
J. DIFFERENTIAL GEOMETRY
6 (1971) 193-211

MINIMAL SUBMANIFOLDS WITH M-INDEX 2

TOMINOSUKE OTSUKI

For a submanifold M in a Riemannian manifold M, the minimal index (M-
index) at a point of M is defined by the dimension of the linear space of all 2nd
fundamental forms with vanishing trace. The geodesic codimension of M in M
is defined by the minimum of codimensions of M in totally geodesic submani-
folds of M containing M.

It is clear that M-index < geodesic codimension. In [4, Theorem 1], the
author proved that if M is of constant curvature, and M is minimal and of M-
index 1 at each point, then its geodesic codimension is one. The purpose of the
present paper is to investigate an analogous problem for minimal submanifolds
with M-index 2. We shall obtain a condition for the geodesic codimension to
become 2 (Theorem 1) and some examples (in § 5) of minimal submanifolds
with M-index 2 and geodesic codimension 3 in the space forms.

1. Minimal submanifolds with M-index 2

Let M=Mn+v be a Riemannian manifold of dimension n + v and constant
curvature c, and M = Mn be an n-dimensional submanifold in M. Let ωA,
ωAB = — ωBA (A,B = 1, 2, , n + v) be the basic and connection forms of
M in the orthonormal frame bundle F(M) which satisfy the structure equa-
tions

(1.1) dωA = J\ ωAB Λ ωB , dωAB = 2 ωAC Λ ωCB — cωA Λ ωB .
B c

Let B be the subbundle of F(M) over M such that b = (x, eλ, , en, ,
en+v) € F(M) and (x, e19 , en) e F(M), where F(M) is the orthonormal frame
bundle of M with the induced Riemannian metric from M. Then deleting the
bars of ώA, ωAB in B we have1

(1-2) ωa = 0 , ωia = Σ Aaij<θj > Aaij = Aaji

and

Received June 20, 1970.
1 In the following, /, /, k, . run from 1 to n, and α, β, γ, from n + 1 to n + v.
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do)i = Σ (Dij Λ cύj ,
3

da)ij = Σ ω ί f c Λ ω t i — Σ <*>ίβ A ωja — Co;* Λ ωό ,
(1.3)

For any point x e M, let iVΛ be the normal component to the tangent space
TXM = MΛ of TΛM = Ma . Denoting the set of all symmetric real matrices of
order n by Sn, for any b εB we define a linear mapping φb: Nx —> Sn by

(1.4) φb(Σ vaea) = Σ M « , w h e r e ^ α = G4α O )

Now suppose that M is minimal in M and of M-index 2 at each point. Then

(1.5) t raced = 0 , a = n + 1, - - ,n + v ,

and Nx is decomposed as Nx = Ox + Nx, Ox = φb-
ι(0), Ox J_ Nx and dim Nx =

2, which does not depend on the choice of b over x and is smooth. Let B1 be
the set of b such that en+19 en+2 e Nx. Then in Bλ we have

( 1 - 6 ) <*>i,n+3 = * = ω ί ) 7 Z + v = 0 .

Lemma 1. In Bλ for fixed β > n + 2 we have

ωn+i,β = ωn+2,β = 0 ( m o d ω 1 ? ,ωn) ,

ω»+i f^ = ω w + 2 ) / 3 = 0 or ω n + l f ^ Λ ωn+2>β Φ 0 .

Proof. Let JV be the vector bundle over M with fibre Nx, and take a smooth
local cross section (JC, en+ι, en+2) of the orthonormal frame bundle of N. Then
for b we can put

en+i = 4 + i cos ̂  + en+2 sin 0X , ^w + 2 = έn+1 cos ̂ 2 + en+2 sin ̂ 2 ,

and we have

ωn+i,β = ώ n + l f^ cos 0! + ώ^+2^ sin θί , ωn+2f/3 = ώn+1>i5 cos θ2 + ώTO+2>i3 sin θ2 ,

where ώw + l f / s = (Den+19 eβy, ώn+2>β = (Den+2, eβy, and D denotes the covariant
differential operator in M. Thus ωn+hβ = ωw + 2 ϊ i 3 = 0 (modω1 ? ,ωn). Next,
from ωίβ = 0 and (1.3) it follows that

(1-7) (t>i,n+ι Λ ω w + 1>/3 + ωί>n+2 A ωn+2>β = 0 .

By assuming ωw + 2 ) / 3 = pxn+ltβ at Λ, (1.7) implies (ωi>n+ι + |tκϋ i f n + 2) Λ ωn+lιβ = 0.
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Since An+1 and An+2 are linearly independent in Sn, An+1 + pAn+2 Φ 0, from

which follows rank (An+ι + pAn+2) > 1 with trace (An+ι + pAn+2) = 0. Hence

o>n+i,β = ωn+2,β = 0. Λ q . e . d .
Now for any veN, we define a linear mapping ψv: Mx —> 0 ^ by

(1.8) ψ β f f l = Σ <v,βn + 1ωn + l f / ϊ(Z) + en+&>n+2tβ{X)yeβ ,
β>n + 2

where £> € #15 Z e M^. ψ v is well defined by Lemma 1.

The space of relative nullity of M in M at x is the set of X € Mx such that
ωia(X) = 0, / = 1,2, , π α = n + 1, , n + v, which, in general, is de-

noted by lx. Put

(1.9) Mx = tox + lX9 tox±ϊx.

