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A GENERALIZATION OF THE ISOPERIMETRIC

INEQUALITY

THOMAS F. BANCHOFF & WILLIAM F. POHL

1. For a simple closed plane curve of length L bounding an area A the
classical isoperimetric inequality asserts that

U - AπΛ > 0 ,

with equality holding only for a circle. We show here that this inequality re-
mains true for non-simple closed curves where in place of A we take the sum
of the areas into which the curve divides the plane, each weighted with the
square of the winding number, i.e.,

-«•/ w2dA > 0

where, for p e E\ w(p) is the winding number of p with respect to the curve.
Equality holds if and only if the curve is a circle, or a circle traversed several
times or several coincident circles each traversed in the same direction any num-
ber of times. Note that this implies that

U -4π C\w\*dA > 0

for any 0 < p < 2 and that 2 is here the best possible power.
This may all be generalized to arbitrary dimension and codimension. For the

case of closed space curves let G denote the space of lines in E3 (parallel lines
are not identified) and let dG denote its invariant measure [1], [7]. Then

U - 4 λ2dG > 0 ,
G

where Λ(Z) denotes the linking number of Z e G with the curve. Equality holds
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here only for one or several coincident circles, as before. For closed oriented
surfaces M in E3 we obtain

f r~1dA1dA2 ~ 12* Jw2dV > 0 ,

where, for (x, y) e M X M, r is the length of the chord joining x and y, dAx and
dA2 denote the elements of area of M at x and y, respectively, and w(p), p e E3,
denotes the winding number of the surface with respect to p. Equality holds only
for one or several coincident spheres with coincident orientations. Note that
the left-hand integral is essentially the gravitational self-potential of M consid-
ered as a thin homogeneous shell. The right-hand integral is just the volume in
case M is connected and embedded.

The general result is as follows. Let M be a compact oriented manifold of
dimension m, and /: M-^En be an immersion of class C2. For (x, y) e M X M
let r(x, y) denote the chord length from f(x) to f(y), and let dVλ, dV2 denote
the volume elements on M at x and y respectively. Let Hn_m_hn denote the
Grassmann manifold of (n — m — l)-ρlanes in En (parallel planes are not
identified), and let \dHn_m_ί>n\ denote its invariant measure [1], [2], [6], [7].
For h e Hn_m_hn let ± λ denote the linking number of h with /.

Theorem 1.

J r-^dVλdV2 - (1 + m)ΣmKmtn J λ> \dHn_m_un\ > 0 ,
MxM Hn—m — iin

where Σm denotes the surface volume of the unit m-sphere and Km>n is a con-
stant which depends only on m and n. Equality holds only for one or several
coincident spheres with coincident orientations, or (n = 1) one or several co-
incident circles all traversed in the same direction each a number of times.

Let us take the second integral in this inequality and write

= Km>n
J λ2\dHn_m_Un\

Then s/(M) may be thought of, in the case of a space curve, as the "area"
bounded by the curve, or in general as the "volume" bounded by a submani-
fold of higher codimension of a euclidean space. There are, of course, several
candidates for such a "volume", e.g., the surface volume of the submanifold
of dimension m + 1 of least surface volume spanning /(M), or the volume of
the convex hull, or the surface volume of the convex envelope. J / ( M ) , how-
ever, has the following simple properties:

1) s/(M) is just the volume bounded by f(M) if / is an embedding into a
linear space of dimension m + 1



ISOPERIMETRIC INEQUALITY 177

2) J / ( M ) is stable under raising of the codimension, i.e., if M c En c £ ^ ,
then s/(M) in the sense of submanifolds of ZJ^ is the same as s/(M) in the
sense of submanifolds of En

3) s/(M) is finite and is given by an integral over M x M (cf. Theorem 4
and the Remark following)

4) J / ( M ) has the "reproductive" property in the sense of Chern [3], i.e.,
for q > n — m — 1, Hq e Hq$n, we have

,n,q J Hq) \dHq>n\ =

where ίTOtn>ί is a constant depending only on m, n and <y (cf. Theorem 3)
5) J / ( M ) satisfies an "isoperimetric" inequality (Theorem 1 above).
This paper is organized as follows. In § 2 we prove a theorem on the con-

vergence of certain sequences of integrals which we shall use in the sequel in
§ 3 we establish properties l)-4) above the proof of Theorem 1 is given in § 4
and in § 5 we prove some additional inequalities using the same methods. Some
of these seem to be new even for convex surfaces. §§3 and 4 are based on [6]
however, we give explicit references, so that the present paper may be read
without first reading [6], the reader looking up the references as needed. Theo-
rem 3 was proved in a special case in [6, Formula 1]. Our proof here is con-
siderably simpler.

