh a\sqrt{-\overline{c}} & (\overline{c} < 0 \text{ and } 0 < p < -\overline{c}), \end{cases}$$

which implies this lemma.

Lemma 10. Let X be a Jacobi field along Γ^1 as in Lemma 9. If $X(0) \in \mathfrak{l}$, $\langle X(0), P \rangle = 0$, then

- i) $||X|| \rightarrow 0$ and $p \rightarrow 0$, when $v + a \rightarrow 0$ for $\bar{c} > 0$,
- ii) ||X(v)|| = ||X(0)|| for $\bar{c} = 0$,

iii) $||X|| \to 0$ and $p \to 0$, or $||X|| \to ||X(0)||/\cos a \sqrt{-\overline{c}}$ and $p \to \infty$ when $v \to a$ for $\overline{c} < 0$.

Proof. By Lemmas 3 and 7, we have $X \subset \mathfrak{l}$ and $\langle X, P \rangle = 0$ for any v. Thus (3.8) implies $\partial ||X||^2 / \partial v = 2(\bar{c}/p) ||X||^2$, from which it follows that

$$\|X(v)\|/\|X(0)\| = \exp\left(\bar{c}\int_{0}^{v}(1/p)dv\right)$$
(3.10)

$$=\begin{cases} \sin(v+a)\sqrt{\bar{c}}/\sin a\sqrt{\bar{c}} & (\bar{c}>0), \\ 1 & (\bar{c}=0), \\ \cosh(a-v)\sqrt{-\bar{c}}/\cosh a\sqrt{-\bar{c}} & (\bar{c}<0 \text{ and } \sqrt{-\bar{c}}$$

These relations and Lemma 8 imply i), ii) and iii). q.e.d.

By means of Lemmas 7, 9 and Theorem 2, we obtain

Theorem 3. Let M^n $(n \ge 3)$ be a maximal minimal submanifold³ in an $(n + \nu)$ -dimensional space form $\overline{M}^{n+\nu}$ which is of M-index 2 at each point, whose associate mapping ψ_v is nontrivial for any $v \in \hat{N}, v \neq 0$, and subprincipal asymptotic vector field vanishes identically. Then M^n is a locus of (n - 2)-dimensional totally geodesic subspaces in $L^{n-2}(y)$ in $\overline{M}^{n+\nu}$ through points y of

 $[\]overline{3}$ "maximal" means here that M^n is not contained in a larger submanifold with the same properties.

a surface W^2 lying in a Riemannian hypersphere in $\overline{M}^{n+\nu}$ with center z_0 such that

i) $L^{n-2}(y)$ contains the geodesic from z_0 to y,

ii) the (n-3)-dimensional tangent spaces to the intersection of $L^{n-2}(y)$ and the hypersphere at y are parallel along W^2 in $\overline{M}^{n+\nu}$.

Proof. It is sufficient to prove ii). In B_3 , for $3 < r \le n$, by (3.3) and (3.5) we have $\overline{D}e_r = -(\overline{c}/p)\omega_r e_3 + \sum \omega_{rt} e_t$. Thus, along W^2 , $\overline{D}e_r = \sum_{t>3}^n \omega_{rt} e_t$, which shows that the tangent space in ii), i.e., the space spanned by e_4, e_5, \dots, e_n , is parallel along W^2 . q.e.d.

This theorem tells us how to construct a minimal submanifold in a space form as in the statement.

4. Minimal submanifolds with *M*-index 2, vanishing *Q* and ψ_v of rank 1

In this section, we shall investigate M^n in $\overline{M}^{n+\nu}$ as in Theorem 3 under the condition that $\psi_v, v \in \hat{N}, v \neq 0$, is of rank 1 everywhere. By this assumption and (1.13), we can choose frames b in B_3 such that

(4.1)
$$F = fe_{n+3}, \quad G = ge_{n+3}, \quad f^2 + g^2 \neq 0.$$

Denoting the set of these frames by B_4 , from (1.12) we get

(4.2)
$$\lambda \omega_{n+1,n+3} = f \omega_1 + g \omega_2 , \qquad \mu \omega_{n+2,n+3} = g \omega_1 - f \omega_2 , \\ \omega_{n+1,r} = \omega_{n+2,r} = 0 \qquad (\gamma > n+3) .$$

Theorem 4. If M^n is minimal and of M-index 2 in $\overline{M}^{n+\nu}$ of constant curvature, ψ_v is of rank 1 for any nonzero $v \in \hat{N}$, and $Q \equiv 0$, then there exists a totally geodesic submanifold \overline{M}^{n+3} of $\overline{M}^{n+\nu}$ containing M^n , in which M^n has the same properties⁴.