Lemma 2. // ωn+hβ A ωn+2>β Φ 0 for a fixed β > n + 2 in Bx at x e M, we

can choose frames b zBλ such that e19 e2 e ΪΌX, e3, , en € ϊx and

e>ifn+i = M , ω2>n+1 = — ^ ω 2 , ω 3 j 7 l + 1 = . = ωnt7l+1 = 0 ,

(1.10) ω 1 ) W + 2 = //ω2 , ω 2 > n + 2 = μωι , ω 3 , n + 2 = = ωn>n+2 = 0 ,

ω n + 1>^ = ωn+2tβ = 0 (modω 1 ? ω 2 ) , Λ ̂  0 , μ φ 0 .

Proof. From (1.7), we have

(*>i,n+i Λ <yn + l t j 8 Λ ω n + 2 ^ = ωίtΐl+2 A o)n+ltβ A ωn+2tβ = 0 .

By the assumption and Lemma 1, we can choose frames (x, e19 , en) such

that ωn+ι>β A ωn+2>β = fωi A ω2, f Φ 0. Then the above equations imply

ωitn+ι = ωί>n+2 = 0 (modω 1 ? ω2), and therefore we can choose b β Bx such that2

(An+1,An+2y = 0 and

fi>ifn+i = M , ω 2 > n + 1 = —^ω 2 , ω r ) r ι + 1 = ω r > 7 l + 2 = 0 , 2 < r < n .

Then putting ω 1 > n + 2 = fe^ + μω2, ω2f7l+2 = ^ ^ + 62ω2, we have nζAn+1,An+2}

= ^(&! — b2) = 0, so that b, = b2 = 0. Thus we obtain (1.10). It is clear

that el9 e2 e VoX9 and eZ9 , en e ίx.

Theorem 1. // Mn is minimal and of M-index 2 in a Riemannian manifold

Mn+V of constant curvature c at each point, then ψv, v e Nx, v Φ 0, has a com-

mon image ψv(Mx) whose dimension is at most 2. // the rank of ΛJrυ is con-

stantly zero for v € Nx, then the geodesic codimension of Mn is 2, and Mn is

also minimal and of M-index 2 in the geodesic submanifold Mn+2 in Mn+V

which contains Mn. If the rank of ψυ is not zero, then

2 In Sn, we define the inner product of any A and B by (A,B) = trace AB/n, so
that Sn is a Euclidean space.
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(i) dim ΐx = n - 2 , (ii) ψ , ( U = 0 .

Proof. If ψυ is trivial for any v9 then ωn+hβ — ωn+2fβ = 0, /3 > rc + 2, in
2?!. On the other hand, the system of Pfaffian equations:

(1 11) <fy = 0 , ωί/5 = 0 , ωn+1>/3 = 0 , ωn+2>β = 0 ,

i = l , . . . , / ι ; j 8 = n + 3, ,n + i;

in F(Mn+v) is completely integrable and the image of any maximal integral sub-
manifold under the projection F(Mn+v) —> Mn+V is totally geodesic. Therefore
Mn is contained in an (n + 2)-dimensional totally geodesic submanifold Mn+2

of Mn+V. It is clear that Mn is minimal and of M-index 2 in Mn+2.
Now suppose that ψυy v € Nx, is not trivial. By (1.8) and Lemma 1, there

exists β > n + 2 such that ωn + l ί / 3 Λ ωn + 2 ) i 3 =£ 0. Choosing a frame fc e B19 which
satisfies (1.10), and substituting (1.7) we get, for any γ > n + 2,

Λωx Λ ωn + 1 > r + //ω2 Λ ωn+2tΐ = 0 , — Λω2 Λ ωn + 1, r + μω! Λ ωw + 2, r = 0 .

Hence we can put

(1.12) Λθ>n + ι,r = fr

ωι + 8rω2 ' i"ωn + 2,r = 8r

ωι ~ frω2

By putting F = Σ /rer, G = Σ ^^ r , (1.8) can be written as
> + 2 > + 2

(1.13)

\λ(v,en+1>ω2(X) + l ^ ^ n ^ X

Since ωn + l f / ϊ Λ ωn+2tβ Φ 0, we have fβ

2 + g/ ^ 0, so that F Φ 0 or G =£ 0.
Since

yi < y / l 2 μ2

for v Φ 0, the image ψ^ίM^) is the linear space spanned by F and G, which
does not depend on v € NX9 v Φ 0. Hence (i) and (ii) are clear by Lemma 2.

Remark. In Theorem 1, the set of x e M such that ψΌ is not trivial is open.
For such points x, by means of (1.12) the frame b = (x9ei9 - - 9en+v) satisfying
(1.10) does not depend on the choice of β such that ωn+ltβ A ωn+2tβ Φ 0. In the
above open set of M, F and G give normal vector fields, and the set of such
frames is denoted by B2.
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2. Minimal submanifolds with M-index 2 and geodesic codimension > 2

Using the notations in § 1, we have
Lemma 3. Suppose the rank of ψυ> 0 for every v Φ 0. Then the (n — 2)-

dίmensional distribution I = {ίX9xe Mn) is completely integrable and its integral
submanifolds are totally geodesic in Mn+V.