Theorem 1 for the case of plane curves is much simpler to prove than the
general result and is suitable for presentation in an elementary course. To ex-
tract this simpler proof one uses Theorem 3 in the special case q = m = 1,
n = 2, where it is quite easy to prove Theorem 4 which is easy to prove in
this case, since in the plane dl is essentially the invariant measure for lines
Proposition 5, which is given here a separate simple proof for curves the local
analysis proceeding Proposition 5, which is also done separately for curves;
and, finally, the proof of Theorem 1 as it stands in § 4. § 2 is not needed, and
a simpler account of S(M) is given in [5].

Our proof of Theorem 1 generalizes one given for plane convex curves by
Arne Pleijel [4]. We wish to thank H.Guggenheimer for bringing the work of
Pleijel to our attention. We also wish to thank Mario Miranda for help with the
proof of Proposition 2.

2. In this section we establish convergence of certain limits of integrals in

case m > 1. Let Mm — M denote a compact diίferentiable manifold of dimen-

sion m, and let fk: M —>En, k = \,2, , denote a sequence of C1 immersions

which converge uniformly to an immersion / such that the first derivatives of

fk converge uniformly to the first derivatives of /. Let dVκ and dV denote the

volume elements of fk and / respectively. Let π19 π2: M x M —> M denote the

projection mappings into the first and second factors, respectively, and let
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dVki = πfdV*, dVt = πi*dV, i = 1,2, rk(x,y) = \fk(y) - fk(x)\ and r(x,y)

= \f(y)-M\.
Proposition 2. Let {Φk} denote a sequence of real-valued junctions on

M x M such that \Φk\ < 1 and

limφfc = Φ a.e..

Then

lim J Φkrk-^dVkιdVk2 = J Φr-^dVxdV2 ,
MxM MxM

and all these integrals are absolutely convergent.
Proof. Let Pλ and P2 be two m-planes in Rn, and define the angle θ =

Z(Λ> Λ) between them as follows. The metric in Rn induces a metric in AmRn

which with suitable normalization is given by the formula e1 A A em-f1 A
* * Λ fm = det [ei'fj]. If e19 , em is an orthonormal set of vectors spanning
P19 and f19 - , fm an orthonormal set of vectors spanning P2, then we define θ
by cos θ = I*?! Λ Λ em-jx A Λ/m | and 0 < θ < π/2. We may interpret
this as follows. e1 A A em and /x Λ Λ fm have unit norm and hence
represent points on the unit sphere in AmRn. If these points are joined with
the origin by lines, then θ is the lesser positive angle between these lines and
can be measured as a distance on the unit sphere in AmRn.

We assert that there is a real number ε > 0 such that for any pair of m-planes
Pλ and P2 in En there exists an m-plane Q such that Z(Pι,Q) < π/2 — ε and
Z(^2> Q) < π/2 — ε. To show this it suffices to consider only m-planes through
the origin, which form a compact Grassmann manifold Gm>TO, since θ is un-
changed by parallel translation of P1 and P2. Suppose the assertion is false. Then
there exist sequences of m-planes {Pln}9 {P2n}

 s u ° h t h a t for any n-plane Q either
Z(Pln,Q) > π/2 - \/n or Z(P2n,Q) > π/2 - 1/n. We may extract sub-
sequences from {Pln} and {P2n} which converge to P l o o and P2oo respectively, and
these have the property that for any m-plane Q, either /_(Ploo,Q) = π/2 or
Z(Λ«j Q) = π/2. But this is impossible since Gm>n is an irreducible algebraic
variety, and the assertion is proven.

For (x,z) εMxM let dk(x,z), d(x,z) denote the distance between x and z
in the sense of the Riemannian metric induced on M by fk and /, respectively,
and Txk, Tx the tangent m-planes at x to fk and / respectively. Since / is dif-
ferentiable of class C1 and M is compact, we may find a δ > 0 such that if
d(x, z) < δ, then Z(TX, Tz) < ε/2. By the uniform convergence of the deriva-
tives we may find a positive integer K such that if k > K then Z (Tzk, Tz) < ε/4
for all z, so that if d(x, z) < δ then

TX) < 3ε/4 .
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O n M x M let us take the metric D{(xλ, yj, (x,, y2)) = (d(x19 x2)
2 + d(y19 y2)ψ2.