Proof. Using the same notations as in § 3, it is sufficient to show $\omega_{n+3,\gamma} = 0$ $(\gamma > n + 3)$ in B_4 . From (4.2), we get

$$egin{aligned} &d\omega_{n+1, au} = (1/\lambda)(f\omega_1 + g\omega_2) \wedge \omega_{n+3, au} = 0 \;, \ &d\omega_{n+2, au} = (1/\mu)(g\omega_1 - f\omega_2) \wedge \omega_{n+3, au} = 0 \;, \end{aligned}$$

which imply $\omega_{n+3,\gamma} = 0$ since $(f\omega_1 + g\omega_2) \wedge (g\omega_1 - f\omega_2) \neq 0$. q.e.d.

By virtue of the above theorem, we may put $\nu = 3$ in our case from the local point of view.

Lemma 11. Under the conditions of Theorem 4, in B_4 we have the following:

⁴ We have supposed $n \ge 3$, but Theorem 4 is also true for n = 2.

(4.3)
$$\{(d \log \lambda - p dv) - i(2\omega_{12} - \sigma \hat{\omega})\} \land (\omega_1 + i\omega_2) = 0$$

$$(4.4) d\omega_{\scriptscriptstyle 12} = -(p^2 + \bar{c} - \lambda^2 - \mu^2)\omega_{\scriptscriptstyle 1} \wedge \omega_{\scriptscriptstyle 2} ,$$

(4.5)
$$d\hat{\omega} = -(1/(\lambda\mu))(2\lambda^2\mu^2 - f^2 - g^2)\omega_1 \wedge \omega_2,$$

(4.6)
$$\{d \log (f - ig) - d \log \lambda - p dv - i\omega_{12}\} \wedge (\omega_1 + i\omega_2)$$
$$-\frac{i}{f - ig} \hat{\omega} \wedge \{f(\left(2\sigma - \frac{1}{\sigma}\right)\omega_1 + \frac{i}{\sigma}\omega_2)$$
$$-ig\left(\frac{1}{\sigma}\omega_1 + i\left(2\sigma - \frac{1}{\sigma}\right)\omega_2\right)\} = 0.$$

Proof. By (3.3), (3.6) and $Q \equiv 0$, we get (4.3) immediately from (2.5). (4.4) and (4.5) are trivial from (2.8) and (2.9).

Now from (4.2) exterior derivation gives

$$egin{aligned} df \wedge \omega_1 + dg \wedge \omega_2 &- (d\log \lambda + pdv) \wedge (f\omega_1 + g\omega_2) \ &- \left(\omega_{12} + rac{1}{\sigma} \hat{\omega}
ight) \wedge (g\omega_1 - f\omega_2) = 0 \;, \ df \wedge \omega_2 - dg \wedge \omega_1 + (d\log \mu + pdv) \wedge (g\omega_1 - f\omega_2) \ &- (\omega_{12} + \sigma \hat{\omega}) \wedge (f\omega_1 + g\omega_2) = 0 \;, \end{aligned}$$

which can be written as, in consequence of $d \log \mu = d \log \lambda + d \log \sigma$,

$$egin{aligned} &\{d(f-ig)-(d\log\lambda+pdv+i\omega_{12})(f-ig)\}\wedge(\omega_1+i\omega_2)\ &+\left(id\log\sigma-rac{1}{\sigma}\hat{\omega}
ight)\wedge(g\omega_1-f\omega_2)-i\sigma\hat{\omega}\wedge(f\omega_1+g\omega_2)=0 \end{aligned}$$

Since we have, from (2.7),

$$d\log\sigma\wedge\omega_1=\Bigl(rac{1}{\sigma}-\sigma\Bigr)\hat\omega\wedge\omega_2\ ,\qquad d\log\sigma\wedge\omega_2=-\Bigl(rac{1}{\sigma}-\sigma\Bigr)\hat\omega\wedge\omega_1\ ,$$

substituting these in the above last equation we get (4.6).