Proof. From ωr>n+1 = ωrt7l+2 = 0 (2 < r < n) it follows that

ωri Λ ωun+ι + ωr2 A ω2>n+1 = ωrl A ωun+2 + ωr2 A ω2>n+2 = 0

in B2, and from (1.10) that ωrl A ωλ — ωr2 A ω2 = ωrί A ω2 + ωr2 A ωι = 0.
Thus we can put

(2.1) ωlr = prωλ — qrω2 , ω2r = qrωγ + prωx ,

or ωlr + iω2r = (pr + iqr)(ωί + iω2). Making use of these relations we can easily
see that dωγ = dω2 = 0 (mod ω19 ω2). Hence the Pfaffian equations ωγ = ω2 = 0
are completely integrable, and, equivalently, so is the distribution I.

Let Ln~2 be a maximal integral submanifold of Γ, along which we have
ωγ = ω2 = ω n + 1 = = ω n + v = 0 a n d ω l r = ω 2 r = ω T t 7 l + ι = • - . . = ω r > n + v = 0
by (2.1), (1.10) and (1.6) in B2. These show that Ln~2 is totally geodesic in
Mn+V. q.e.d.

In the proof of Lemma 3, we have two special tangent vector fields defined
by

(2.2) P = Σ Prer , Q = Σ ?rβ, ,
3 3Σ

r=3
which we call the principal and subprincipal asymptotic vector fields, respec-
tively.

Lemma 4. Under the condition of Lemma 3, the 2-dimensional distribu-
tion ΪΌ = {ΪΌX, x ζ Mn) is completely integrable if and only if the vector field Q
vanishes. When Q = 0, the integral submanifolds of ΪΌ are totally umbilic in Mn.

Proof. ΪΌX is given by the Pfaffian equations ωz = ω4 = = ωn = 0 at each
point x € Mn. By (2.1), in B2 we have dωr = —2qrωλ A ω2 (mod ω3, , ωn),
which shows that the distribution ΪΌ is completely integrable if and only if
β = 0.

When Q = 0, (2.1) becomes

(2.3) ω l r = p , ^ , ω2r = prα)2 , r = 3, , n ,

which shows that any integral submanifold of the distribution to is totally um-

bilic in Mn. q.e.d.
We will explain the integrability of to without using the field Q.
Lemma 5. The distribution ΪΌ is completely integrable if and only if the
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following condition is satisfied: For any tangent vector fields X d tv, and

Yd I, we have (F^Y)^ \\ X, where Vx denotes the covariant derivative in Mn

with respect to X and (P'zY)to t^ιe to-component of the field FXY.
2 n

Proof. Putting X = Σ ^α^α> Y = Σ Yrer a n d considering er as local
α=l r=3

fields, we have

VXΎ = Σ xa Σ

+ Σ ωrt(β«
ί>2

Thus by (2.1),

( F * l % = - ( * ' < P , Y> - X\Q, Γ » β , - (*«<β, 7> + X2<P, Y))e2 ,

that is,

(2.4) (FxY)m = - <P, Y>Z - < β , y> R o t ^ ΛΓ,

where Rot l / 2 denotes the rotation on tt)x by the angle π/2 in the direction from
eL to e2. Hence Q = 0 is equivalent to the statement of this lemma.

Lemma 6. Suppose the rank of ψυ > 0 for every v Φ 0. TTien in B2>

(2.5) {(<« - λ<P, dx» - i(2^ω12 - μώ + KQ, dx})} Λ (ω, + to2) = 0 ,

(2.6) {(dj« - μ(P, dx» - i(2μωι2 - λώ + μ(Q, dx})} Λ (ω, + /α>2) = 0 ,

(2.7) {da + i(l - σ2)ώ} Λ (ω, + iω2) = 0 ,

(2.8) rfωi2 = -{ | |P | | 2 + | | β | | 2 + c - λ2 - pFfa Λ ω2 ,

(2.9) dώ = -{2λy - \\F\\2 - IIGHΉ Λ

= Σ 3^r> ώ = ω n + l f n + 2

Proof. From (1.10), (1.12) and (2.1) we get

da>ι n+i = — ^ω 1 2 Λ ώ)2 + j«ώ Λ (w2 = ^ Λ ύ)i + ^ Σ

do)2,n + i = — ^ ω i2 Λ α)! + juώ Λ α)i = — dΛ Λ ω 2 — Λ

and therefore
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(dλ - λ Σ Prθ>r) Aω,+ (2λωί2 - μώ + λ Σ Qr^r) Λ ω2 = 0 ,

(dλ — λ Σ Pr<»r) A ω2 — (2λωl2 — μώ + λ Σ Qr<*>τ) Λ ω1 = 0 .
r r

which can be written as (2.5). Analogously we can get (2,6) from dω1>n+2 and
dω2t7l+2. From (2.5) and (2.6) it is easily seen that

{(λdμ - μdλ) + i(λ2 - μ2)} A (ωx + ίω2) = 0 ,

which is equivalent to (2.7). We have also

dωl2 = Σ ωir Λ ωr2 + ωun+1 Λ ωn+h2 + ωhn+2 Λ ωn+2>2 — cωx A ω2

r

= ~ \Σ (Pr2 + q/) + c - λ 2 - μ2\ω1 A ω2 ,

dώ = Σ ωn + l,a A ωa>n + 2 + Σ <»n + l,β A 0 ) β > n + 2
α = l β>n+2

= - — \2λy - Σ (fβ

2 + 8β*)\a>i A ω2 ,
λμ y. β J

which can be written as (2.8) and (2.9), respectively, q.e.d.
A curve in a Riemannian manifold of constant curvature is said to be even

if its geodesic codimension < 1.
Theorem 2. Under the conditions of Theorem 1 with non-trivial ψv for any

v € N, v Φ 0, the following statements hold.
1) The set of all asymptotic tangent vectors of Mn in Mn+V constitute a

completely integrable (n — 2)-dimensional distribution I and its integral sub-
manifolds are totally geodesic in Mn+V.