Let us now take a partition of unity Σ <pa = 1 onM x M, whose supports are
contained in open sets U19 , UN of diameter <Cδ is the metric D, and for
each / choose a point (xi9 yt) € E/j and an ra-plane Qt such that

Δ(JXV Qτ) <π/2-ε and Z ( Γ W , β*) < τr/2 - ε .

If (*, y) e t/ t, then

XV Txk) < π/2 - ε/4 ,

Z(Tvt,Tvk) < π/2 - ε/4 .

Let E = sec(τr/2 — ε/4). It follows that we can represent fafafJJt)) and
fk(π2(Ui)) non-parametrically in En with Qt as base plane; i.e., if we take
Cartesian coordinates x19 , xn in En such that Qt is defined by xm+1 =
= xn = 0, then we may represent / f c(^i(^)) a n d ίk^Ji^d) a s

respectively, and similarly for fiπ^Ui)) and /(ττ2(t/ί)).
Let g 1 ?#2 : β ί X Qί —* β i denote the projections into the first and second

factor, respectively, and let yt = xt o q19 zt = xt o q2. Let p: En -+ Qt denote
orthogonal projection and let

Ck = (p o fk o TΓX) X (p o fk o π2): Ui-^QiX Qi .

Let χk denote the characteristic function of Ck(Ui), so that

Let U'i= ΌkCk(JJi), and let χ denote its characteristic function. We can choose
Kf so large that if k > Kf then the Euclidean distance between f(x) and /ft(;c) is
less than 3/2 for all c. We henceforth assume k > K7. Then the diameter of l/
is less than 45, and

= J
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where Tk(p) = Tqk, q = π&Kp), and Tk(p) = Tsk, s = π2Cϊι(p). Now for/?
a variable point in Qt X Qt

lάψi \ΦΛ r jm + 1] o C j 1 sec Z ( Γ t , β,) sec Z(Tk, Qz)

/

/ TO \ (-m + D/2

1 Σ (yj — Zj)2 E2dyx dymdzx dzm < Σm
QixQί

where Σm_x is the surface volume of the unit (m — l)-sρhere, as is shown by a
standard computation using polar coordinates. Thus by the Lebesgue bounded
convergence theorem

Uί

and all these integrals are absolutely convergent. Hence

lim J Φkrk-™+ιdVkιdVk2 = lim Σ JψiΦicrk-
m+1dVkldVk2

MXM Ui

= Σ (<piΦr-m+1dV1dV2 = Γ Φr-m-^dVιdV2 ,
Ui MXM

which establishes Proposition 2.
3. Let /: Mm —> £ n be an immersion of a compact oriented differentiate

manifold Mm. Let Hn_m_Un denote the Grassmann manifold of all (unoriented)
(n — m — l)-planes in En (it being understood that parallel planes are not
identified), and \dHn_m_λt7l\ the Euclidean invariant measure on Hn_m_hn (this
is worked out explicitly in [6]). Consider the quantity

λ2\dHn_m_hn\,

where ±λ(h) = ±λ(h,Mm) denotes the linking number oihzHn_m_Un with

Mm, Km<n = Λm,m+2A;m>ro+3 K,n, and

k _ τ- ( m +υ/2 HO' + D/2)
/ - m)/2)

In particular Xm,m + 1 = 1, so that j / ( M m ) generalizes the volume bounded by
a simple closed hypersurface. Furthermore, as is proved in [6, pp. 1341-1342]
s/(Mm) is stable under raising of the codimension, that is, if En is regarded
as an π-plane in EN so that /(Mm) d En d EN, then



ISOPERIMETRIC INEQUALITY 181

KmιN J ?\dHN_m_hN\ = Kmιn j λ2\dHn_m_iιn\.

The proof given in [6] has a slight error, however, which affects the constant,
so we give a corrected version here.