Remark. $\hat{N} = \bigcup_{x \in M} \hat{N}_x$ introduced in § 2 is considered as a vector bundle over M^n with 2-dimensional fibre and has a metric connection induced from $\overline{M}^{n+\nu}$. $\hat{\omega} = \omega_{n+1,n+2}$ is its connection form and $d\hat{\omega}$ is its curvature form. Therefore $\hat{\omega}$ is a geometrical quantity of M^n in \overline{M}^{n+3} , which may be called the minimal torsion form of M^n .

Lemma 12. Under the condition of Theorem 4 and the additional conditions:

(a) $\hat{\omega} \neq 0$, and $\sigma = \mu / \lambda$ is constant on W^2 ,

(β) W^2 is of constant curvature,

where W^2 is an integral surface of the distribution w, for W^2 we have the following:

(4.7) $\sigma = 1 \text{ or } -1 \text{ and } 2\lambda^2 = p^2 + \bar{c}$,

and, by supposing $\sigma = 1$ and $\omega_{12} = d\theta$ on W^2 ,

$$(4.9) \qquad \qquad \hat{\omega} = 2d\theta \;,$$

(4.10)
$$dx = R((e_1^* + ie_2^*)d\bar{z}),$$

(4.11)
$$\overline{D}(e_1^* + ie_2^*) = e_3 p dz + (e_{n+1}^* + ie_{n+2}^*) \lambda d\bar{z} ,$$

(4.12) $\bar{D}e_3 = -pR((e_1^* + ie_2^*)d\bar{z}),$

(4.13)
$$\overline{D}(e_{n+1}^* + ie_{n+2}^*) = -(e_1^* + ie_2^*)\lambda dz + e_{n+3}\sqrt{2}\lambda d\bar{z}$$
,

(4.14)
$$\overline{D}e_{n+3} = -\sqrt{2}\lambda R(e_{n+1}^* + ie_{n+2}^*)dz) ,$$

where z is an isothermal coordinate of W^2 such that

(4.15)
$$\omega_1 + i\omega_2 = \exp(-i\theta)dz,$$

(4.16) $e_1^* + ie_2^* = \exp(i\theta)(e_1 + ie_2)$, $e_{n+1}^* + ie_{n+2}^* = \exp(2i\theta)(e_{n+1} + ie_{n+2})$.

Proof. From (2.7) and (α), we get $1 - \sigma^2 = 0$, i.e., $\sigma = 1$ or -1, so that we may suppose $\sigma = 1$. By means of (β), on W^2 we put $d\omega_{12} = -c\omega_1 \wedge \omega_2$, where c is a constant. Then (4.4) implies $2\lambda^2 = p^2 + \bar{c} - c$, and λ is constant on W^2 by Lemma 8 and Theorem 3. Therefore (4.3) implies $\hat{\omega} = 2\omega_{12}$ on W^2 , from which we have $f^2 + g^2 = 2\lambda^2(\lambda^2 - c)$ by (4.5), so that $f^2 + g^2$ is also constant on W^2 . Putting $f - ig = \sqrt{2} \lambda \sqrt{\lambda^2 - c} \exp(-i\varphi)$, from (4.6) we get the relation $\omega_{12} + \hat{\omega} + d\varphi = 0$, i.e., $3\omega_{12} + d\varphi = 0$. Thus we have $d\omega_{12} = d\hat{\omega} = 0$ on W^2 , from which follows c = 0.

Hence W^2 must be flat, and we may put

(4.17)
$$f + ig = \sqrt{2} \lambda^2 \exp(-3i\theta), \qquad \varphi = -3\theta.$$

On the other hand, we have $d(\omega_1 + i\omega_2) = -i\omega_{12} \wedge (\omega_1 + i\omega_2) = id\theta \wedge (\omega_1 + i\omega_2)$, and therefore there exists a local isothermal coordinate z as (4.15). Using (4.15) and (4.17), (4.2) can be written as

(4.18)
$$\omega_{n+1,n+3} + i\omega_{n+2,n+3} = \sqrt{2}\lambda \exp(-2i\theta)d\bar{z}$$
 on W^2 .