2) The 2-dimensional distribution to orthogonally complement to I is com-
pletely integrable if and only if the subprincipal asymptotic vector field Q of
Mn vanishes, and then its integral surfaces are totally umblic in Mn.

3) The principal and subprincipal asymptotic vector fields P and Q of Mn

are involutive.
4) When P Φ 0, the integral curves of P are even in Mn+% and they are

geodesic of Mn+V if and only if <P? β> = 0 or P\\Q.
Proof. 1) and 2) are evident from Lemmas 3 and 4. By (2.1) and (1.3) we

obtain

iω2j A

d(ω1

and

r + *'ω2r)

= Σ (ωi
j

= (dPr -

therefore

j A ω

1- idqr

jr +

• ) Λ

iω2j A ωjr)

(ω, + ίω2) -f

— c(ωx + i

- (Pr + iqr)
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,n im ΓPr + ίdqr + Σ(Pt + iQr)θ)tr ~ (Pr + IQr) Σ (Pt + iqM ~ Cθ)\
(2.10) I ί t )

Λ {ωx + iω2) = 0 .

from which it follows that for any tangent vector field I d ,

(2.11) FXP = FXP = <P, xyp - <β, xyQ + ex,

(2.12) VXQ = VXQ = <β, xyp + <
where Vx denotes the covariant derivative in Mn+V with respect to X. In par-
ticular, we get FQP = <P, β>P - | | β | | 2 β + cQ, FPQ = (P, Q}P + \\P\\2 β,
and therefore [P, β ] = FPQ - FQP = {|[P||2 + | | β | | 2 - c}β, which shows that
P and β are involutive.

For part 4) of the theorem we notice the following equations derived from
(2.11) and (2.12):

FPP = (| |P||2 + c)P - <P, β > β , FQQ = | | β | | 2 P + <P, β > β ,

which clearly show that if P Λ β =£ 0, then the integral surfaces of the distri-
bution spanned by P and β are totally geodesic in Mn+V. Hence, when P Φ 0,
the integral curves of P are even, and they are geodesies in Mn+V if and only if
<P, β > β || P, that is, if and only if <P, β> = 0 or β || P.

3. Minimal submanifolds with M-index 2 and vanishing

subprincipal asymptotic vector field β

In this section, we shall consider Mn in Mn+V as in Theorem 2 under the
additional conditions P Φ 0 and β = 0, and suppose π > 3. Denote the
integral surface of ϊυ and the integral curve of P through x by W2(*) and Γ\x)
respectively.

Lemma 7. The integral curves Γ1 of P are the orthogonal trajectories of a
family of hypersurfaces of Mn containing the integral surfaces W2 of to.

Proof. Since β = 0, (2.10) is reduced to

(3.1) d p r + Σ Pto*tr - P r Σ Ptθ)t - c ω r = 0 .
ί>2 ί>2

Since P Φ 0, we use only such frames b of J52 that

(3.2) P = pe3, p > 0 ,

and denote the submanifold of these frames by B3, in which

(3.3) ωaz = pωa , ωat = 0 , <z = 1, 2 ; 3 < t < n ,

and (3.1) becomes
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(3.4) dp *= (p2 + c)ω3 ,

(3.5) pω2r = cωr , 3 < r < n .

By means of (3.3) and (3.5) we obtain dω3 = 0 in £ 3, so that there exists a local
function v such that

(3.6) ω3 =rf A T .

(3.2) and (3.6) show that the family of level hypersurfaces of v is the required
one.

Remark. By denoting the level hyper surf ace v = c by Vn~\c), the func-
tion v may be considered as the arclength of the geodesies Γι measured from
Vn~\O). Integrating (3.4), we easily have

Lemma 8. The norm p of the principal asymptotic vector field P is a junc-
tion of v as follows:

(3.7^ p = (c)"1/2 tan (v + aWT , 0 < v + a < π/(2/F), (c >0) .

( 3 . 7 2 ) p = l / ( £ i - v ) , t ; < f l 5 ( c = 0 ) .

V-ctanh(«- vV-c , (0 < p < V-c) ,
(3.73) p = v < fl ,(c < 0) .

(V — ccoth(α — ̂ )V —c , (V— c < p) ,

a is a constant on Mn.
Lemma 9. Let X be a Jacobi field along Γ1 determined by a family of

integral geodesies of P. If X(0) β tυ, then \\X\\ —• 0 and p -* + oo when v + a
—> τr/(2V c) for c > 0 ίiπύί v -+ a for c = 0, or c < 0 and Λ/ — c < p.