Let H denote a family of (n - m)-ρlanes in En+1 and let h = H Π En c En+1.
To each (n — ra)-plane assign an orthonormal frame Xbλ- -bn+ι such that
X e h, &!, . . . , fcw_m_! span Λ, 6TO_m in H perpendicular to h, and Z>w_m+2, ,
bn+i _L Λ in En. Let Xα^ α n + 1 be another family of frames such that ax = bt,
\ <i <n — m — 1, aa = ba, n — m + 2 < a <n + 1, (we use these ranges
of /, a until further notice), an_m is along the orthogonal projection of bn_m

into En, an_m+1 is the unit normal to En in En+1, so that an_m+ι is constant.
We may write

bn_m = cosφan_m + sinφan_m+1 ,

bn-m+ι = —smφan_m + cosφan_m+1 .

If we let dX-ai = πi9 dX bi = ρi7 da^aj = πij9 db^bj = pij9 then we have

pn-m + l = —S

Pn-m,a = COS φ πn_m>a ,

Pi,n-m + i = —SΪΩφKl.n-m

Pn-m,n-m + ι ~~ &Ψ J

so that

n-m,n + l I

= \Pn-m + i Λ Λ p n + i Λ Π Pίa Λ Π Pn-m,a

Λ rfi;m Λ dfln_T O_i,n | ,

where dΣm = Y[ πn_ma is the volume element of the unit m-sphere Σ
perpendicular to h in En. Hence by Fubini's theorem

J λ2\dHn_mtn+ι\
Hn — ΊΠin + i

= f"/2\sin"-mφ cosm φ\dφ fdΣm J λ* \dHn_m_hn\ .
0 Σγfi Hn—m — i >n

Now
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J JΓ/2 t Λ

| s in n ~ m φ cos m φ\ dφ I dΣm
J

_ 1 Γ(\{m + l))Γ(J(w — m + 1)) 2ττ(m+1)/2 _ ^ _x

" " 2 " Γ(i(Λ + 2)) Γ(i(/n + 1)) " m'n+1

This establishes the assertion for N = n + 1, and the general result follows by
induction on N.

In considering <s/(Mm) the case m = 0 is special and requires an additional
assumption. A compact oriented 0-manifold is nothing more than a finite set of
points, to each of which is assigned a multiplicity ± 1. We shall require that
the sum of these multiplicities be zero. Thus the simplest case under consider-
ation is that of a pair of points with opposite multiplicities so that here s/(M°)
is essentially the measure of the hyperplanes that meet the line segment join-
ing the two points, which by the generalized Crofton-Cauchy formula is essen-
tially the distance between the two points.

More generally, suppose M° consists of points x19 , xq with multiplicities
i19 , iq. Orient En and choose an oriented hyperplane ho; then orient each
hyperplane so that it makes a positive acute angle with hQ. Of course, this
orientation is indeterminate for hyperplanes perpendicular to h0, but these form
a set of measure zero and so we can neglect them. Each oriented hyperplane
divides En into two half-spaces, one of which is canonically designated the
left-hand half-space h+, and the other the right-hand half-space h~. It is now
readily seen that

λ(h,M°)= Σ J t = - Σ h h , l < i < q ,

so that

Γ X2\dHn_hn\= - Γ Σ U Σ ij\dHn.un\

ij J

where F^Qi) = 1 if /(*«) € h+ and j(xά) e A", and F^(A) = 0 otherwise. But by
the generalized Crofton-Cauchy formula,

J (FH + FtJ) \dHn_1>n\ = dn_

where dn_λ = K^n equals the volume of the disc bounded by a unit sphere of
dimension n — 2, and r(xt,Xj) is the distance between f(xt) and f(xj). Conse-
quently,
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X I 2 I//77 I ι V r(γ r V /
— Λ0,π I Λ |w/3n-i,n| — 2" Li ' \xίf xj)ιiιj

Theorem 3. si is reproductive in the sense of Chern [3], i.e., if
g > n — m — 1, then

,n,q J ^(Mm Π Hq) \dHq.n\ =

ϊ
ίm,n,q

cular,

is the surface volume of the unit j-sphere. In parti-

= -%lm,n,n-m \ Σ Kxt, Xj^ίj \dHn_mJ ,

J^n—TΠin

where x19 x>, are the points of intersection of Mm with a moving (n — m)-
plane Hn_m, r(xt, xά) is the Euclidean distance from xt to xj9 and it is the inter-
section number of Hn_m {with some orientation) and Mm at xt.