Now, to derive the Frenet formulas of W^2 , we first have

$$dx = e_1\omega_1 + e_2\omega_2 = R((e_1 + ie_2)(\omega_1 - i\omega_2)) = R((e_1^* + ie_2^*)d\bar{z})$$

By means of (3.3), (1.10), (4.15) and (4.16), we obtain

$$D(e_1 + ie_2) = -(e_1 + ie_2)id\theta + e_3p(\omega_1 + i\omega_2) + (e_{n+1} + ie_{n+2})\lambda(\omega_1 - i\omega_2) ,$$

which is equivalent to (4.11). Analogously,

$$\bar{D}e_3 = -e_1\omega_{13} - e_2\omega_{23} = -pR((e_1^* + ie_2^*)d\bar{z}) .$$

From the relations

$$egin{aligned} De_{n+1} &= -\lambda(e_1\omega_1 - e_2\omega_2) + 2e_{n+2}d heta + e_{n+3}\omega_{n+1,n+3} \ , \ ar{D}e_{n+2} &= -\lambda(e_1\omega_2 + e_2\omega_1) - 2e_{n+2}d heta + e_{n+3}\omega_{n+2,n+3} \ , \end{aligned}$$

it follows that

$$\overline{D}(e_{n+1} + ie_{n+2}) = -(e_1 + ie_2)\lambda(\omega_1 + i\omega_2) - 2(e_{n+1} + ie_{n+2})id\theta + e_{n+3}(\omega_{n+1,n+3} + i\omega_{n+2,n+3}),$$

which is equivalent to (4.13) by (4.15), (4.16) and (4.18). Finally,

$$De_{n+3} = -R((e_{n+1} + ie_{n+2})(\omega_{n+1,n+3} - i\omega_{n+2,n+3}))$$

= -R((e_{n+1}^* + ie_{n+2}^*)\sqrt{2}\lambda dz).

5. Examples of minimal submanifolds of *M*-index 2

In this section, we shall find, as in Theorem 4, minimal submanifolds in space forms, for which a W^2 satisfies the conditions (α) and (β) in Lemma 12, and we shall suppose $n \ge 3$.

Case 1. \overline{M}^{n+3} is the Euclidean space E^{n+3} . By Lemmas 12 and 8 the Frenet formulas for W^2 are

$$dx = R((e_1^* + ie_2^*)d\bar{z}) ,$$

$$d(e_1^* + ie_2^*) = e_3pdz + (e_{n+1}^* + ie_{n+2}^*)\lambda d\bar{z} ,$$

$$de_3 = -pR((e_1^* + ie_2^*)d\bar{z}) ,$$

$$d(e_{n+1}^* + ie_{n+2}^*) = -(e_1^* + ie_2^*)\lambda dz + e_{n+3}(\sqrt{2}\lambda d\bar{z}) ,$$

$$de_{n+3} = -\sqrt{2}\lambda R((e_{n+1}^* + ie_{n+2}^*)dz) ,$$

where

(5.2)
$$p = 1/(a - v), \quad \lambda = p/\sqrt{2}, \quad v < a, \quad 0 < a.$$

From (5.1) it follows that $x + e_3/p$ is a fixed point and so we may suppose that it is the origin O of $E^{n+3} = R^{n+3}$. Then we have

(5.3)
$$x = -e_3/p$$
.

From (5.1) again it is easily seen that e_3 , $e_1^* + ie_2^*$, $e_{n+1}^* + ie_{n+2}^*$, e_{n+3} are all solutions of the partial differential equation

$$rac{\partial^2 X}{\partial z \partial ar z} = - \lambda^2 X \; .$$

Noticing this fact, we shall give a solution of (5.1).