Proof. Let Λ: = t ^ ε ) be a family of integral geodesies of P such that
x(y,ε)€Vn-ι(v). Putting Z = d c/dε, we obtain X2 = Σ ωό{X)ωs(X) and

= 2 Σ (y/ZίSω/Zί/a'y. On the other hand, we have

dωj(X)/dv = e,(ωj(X)) = X(ωj(e3)) - ^ ( Z , e3) - ωj([X, ej)

= — Σ°>jk Λj

since [d/dv, d/dε] = 0 and so ω/tX, 3̂]) = 0. Thus

3 ||Z||2/3i; = - 2 Σ ω^ω^X) = - 2 Σ ωα(Z)ωα3(Z) + 2| | | |/ Σ ^ ^ Σ Σ
α α r>3

Using (3.3) and (3.5), we have

(3.8) d \\X\\2/dv = -2p \\Xa

where Xjo and X\ are the lυ and Γ components of X.
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On the other hand, in B3 we have dωr — (c/p)ω3 A ωr + Σ ωrt Λ ωt, so
ί>3

that the Pfaffian equations ω4 = = ωn = 0 are completely integrable.
Thus, if X € ΪΌ for a value of v, then so is for any v. For such X from (3.8) it
follows that 3| |Z||2/9t; = — 2p \\X\\2. Integrating this and using Lemma 8, we
have

(3.9)
cos (v + a)V c /cos a\l c

(a- v)/a(c = 0) ,

sinh (a — ?;)\A3^/sinh a^^

cosh(« — i ;)V^

(c > 0) ,

(c < 0 and — c < p) ,

(c < 0 and 0 < p < — c) ,

which implies this lemma.
Lemma 10. Let X be a Jacobi field along Γι as in Lemma 9. // X(0) € I,

<Jf(O), P> = 0, then
i) | |Z| | - • 0 and p-+0, when v + a -> 0 for c > 0,
ii) \\X{v)\\ = \\XQS)\\iorc = 09

iii) \\X\\ -*0andp-^0, or \\X\\ -> ||X(0)||/cos a \l-c and p -* oo when
v -> a for c < 0.

Proo/. By Lemmas 3 and 7, we have Z c [ and (X, P> = 0 for any v.
Thus (3.8) implies d\\X\\2/dv =. 2(c/p) \\X\\\ from which it follows that

= exp (cf\l/p)dv

/sin (v + a)y/ c /sin αV c

(c=0),

(c > 0) ,

cosh (« — ^ V ^ ^ / c o s h a^^d (c < 0 and <s/ — c<p),

,sinh (α — v)V — c/sinha^ — c (c < 0 and 0 < p < V — <?)

These relations and Lemma 8 imply i), ii) and iii). q.e.d.
By means of Lemmas 7, 9 and Theorem 2, we obtain
Theorem 3. Let Mn in > 3) be a maximal minimal submanifold? in an

(n + v)-dimensίonal space form Mn+V which is of M-index 2 at each point,
whose associate mapping ψΌ is nontrivίal for any v e N,v Φ 0, and subprincipal
asymptotic vector field vanishes identically. Then Mn is a locus of (n — 2)-
dimensional totally geodesic subspaces in Ln~2(y) in Mn+V through points y of

3 "maximal" means here that Mn is not contained in a larger submanifold with the
same properties.
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a surface W2 lying in a Riemannian hypersphere in Mn+V with center ZQ such
that

i) Ln~\y) contains the geodesic from z0 to y,
ii) the (n — 3)-dimensional tangent spaces to the intersection of Ln~\y) and

the hypersphere at y are parallel along W2 in Mn+\
Proof. It is sufficient to prove ii). In B3, for 3 < r < n, by (3.3) and (3.5)

we have Der = —(c/p)ωre3 + £ ωrtet. Thus, along W2, Der = | ] ωrtet, which
t>3

shows that the tangent space in ii), i.e., the space spanned by e4, eδ, , en, is
parallel along W2. q.e.d.

This theorem tells us how to construct a minimal submanifold in a space form
as in the statement.

4. Minimal submanifolds with M-index 2, vanishing Q and ψυ of rank 1

In this section, we shall investigate Mn in Mn+V as in Theorem 3 under the
condition that ψυ, v € N, v Φ 0, is of rank 1 everywhere. By this assumption
and (1.13), we can choose frames b in Bz such that

(4.1) F = f e n + 3 , G = gen+Z9 f + ? Φ θ .

Denoting the set of these frames by # 4 , from (1.12) we get

(4 2) λa)n+i,n+3 = M + gω2 , μωn+2,n+3 = 8<t>ι — fo)2 ,

Vn + hr = ωn + 2,r = 0 (ϊ > n + 3)

Theorem 4. // Mn is minimal and of M-index 2 in Mn+V of constant cur-
vature, ψΌ is of rank 1 for any nonzero v e N, and Q = 0, then there exists a
totally geodesic submanifold Mn+3 of Mn+V containing Mn, in which Mn has
the same properties*.

Proof. Using the same notations as in § 3, it is sufficient to show ωn+Ztr = 0
(γ > n + 3) in £ 4 . From (4.2), we get

dωn+hr = (l/λXfω! + gω2) A ωn+3tΐ = 0 ,

dωn+2tr = (\lμ)(gωx — fω2) A ωn+itΐ = 0 ,

which imply ωn+Ztγ = 0 since (/ωL + gω2) A (gωι - fω2) Φ 0. q.e.d.

By virtue of the above theorem, we may put v = 3 in our case from the local
point of view.