Proof. Let us observe first that if hn_m_ι is a linear space of dimension
n — m — 1 and hq is a linear space of dimension q containing hn_m_19 then

(3.1) λ{M™,hn_m_λ) = λ(Mm Π hq,hn_m_λ) ,

where the first linking number is in the sense of submanifolds of En and the
second in the sense of submanifolds of hq.

Let us call this configuration (hq, hn_m_1), hn_m_1 c hq, a banner. The total-
ity of banners forms a differentiate manifold B, and has a measure which is
invariant under the action of the group of rigid motions of En. This measure
is constructed, according to the method of Chern [2], as follows. Let us assign
to each banner (locally) a frame Xex> -en so that X& hn_m_ι, e19 , en_m_1

are parallel to hn_m_l9 and en_m, , eq are parallel to hq. Let dX-ei = ωi9

de^ej = (ύij. The measure is then given by

\dB\ = \ωn_m A " A ωn A Π ωt, Λ Π
l^i<n-m-l n-m<,k<q
n-m<j<n l<l<

To prove the theorem we integrate λ2(Mm, hn_m_^)\dB\m two ways and equate

the results.
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Let us choose a fixed frame 0/χ in in En, and let Gq_n+m+um+1 denote the
Grassmann manifold of (q — n + m + l)-spaces through 0 lying in the span
of in_m, . . , ι n . To each (n — m — l)-plane An_m_! in En assign locally a
frame Xav- an such that ZeAw_m_ 1 5 and au ,fln_m_i are parallel to
An-TO-i F o r each /in_m_! let G(hn_m_^ denote the rigid motion which takes
0/Γ in to A ^ . .£in. Define a map # : Hn_m_hn x G β _ n + m + 1 , T O + 1 - * 5 by
H(hn_m_19 gq.n+m+1) = (span (A,,.,,,.!, G(^_ n + m + 1 )),Λ n _ m _ 1 ) . Taking frames
Z^i en as before so that et = au i < n — m — 1, we find that

ωn_m Λ Λ % Λ Π ω o = dHn_m_hn
l<ί<n-m-l
n-m<j<n

and [] ωkl = dGq_n+m+hm+1 + terms involving the differentials on Hn_m_1>n,
n-m<.k<,ci
q + l^l^n

so that

# * I JB | = \dHn_m_hn Λ </G,_n+m + 1,m + 1 | ,

and, by Fubini's theorem,

(3.2) J^2(Mm,Λ.-m-l) |dB| = gm,n,q J

where ^m,n><z is the total volume of G ί _ n + T O + l f T O + 1 . To evaluate this we observe
that Gα > 6 = Ob/Oa X Oδ_α, where O^ denotes the orthogonal group in•/ vari-
ables, and Oj/Oj.! = Sj~\ the unit sphere of dimension / — 1, so that the
volume Θj of Oj is given by

(3.3) gmtn§q =
y

•" q-n + %

Now let us parametrize the banners in another way. To each hq C En let us
associate a frame Yb^ -bn so that Y zhq, and bl9 , fc9 are parallel to Λα.
Let Hn_m_ίtq denote the Grassmann manifold of linear spaces of dimension
n — m — 1 contained in the linear space through O spanned by v iq, and
let J(hq) denote the rigid motion of En which takes OΪΊ •/„ to 7 6 ^ . bn.
Define a map K: Hqn X Hn_m_uq -> 5 by A:(AQ, Λn_m_!) = (Λα, J(hq)(hn_m_λ)),
and take frames Z e r en as before. Then

^ > n = ωq+ι Λ Λ ωn A Π
l<<
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ωn_m Λ Λ ωq A Π ωij

n-m<j<q

= dHn_m_hq + terms involving the differentials on Hq>n.