In C^3 we choose 3 fixed constant vectors A_1 , A_2 and A_3 such that

(5.4)
$$\begin{aligned} A_{j} \cdot A_{j} &= 0, \qquad A_{j} \cdot A_{k} = A_{j} \cdot A_{k} = 0, \\ A_{1} \cdot \bar{A}_{1} + A_{2} \cdot \bar{A}_{2} + A_{3} \cdot \bar{A}_{3} &= 1/2, \\ i, k &= 1, 2, 3; j \neq k, \end{aligned}$$

and put

(5.5)
$$U = \sum_{j=1}^{3} \{A_j \exp \lambda(z \exp (i\alpha_j) - \bar{z} \exp (-i\alpha_j)) + \bar{A}_j \exp \lambda(-z \exp (i\alpha_j) + \bar{z} \exp (-i\alpha_j))\},$$

where the bar denotes the complex conjugate. It is clear that $U = \overline{U}$ and $U \cdot U = 1$ by (5.4). Next putting $\partial U / \partial \overline{z} = -\lambda \xi / \sqrt{2}$, we have

(5.6)
$$\begin{split} & \hat{\xi} = \sqrt{2} \sum_{j} \exp\left(-i\alpha_{j}\right) \{A_{j} \exp\left(i\alpha_{j}\right) - \bar{z} \exp\left(-i\alpha_{j}\right)\right) \\ & - \bar{A}_{j} \exp\left(-z \exp\left(i\alpha_{j}\right) + \bar{z} \exp\left(-i\alpha_{j}\right)\right)\} \,. \end{split}$$

It is easily seen that $\xi \cdot \overline{\xi} = 2$, $U \cdot \xi = 0$ and

(5.7)
$$\xi \cdot \xi = -4 \sum_{j} A_{j} \cdot \overline{A}_{j} (\cos 2\alpha_{j} - i \sin 2\alpha_{j}) .$$

Putting $\partial \xi / \partial \bar{z} = \lambda \eta$, we obtain

(5.8)
$$\eta = -\sqrt{2} \sum_{j} \exp\left(-2i\alpha_{j}\right) \{A_{j} \exp\left(i\alpha_{j}\right) - \bar{z} \exp\left(-i\alpha_{j}\right) + \bar{A}_{j} \exp\left(i\alpha_{j}\right) + \bar{z} \exp\left(-i\alpha_{j}\right) + \bar{z} \exp\left(-i\alpha_{j}\right) \},$$

and therefore $\eta \cdot \overline{\eta} = 2$, $\xi \cdot \eta = \xi \cdot \overline{\eta} = 0$,

(5.9)
$$\eta \cdot \eta = 4 \sum_{j} A_{j} \cdot \bar{A}_{j} (\cos 4\alpha_{j} - i \sin 4\alpha_{j}) ,$$

$$(5.10) U \cdot \eta = \xi \cdot \xi / \sqrt{2} .$$

Finally putting $\partial \eta / \partial \bar{z} = \sqrt{2} \lambda V$, we have

(5.11)
$$V = \sum_{j} \exp \left(-3i\alpha_{j}\right) \{A_{j} \exp \lambda(z \exp (i\alpha_{j}) - \bar{z} \exp (-i\alpha_{j})) - \bar{A}_{j} \exp \lambda(-z \exp (i\alpha_{j}) + \bar{z} \exp (-i\alpha_{j}))\}.$$

Thus $V \cdot \overline{V} = 1$, $U \cdot V = U \cdot \overline{V} = 0$, $\eta \cdot V = \overline{\eta} \cdot V = 0$ and

(5.12)
$$V \cdot V = -2 \sum_{j} A_{j} \cdot \overline{A}_{j} (\cos 6\alpha_{j} - i \sin 6\alpha_{j}) ,$$

(5.13)
$$\xi \cdot V = -\eta \cdot \eta / \sqrt{2} , \qquad \overline{\xi} \cdot V = -\xi \cdot \xi / \sqrt{2} .$$

By means of the above calculation, in addition to (5.4), if A_j , α_j , j = 1, 2, 3, satisfy

(5.14)
$$\sum_{j} A_{j} \cdot \overline{A}_{j} (\cos 2\alpha_{j} - i \sin 2\alpha_{j}) = 0 ,$$

(5.15)
$$\sum_{j} A_{j} \cdot \overline{A}_{j} (\cos 4\alpha_{j} - i \sin 4\alpha_{j}) = 0 ,$$

$$(5.16) 3\alpha_j \equiv \pi/2 (mod \pi) ,$$

then we obtain a solution of (5.1) by putting $e_3 = U$, $e_1^* + ie_2^* = \xi$, $e_{n+1}^* + ie_{n+2}^* = \eta$, $e_{n+3} = V$ and considering $C^3 = R^6$.