Lemma 11. Under the conditions of Theorem 4, in B4 we have the follow-
ing:

4 We have supposed n > 3, but Theorem 4 is also true for n = 2.
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(4.3) {(dlog λ - pdv) - i(2ω12 - σώ)} A (ωλ + iω2) = 0 ,

(4.4) dω12 = -(p2 + c - λ2 - μ2)ωλ A ω2 ,

(4.5) dώ = - ( l / ( λ μ ) ) ( 2 λ 2 μ 2 - f - g2)ωγ A ω2 ,

{d l o g (/ — ig) — d l o g λ — pdv — ίωu) A (ωι + iω2)

*A Hi2" h +

Proof. By (3.3), (3.6) and Q = 0, we get (4.3) immediately from (2.5).
(4.4) and (4.5) are trivial from (2.8) and (2.9).

Now from (4.2) exterior derivation gives

df Aω,+ dg Aω2- (d log λ + pdv) A ( M + gω2)

o12 + —ώ) A {gωι — fω2) = 0 ,
σ I

df A ω2 — dg A ωx + (d log μ + pdv) A (gωι — fω2)

— (ω12 + σώ) A {fωγ + gω2) = 0 ,

which can be written as, in consequence of d log μ = d log λ + d log σ,

{d(f — ig) — (d log λ + pdv + iωl2)(f — ig)} A (ωλ + iω2)

+ lid log σ — —ώ) A {gωx — fω2) — iσώ A (fωλ + gω2) = 0 .
\ σ I

Since we have, from (2.7),

d log σ A ω1 = (— — σ) ώ A ω2 , d log σ A ω2 = — — — σ\ώ A ωγ ,
\σ I \σ I

substituting these in the above last equation we get (4.6).
Remark. N = U Nx introduced in § 2 is considered as a vector bundle

xζ.M

over Mn with 2-dimensional fibre and has a metric connection induced from
Mn+\ ώ = (on+hn+2 is its connection form and dώ is its curvature form. There-
fore ώ is a geometrical quantity of Mn in Mn+3, which may be called the mini-
mal torsion form of Mn.

Lemma 12. Under the condition of Theorem 4 and the additional condi-
tions :

(a) ώ Φ 0, and σ = μ/λis constant on W2,
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(β) W2 is of constant curvature,
where W2 is an integral surface of the distribution to, for W2 we have the
following:

(4.7) σ = 1 or -1 and 2λ2 = p2 + c ,

(4.8) W2 is flat,

and, by supposing σ = 1 and ω12 = d# on PF2,

(4.9) ώ = 2dθ,

(4.10) d* = JR((ef + ίe*)dz) ,

(4.11) 5(e* + ief) = ezpdz + (e*

(4.12) De3 = -pR((e* +

(4.13) D(e*+1 + ie*+2) = -(e* + ie*)λdz +

(4.14) Den+3 = - V T t f l ( e * + 1 + fe*

wAerβ z w απ isothermal coordinate of W2 such that

(4.15) ωx + iω2 — exp ( — iθ)dz ,

(4.16) e* + ief = &xρ(iθ)(e1 + ie2) , e*+1 + fe*+2

From (2.7) and (α), we get 1 — σ2 = 0, i.e., σ = 1 or — 1 , so that
we may suppose σ = 1. By means of (β), on JF2 we put dα>12 = —cω1 A ω2,
where c is a constant. Then (4.4) implies 2Λ2 = p2 + c — c, and λ is constant
on W2 by Lemma 8 and Theorem 3. Therefore (4.3) implies ώ = 2ω12 on W2,
from which we have /2 + g2 = 2λ\λ2 — c) by (4.5), so that f + g2 is also con-
stant on W2. Putting / — ig = V 2 JlV-ί2 — c exp (— iφ)9 from (4.6) we get the
relation ω12 + ώ + dφ = 0, i.e., 3ω12 + dp — 0. Thus we have dω12 = dώ = 0
on P^2, from which follows c = 0.

Hence JF2 must be flat, and we may put

(4.17) f + ig = \l~2l2 exp (-3/0) , ψ = - 3 0 .

On the other hand, we have d(ωί + iω2) = — ία>12 Λ (o>! + iω2) — idθ Λ (CU! + iω2),
and therefore there exists a local isothermal coordinate z as (4.15). Using (4.15)
and (4.17), (4.2) can be written as

(4.18) ω n + 1 > n + 3 + iωn+2tn+z = <JTλ exp (-2iθ)dz on WP72 .

Now, to derive the Frenet formulas of W2, we first have
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dx = e1ω1 + e2ω2 = R^ + ie2)(ωι — iω2)) = R((e? + ief)dz) .

By means of (3.3), (1.10), (4.15) and (4.16), we obtain

D(e1 + ie2) = — (ex + ie2)idθ + e7p{ωι + ίω2)

+ (en+1 + ien^λiω, - iω2) ,

which is equivalent to (4.11). Analogously,

De3 = ~eλωn — e2ω23 = —pR((ef + ief)dz) .

From the relations

Den+i — —λ(eιωί — e2ω2) + 2en+2dθ + en+3ωn+hn+3 ,

Den+2 = — Keγω2 + e2ωx) — 2en+2dθ + en+3ωn+2>n+3 ,

it follows that

D(en+1 + ien+2) = -(e1 + ie2)λ{ωι + iω2) - 2(en+1 + ien+2)idθ

which is equivalent to (4.13) by (4.15), (4.16) and (4.18). Finally,

5 l + k * + 2)(e>n + i f n + 3 — ί ^ n + 2.11 + 3)

5. Examples of minimal submanifolds of M-index 2

In this section, we shall find, as in Theorem 4, minimal submanifolds in
space forms, for which a W2 satisfies the conditions (a) and (β) in Lemma 12,
and we shall suppose n > 3.