Hence

K* \dB\ = \dHq,n Λ dHn_m_hq\ ,

and by Fubini's theorem and (3.1) we find that

hq,hn_n_J\dB\

Π Λ= J K-q*_n+m

which, together with (3.2) and (3.3), proves the theorem.
Remark. By a similar argument, together with the generalized Crofton-

Cauchy formula, one may show that the m-dimensional surface volume V(Mm)
of M m is reproductive, i.e.,

(3.4) Vm,nΛ J V(Mm Π λ«) \dHqtn\ = V(M) ,

where pm>7ltq = —m^r-i*m-i,m+2- -*m-i tn— and r = m - n + (?. This gen-

eralizes the generalized Crofton-Cauchy formula.
Our proof of the isoperimetric inequality depends on another formula for

j / ( M m ) . Let G C Mm x Mm denote the set of all (x, y) such that f(x) Φ f(y),
and note that Mm x Mm — G is a set of measure zero. Let Z(x, y) denote the
line joining f(x) and f(y) oriented from x to y, so that /: G —> ^Γj^, the Grass-
mann manifold of oriented lines in En, and let eλ(x, y) denote the unit vector
oriented along l(x,y). Let X(x,y) = f(x), ωΛ = dX-e1 and dl = dωlβ It was
shown in [6] that dl comes from an invariant two-form on Hhn, and that

(3.5) (dl)m = m\(-i)m(m-D/2r-m c o s τ s i n Gι s i n σ β y 2 Λ j ^ 5

where the dVt and r are as in § 2 above, and σu τ are certain angles which we
shall discuss below.

Theorem 4. j / ( M m ) is finite and

( iΛl + ra(ra + l)/2 (*

(3.6) j / ( M w ) = l L) ^ —
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Remark. The finiteness does not seem to have an altogether trivial proof.
For it is easy to construct a C°° closed immersed space curve which has arbi-
trarily high linking numbers with lines. However, it may be shown that any
CMmmersed hypersurface has bounded winding number with points and any
C2-immersed space curve with nowhere vanishing curvature has bounded link-
ing number with lines.

Proof. In case / is an embedding this follows from [6, (2.16)] but for the
determination of the constant. It remains for us here to show that the proof of
(2.16) of [6] is valid in the present more general case and to determine the
constant.

In [6, pp. 1329-1330] a certain subset G+ c Gn_T O_ l f n_! and a differential
form F*dHn_mt7t on (Mm x Mm — D)χG+ are defined, where D is the diagonal.
(What we call Mm here is called P there and is there of dimension m + 1.) The
definition of F*dHn_mt7l is valid in the present case as long as we restrict our-
selves to GχG+. Now F*dHn_m>n is the sum of terms of the form

ω2 A Λ ωm+ι A (ωιkι Λ Λ ωlkj cos φ, cos φ2dGn_m_ltn_19

2 < k, < < km < n ,

where φ1 and φ2 are certain angles. (Read " Σ " for " [ ] " on lines 14 and 16 of
p. 1330 of [6].) Now following the argument used to establish (2.3) and (2.4)
of [6] we find that

\rF*dHn_m>n\ <
\ m

But this is integrable on G X G + by Fubini's theorem and Proposition 2 above.
Hence the integrations over the fibre used to establish (2.16) of [6] are valid
and lead to finite quantities, and the rest is valid without change.

To determine the sign and constant in (3.6) we observe that both j / ( M m )

and [6, p. 1341] I r(dl)m are stable under raising of the codimension. Hence

the sign and constant are stable and can be found by checking the formula for
a sphere Sm C Em+1. The sign is checked using (3.5) and the facts that cos τ
= — 1, and sin σ^ > 0 for the sphere. To evaluate the constant now, we use
the fact that ± (m \)~1(dl)m is essentially the invariant measure for oriented lines
in Em+1 and for each oriented line L meeting Sm there is a unique ordered pair
of points (x, y)<εSm x Sm such that l(x, y) — L, so that the integration can be
made on JI l f T O + 1 . To each oriented line in Em+1 we associate a frame
%eι 'em+ι such that e1 is directed along the line and X is a point on the line.
Let dX^βi — o)i, det e5 — ωijt Then (m \)-\dI)m = ± ω2 Λ Λ ωm + ι Λ ω12 A
• Λ ω l m + 1 . If the direction of the line is held fixed, ω2 A A ωm+ί be-
comes the volume element on a perpendicular m-plane, so that
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I rω2 A Λ ωm+1 Λ ω12 Λ Λ ω l m + 1

ωl2 A Λ ωlm+1 = 2

which completes the proof of the theorem.
4. In this section we prove Theorem 1. Basic to the proof is an integral

formula obtained by integration over a certain "secant space". We begin by
defining this space.