Condition (5.14) means that the broken segment $P_0P_1P_2P_3$ in the plane such that $P_{j-1}P_j = A_j \cdot \overline{A}_j$ and arg $P_{j-1}P_j = 2\alpha_j$, j = 1, 2, 3, is closed, i.e., $P_0 = P_3$. Condition (5.15) also has an analogous meaning. By an elementary consideration, we see that the triangle $P_1P_2P_3$ must be equilateral, i.e.,

(5.17)
$$A_j \cdot \bar{A}_j = 1/6$$
, $j = 1, 2, 3$.

Conversely, the above meanings are also sufficient for the validity of (5.14) and (5.15) respectively. Now, using the triangle $P_1P_2P_3$, and interchanging A_j with \bar{A}_j , j = 1, 2, 3, and the order of the index j, we may have the unique values of α_j , namely,

(5.18)
$$\alpha_1 = \pi/6$$
, $\alpha_2 = \pi/2$, $\alpha_3 = 5\pi/6$.

Thus we have a W^2 in $R^6 = C^3$ given by

$$x = -(a - v) \left\{ A_1 \exp \frac{i(u_1 + \sqrt{3} u_2)}{\sqrt{2} (a - v)} + \bar{A}_1 \exp \frac{-i(u_1 + \sqrt{3} u_2)}{\sqrt{2} (a - v)} + A_2 \exp \frac{2iu_1}{\sqrt{2} (a - v)} + \bar{A}_2 \exp \frac{-2iu_1}{\sqrt{2} (a - v)} + A_3 \exp \frac{i(u_1 - \sqrt{3} u_2)}{\sqrt{2} (a - v)} + \bar{A}_3 \exp \frac{-i(u_1 - \sqrt{3} u_2)}{\sqrt{2} (a - v)} \right\},$$

where $z = u_1 + iu_2$, and A_1 , A_2 , A_3 are complex vectors satisfying the conditions (5.4) and (5.17). Hence, by virtue of Theorem 3, we can construct a minimal submanifold M^n in E^{n+3} , as mentioned at the beginning of this section, as follows: Consider $E^{n+3} = R^{n+3} = R^6 \times R^{n-3}$, and take a W^2 given by (5.19) in R^6 and, at each point $y \in W^2$, the (n-2)-dimensional linear subspace $L^{n-2}(y)$ parallel to $e_3 = U$ and R^{n-3} . Then the locus of the moving $L^{n-2}(y)$ forms a submanifold M^n mentioned above.

Case 2. \overline{M}^{n+3} is the unit sphere S^{n+3} . We may consider $S^{n+3} \subset E^{n+4}$. By putting $x = e_{n+4}$, the Frenet formulas for W^2 are

$$dx = R((e_1^* + ie_2^*)d\bar{z}) ,$$

$$d(e_1^* + ie_2^*) = e_3pdz + (e_{n+1}^* + ie_{n+2}^*)\lambda d\bar{z} - e_{n+4}dz ,$$

$$(5.20) \qquad de_3 = -pR((e_1^* + ie_2^*)d\bar{z}) ,$$

$$d(e_{n+1}^* + ie_{n+2}^*) = -(e_1^* + ie_2^*)\lambda dz + e_{n+3}(\sqrt{2}\lambda d\bar{z}) ,$$

$$de_{n+3} = -\sqrt{2}\lambda R(e_{n+1}^* + ie_{n+2}^*)dz ,$$

where

(5.21)
$$p = \tan (v + a), \quad \lambda = 1/(\sqrt{2} \cos (v + a)), \\ 0 < v + a < \pi/2, \quad 0 < a < \pi/2.$$