Case 1. M w + 3 is the Euclidean space En+3. By Lemmas 12 and 8 the Frenet
formulas for W2 are

dx = R((e* + ίe*)dz) ,

d{et + ίef) = ezpdz + (e*+ι + ie*+2)λdz ,

(5.1) dez= -pR(ίe* + ie*)dz) ,

where

(5.2) p = l/(a-v), λ = p/<JT, v<a,0<a.
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From (5.1) it follows that x + e3/p is a fixed point and so we may suppose
that it is the origin O of En+3 = Rn+\ Then we have

(5.3) x = -ejp .

From (5.1) again it is easily seen that e3, ef + ief, e*+1 + ie*+2, en+3 are all
solutions of the partial differential equation

Λ = -λ2X .
dzdZ

Noticing this fact, we shall give a solution of (5.1).
In C3 we choose 3 fixed constant vectors A19 A2 and Az such that

A j A A =^ U ? Λ j ' A fc ^^ A j Afc '== U 7

(5.4) ArA, + A2 Ά2 + A3 A3 = 1/2 ,

/, k = 1,2, 3; / Φ k ,

and put
3

C/ = 2 { A exp λ(z exp (ια#) — Z exp (—ia*))
(5.5)

+ ^ exp λ(-z exp (iα^) + Z exp (—lα^))} ,

where the bar denotes the complex conjugate. It is clear that U = U and

U- U = 1 by (5.4). Next putting dU/dZ = -λξ/V~2, we have

? = V 2 2 exp (—Uxj){Aj exp ^(z exp {iaό) — Z exp ( — iaό))
(5.6) ^

— Aj exp Λ(—z exp (ίaj) + Z exp ( — iexj))} .

It is easily seen that f.f = 2, C/ f = O and

(5.7) £ £ = - 4 £ M r iί/cos 2 ^ - i sin 2^) .

Putting dξ/dz = ^ , we obtain

27 = — V 2 2 exp (—2/αi){i4J exp ^(z exp (iaj) — Z exp (—ias))
(5.8) _

+ Aj exp ^ ( - z exp (/^) + z exp (—/α^))} ,

a n d t h e r e f o r e η - η = 2 9 ξ - η = ξ - η = 0 ,

(5.9) 27.̂  = 4 2 4̂̂  -4/cos 4αj — i sin

(5.10) U 9 =

Finally putting 3^/az = V^^^, we have
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V = 2 exp ( — 3iaj){Aj exp Λ(z exp (Uxj) — Z exp (—iaj))
(5.11)

— ̂  exp λ(—z exp (/#,) + z exp ( — ία

T h u s V V = I, U V = U V = O,η-V = η V = 0 a n d

(5.12) V V = - 2 Σ Λ r^(cos6α, - /sin 6^) ,

(5.13) ξ.V= -η.η/ST , f K = -f.

By means of the above calculation, in addition to (5.4), if Aj9 aj9 / = 1,2, 3,
satisfy

(5.14) ΣAj-Aj(cos 2aj - i sin 2aj) = 0 ,

(5.15) ΣAJ Aj(cos 4aj - i sin 4aj) = 0 ,

(5.16) 3aj = π/2 (modπ) ,

then we obtain a solution of (5.1) by putting e3 = U, ef + ie} = ξ, e*+ί + ie*+2

= η, en+3 = V and considering C3 = R6.
Condition (5.14) means that the broken segment P{iPιP2Pz in the plane such

that Pj^Pj = AJ AJ and argPJ^PJ = 2aj9 j = 1, 2, 3, is closed, i.e., Po = F3.
Condition (5.15) also has an analogous meaning. By an elementary considera-
tion, we see that the triangle P1P2P3 must be equilateral, i.e.,

(5.17) ArΆj = 1/6, / = 1,2,3.

Conversely, the above meanings are also sufficient for the validity of (5.14)
and (5.15) respectively. Now, using the triangle PXP2P^ and interchanging A3

with Aj, j = 1, 2, 3, and the order of the index /, we may have the unique
values of a3, namely,

(5.18) aγ — π/6 , a2 = π/2 , a3 = 5^/6 .

Thus we have a W2 in R* = C3 given by

x=-(a- v)U exp /("L+ V T f + ^ + ^ ψ

, λ 2iu, , -2 —2iu,
, , , m + A, exp - = = — ϊ - ^ — + 4̂, exp —^= —

(5-19) τ V2(α-v) V2(a-v)

+
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where z = uλ + iu2, and Ax, A2, A2 are complex vectors satisfying the condi-
tions (5.4) and (5.17). Hence, by virtue of Theorem 3, we can construct a
minimal submanifold Mn in En+3, as mentioned at the beginning of this section,
as follows: Consider En+3 = Rn+3 = R«X Rn~\ and take a W2 given by (5.19)
in R6 and, at each point y e W\ the (n — 2)-dimensional linear subspace Ln~2(y)
parallel to e3 = U and Rn~*. Then the locus of the moving Ln~\y) forms a
submanifold Mn mentioned above.

Case 2. Mn+Z is the unit sphere Sn+\ We may consider Sn+Z C En+\ By
putting x = en+i, the Frenet formulas for W2 are

dx = R((e* + ie*)dz) ,

d(e* + ie}) = e3pdz + (e*+ 1 + ie*+2)λdz - en+idz ,

(5.20) </e3 - -pΛ((ef + ie*)dz) ,

where

2 p = tan (v + a) , A = 1/(VT cos (t; + fl)) ,

0<v + a<π/2, 0<a<π/2.

From (5.20) it follows that x + (1 /p)e3 = c + ^3 cot (v + «) is a fixed point,
so that e3 cos (v + a) + en+4 sin (v + a) = e0 is a fixed unit vector and x is in
an (n + 3)-dimensional linear subspace E?+3 through the point O x = e 0 sin (v + a)
and perpendicular to e0. Thus JP2 lies in the (n + 2)-dimensional sphere

— ef cos (v + fl), where ef = e3 sin (t; + α) — e n + 4 cos (v + α). Using ef we
can easily obtain

d(e* + ie*) = efV

de* = - V

and therefore the same equations with respect to ef + ief, ef, e*+1 + ie*+2, en+3

as (5.1). Hence we can take a W2 in E?+3, which is a solution of (5.20), and,
at each point y e W2, an (n — 2)-dimensional linear subspace L*n-2(y) in Ef+3

through y as described in the previous case. Next, we project these L*n~2(y)
onto Sn+Z from O and denote the images by Ln-2(y). The locus of the moving
Ln~\y) forms a minimal submanifold Mw in Sn+3, which satisfies the conditions
in Theorem 4 and (αr) and (/3) in Lemma 12.

Case 3. Mn+3 is the hyperbolic (n + 3)-space Hn+2 of curvature — 1 . We
use the Poincare representation of Hn+3 in the unit disk in Rn+3 with the can-
onical coordinates x19 , xn+z. The Riemannian metric Hn+3 is given by
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(5.22) ds2 = 4dx-dx/(l - x x)2 ,

where " " denotes the Euclidean inner product. Since the components of the
Riemannian metric are

fty = 4 ί < y / A 2 , s " = A W / 4 , Λ = 1 — JC.JC,

the Christoffel symbols are Γ*y = 2(<5*JC, + δ)xt — δijXk)/h. For any vector field

X = 2 Xjd/dxj, its covariant differential with respect to the Riemannian con-

nection of Hn+3 is given by

(5.23) DX = h[a(2X/h) + 4{(x-X)dx - x(X dx)}/h2]/2 .

For any two tangent vector fields X, Y, we have (X, Y) = 4X Y/h2, where
"<, >" denotes the inner product in Hn+\ Therefore, if b = (x, e19 , en+3) is
an orthonormal base in fln+3, then (x, 2ejh, , 2en+3/h) is the one in Λn+3.

Now we describe the Frenet formulas for W2 in Hn+* by means of the
Poincare representation (5.22). By putting

24) f = 2(6ΐ + ίef)/h ' U = 2 e J h '
η = 2{e*+ι + ie*+2)lh , V = 2en+jh ,

(4.10), ...,(4.14) become

d* = A(fdZ + ξdz)/4 ,

df = {Up - {χ.ξ)ξ/2 + x}dz + {ηλ - (x ξ)ξl2}dz ,

(5.25) dϋ = -{p + (i . U)}(ξdz + ξdz)/2 ,

dη = -{ξλ + (χ.v)ξ/2}dz + {VΛ/ΎX- (x v)ξ/2}dz ,

dV = -{Vλ/V~2 + (χ.V)ξ/2}dz - {ηλ/V~2 + (x-V)ξ/2}dz ,

in consequence of (5.23) and

ξ dx = h{(ξ ξ)dz + (ξ ξ)dz}/4 = Adz/2 ,

where

(5.26) p = coth (fl - i;) , ^ = Vp* - 1 /VT , v < a .

On the other hand, any geodesic starting from the origin O = (0, , 0) in
# w + 3 is a Euclidean straight line segment in the unit disk. The arc lengths v
and r in Hn+3 and # w + 3 have the relation as v — log (1 + r)/(l — r) and r =
tanh (v/2). Since any W72 is congruent to others under hyperbolic motions, we
may suppose the focal point (z0 in Theorem 3) of W2 is the point O. Then we
have
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(5.27) x = - Ur = - U tanh (v/2) .

Replacing a — v in (5.26) by v gives Λ = 1 — x x = 1/cosh2 (v/2), 2/h =

cosh 1; + l,λ = 1/(V 2 smhv), p — r = 1/sinh v = V 2λ and jt f = Λ:-^ =

t F = 0, X' U = — r for W2. Hence (5.25) is simplified as follows:

dx = (ξdz + ξdz)/(2(1 + cosh v)) ,

dξ = UV^2λdz + ηλdl ,

(5.28) dU = -V~2λ(ξdz + ξdz)β ,

dη = -Wdz + Vj~2MZ ,

/Ύ + 7)dZ)l2 .

This system of equations except the first one is the system of equations (5.1)

except its first one. Thus we see that we can construct a W2 in Hn+* by making

use of result in case Mn+3 = En+\ In fact, considering Rn+* = RQ X Rn~\ we

take a surface W2 satisfying (5.28), and, at each point y of W2, the (n — 2)-

dimensional linear subspace Ln~2(y) through y and parallel to U and .R71"3.

Let Ln~2(y) be the totally geodesic subspace of Hn+3 tangent to Ln~2(y) at y.

Then the locus of the moving Ln~2(y), y e W2, is a minimal submanifold Mn in

# n + 3 , which satisfies the required conditions.
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