From (5.20) it follows that $x + (1/p)e_3 = x + e_3 \cot(v + a)$ is a fixed point, so that $e_3 \cos(v + a) + e_{n+4} \sin(v + a) = e_0$ is a fixed unit vector and x is in an (n+3)-dimensional linear subspace E_1^{N+3} through the point $O_1 = e_0 \sin(v + a)$ and perpendicular to e_0 . Thus W^2 lies in the (n + 2)-dimensional sphere $S^{n+3} \cap E_1^{n+3} = S_1^{n+2}(\cos(v + a))$ of radius $\cos(v + a)$, and we get $\overrightarrow{O_1x} = -e_3^* \cos(v + a)$, where $e_3^* = e_3 \sin(v + a) - e_{n+4} \cos(v + a)$. Using e_3^* we can easily obtain

$$d(e_1^* + ie_2^*) = e_3^*\sqrt{2} \lambda dz + (e_{n+1}^* + ie_{n+2}^*)\lambda d\bar{z} , \ de_3^* = -\sqrt{2} \lambda R((e_{n+1}^* + ie_{n+2}^*)e\bar{z}) ,$$

and therefore the same equations with respect to $e_1^* + ie_2^*$, e_3^* , $e_{n+1}^* + ie_{n+2}^*$, e_{n+3} as (5.1). Hence we can take a W^2 in E_1^{n+3} , which is a solution of (5.20), and, at each point $y \in W^2$, an (n-2)-dimensional linear subspace $L^{*n-2}(y)$ in E_1^{n+3} through y as described in the previous case. Next, we project these $L^{*n-2}(y)$ onto S^{n+3} from O and denote the images by $L^{n-2}(y)$. The locus of the moving $L^{n-2}(y)$ forms a minimal submanifold M^n in S^{n+3} , which satisfies the conditions in Theorem 4 and (α) and (β) in Lemma 12.

Case 3. \overline{M}^{n+3} is the hyperbolic (n + 3)-space H^{n+2} of curvature -1. We use the Poincaré representation of H^{n+3} in the unit disk in R^{n+3} with the canonical coordinates x_1, \dots, x_{n+3} . The Riemannian metric H^{n+3} is given by

(5.22)
$$ds^{2} = 4dx \cdot dx/(1 - x \cdot x)^{2},$$

where ".. " denotes the Euclidean inner product. Since the components of the Riemannian metric are

$$g_{ij} = 4\delta_{ij}/h^2 , \quad g^{ij} = h^2 \delta^{ij}/4 , \quad h = 1 - x \cdot x ,$$

the Christoffel symbols are $\Gamma_{ij}^k = 2(\delta_i^k x_j + \delta_j^k x_i - \delta_{ij} x_k)/h$. For any vector field $X = \sum_i X^i \partial/\partial x_j$, its covariant differential with respect to the Riemannian connection of H^{n+3} is given by

(5.23)
$$DX = h[a(2X/h) + 4\{(x \cdot X)dx - x(X \cdot dx)\}/h^2]/2$$

For any two tangent vector fields X, Y, we have $\langle X, Y \rangle = 4X \cdot Y/h^2$, where " \langle , \rangle " denotes the inner product in H^{n+3} . Therefore, if $b = (x, e_1, \dots, e_{n+3})$ is an orthonormal base in H^{n+3} , then $(x, 2e_1/h, \dots, 2e_{n+3}/h)$ is the one in R^{n+3} . Now we describe the Frenet formulas for W^2 in H^{n+3} by means of the

Poincaré representation (5.22). By putting

(5.24)
$$\begin{aligned} \xi &= 2(e_1^* + ie_2^*)/h , \qquad U &= 2e_3/h , \\ \eta &= 2(e_{n+1}^* + ie_{n+2}^*)/h , \qquad V &= 2e_{n+3}/h , \end{aligned}$$

 $(4.10), \dots, (4.14)$ become

$$dx = h(\xi d\bar{z} + \bar{\xi} dz)/4 ,$$

$$d\xi = \{Up - (x \cdot \xi)\bar{\xi}/2 + x\}dz + \{\eta\lambda - (x \cdot \xi)\xi/2\}d\bar{z} ,$$

(5.25)
$$dU = -\{p + (x \cdot U)\}(\xi d\bar{z} + \bar{\xi} dz)/2 ,$$

$$d\eta = -\{\xi\lambda + (x \cdot \eta)\bar{\xi}/2\}dz + \{V\sqrt{2} \ \lambda - (x \cdot \eta)\xi/2\}d\bar{z} ,$$

$$dV = -\{\eta\lambda/\sqrt{2} + (x \cdot V)\bar{\xi}/2\}dz - \{\bar{\eta}\lambda/\sqrt{2} + (x \cdot V)\xi/2\}d\bar{z} ,$$

in consequence of (5.23) and

$$\boldsymbol{\xi} \cdot d\boldsymbol{x} = h\{(\boldsymbol{\xi} \cdot \boldsymbol{\xi}) d\boldsymbol{\bar{z}} + (\boldsymbol{\xi} \cdot \boldsymbol{\bar{\xi}}) d\boldsymbol{z}\}/4 = h d\boldsymbol{z}/2 ,$$

where

(5.26)
$$p = \coth(a - v), \quad \lambda = \sqrt{p^2 - 1} / \sqrt{2}, \quad v < a.$$

On the other hand, any geodesic starting from the origin $O = (0, \dots, 0)$ in H^{n+3} is a Euclidean straight line segment in the unit disk. The arc lengths v and r in H^{n+3} and R^{n+3} have the relation as $v = \log (1 + r)/(1 - r)$ and r =tanh(v/2). Since any W^2 is congruent to others under hyperbolic motions, we may suppose the focal point (z_0 in Theorem 3) of W^2 is the point O. Then we have

(5.27)
$$x = -Ur = -U \tanh(v/2)$$
.

Replacing a - v in (5.26) by v gives $h = 1 - x \cdot x = 1/\cosh^2(v/2)$, $2/h = \cosh v + 1$, $\lambda = 1/(\sqrt{2} \sinh v)$, $p - r = 1/\sinh v = \sqrt{2}\lambda$ and $x \cdot \xi = x \cdot \eta = x \cdot V = 0$, $x \cdot U = -r$ for W^2 . Hence (5.25) is simplified as follows:

$$dx = (\xi d\bar{z} + \bar{\xi} dz)/(2(1 + \cosh v)) ,$$

$$d\xi = U\sqrt{2}\lambda dz + \eta\lambda d\bar{z} ,$$

$$dU = -\sqrt{2}\lambda(\xi d\bar{z} + \bar{\xi} dz)/2 ,$$

$$d\eta = -\xi\lambda dz + V\sqrt{2}\lambda d\bar{z} ,$$

$$dV = -\sqrt{2}\lambda(\eta dz + \bar{\eta} d\bar{z})/2 .$$

This system of equations except the first one is the system of equations (5.1) except its first one. Thus we see that we can construct a W^2 in H^{n+3} by making use of result in case $\overline{M}^{n+3} = E^{n+3}$. In fact, considering $R^{n+3} = R^6 \times R^{n-3}$, we take a surface W^2 satisfying (5.28), and, at each point y of W^2 , the (n-2)-dimensional linear subspace $\hat{L}^{n-2}(y)$ through y and parallel to U and R^{n-3} .

Let $L^{n-2}(y)$ be the totally geodesic subspace of H^{n+3} tangent to $\hat{L}^{n-2}(y)$ at y. Then the locus of the moving $L^{n-2}(y)$, $y \in W^2$, is a minimal submanifold M^n in H^{n+3} , which satisfies the required conditions.

References

- [1] S. S. Chern, M. Do Carmo & S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin, 1970, 60-75.
- [2] T. Otsuki, A theory of Riemannian submanifolds, Kodai Math. Sem. Rep. 20 (1968) 282-295.
- [3] —, Pseudo-umbilical submanifolds with M-index<1 in Euclidean spaces, Kōdai Math. Sem. Rep. 20 (1968) 296–304.
- [4] —, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970) 145–173.
- [5] —, On principal normal vector fields of submanifolds in a Riemannian manifold of constant curvature, J. Math. Soc. Japan 22 (1970) 35–46.
- [6] —, Submanifolds with a regular principal normal vector field in a sphere, J. Differential Geometry 4 (1970) 121–131.

TOKYO INSTITUTE OF TECHNOLOGY