Let Mm = M be a difϊerentiable manifold of class C2 and dimension m. Let
S(M) denote the two-fold cartesian product of M with the diagonal replaced by
its bundle of oriented normal directions. This space, which is fully explained
in [6], is a differentiate manifold, with boundary, of class C1 and has the
universal property that if /: Mm—>En is an embedding, then there is an induced
smooth map Lf: S(M) —> HUn which assigns to each (x, y) e M x M, x ψ y,
the line directed from f(x) to f(y), and to the boundary points of 5(M) the
corresponding tangent lines of M. Let π: S(M) - ^ M x M b e the canonical
projection map, and ^ M x M - ^ M b e the projection into the /-th factor,
i = l , 2 .

Let us now assume that M is compact and oriented with 1 < m < n. For
z e S(M) let eγ(z) denote the unit vector in En directed along Lf(z). Let X(z) =
ίπxπ(z) and ωγ = dX ely which is a differential 1-form on S(M). Denote dωγ by
dl, and the (absolute) euclidean distance from iπxπ{z) to fπ2π(z) by r(z). Con-
sider the differential form rωx Λ (dl)m~\ The orientation of M induces an orienta-
tion on M x M and hence on S(M). By applying Stokes' theorem we find that

J rωx A {dl)™-1 = J dr A ωx A {dl)™~1 + J r(dl)m .

Now the left-hand term is zero, since r = 0 on Γ(M). Also, S(M) and M x M
differ by sets of measure zero. Hence we may write

(4.1) - J dr A ωλ A {dl)™~1 = J r(dl)m .
MxM MXM

Let us now give a local analysis of these differential forms. r(dl)m has been
analyzed in [6, pp. 1324-1326], and our analysis of the other follows the same
procedure and uses the same frames. It is more convenient to give a separate
analysis of the case m = 1. Let (x, y) e M x M be such that f(x) Φ f(y) and
that the tangent spaces to / at x and y are in general position with respect to
Lf(x, y) and are not perpendicular to Lf(x,y). (All other points of S(M) form
a set of measure zero which we ignore.) We now drop the requirement that /
be an embedding.
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In case m = 1, let a2, b2 denote the unit tangent vectors to / at x and y respec-
tively such that eι makes positive acute angles σ19 σ2 with either, and let X =
f(x), Y — f(y). Then dX = π2a2, dY = p2b2, and ω1 = dX ex = cos 0̂  τr2. Now
(Y — X) = re15 and dr = d(re^*el9 so that

dr = cos σ2 /o2 — cos σ1 π2 , dr A ωx = (cos σx cos σ2)^2 Λ π2 .

We set cos v = 1 if a2 and fe2 are both positively directed or both negatively
directed tangent vectors to our oriented curve, and cos v = — 1 if one of a2, b2

is positively directed and the other negatively directed. From this we get

(4.2) dr A ω1 = —(cos v cos σx cos σ2)dsι A ds2 ,

where ds19 ds2 denote the positively directed elements of arc at x and y respec-
tively. By [6] we can also write

(4.3) rdl = —(cos τ sin σλ sin σ2)dsλ A ds2 ,

where cos τ is the angle between the 2-planes spanned by exa2 and ej)2 with
orientations eιtι and ext2, where tx and t2 are the positively directed unit tangent
vectors to / at x and y, respectively.

If m > 1, let 7\ denote the (oriented) tangent space to / at x, and Sλ the linear
space of dimension m + 1 spanned by Tx and Lf(x, y) with orientation e{Γx.
Let <2i be the 2-plane spanned by ex and its orthogonal projection on Tx.
Choose frames Xaλ- an so that 0i_L7\ in 5Ί, a2 in βi, and «3, , am+1 in T1?

and by reversing a2 or «3 if necessary we arrange that ax Λm+1 agrees with the
orientation ^7^, and fl2- -am+1 agrees with the orientation of T19 and that ^i
and a2 make a positive acute angle ax. Let dX cii = TΓ̂ . Then

(4.4) («! = d Z ^ = cos ̂  τr2 .

Let T2 denote the oriented tangent space to / at y, S2 the (m + l)-plane spanned
by T2 and Lf(x, y) with orientation eλT2, and β 2 the 2-plane containing Lf(x, y)
and its orthogonal projection on T2. Let us take another family of frames
YZV . bn such that Y = f(y), bx ±_ T2 in 52, b2 in β 2 , and b3, . , 6 m + 1 in Γ2,
and by reversing b2 or fe3 if necessary we arrange that bλ> -bm+1 agrees with
the orientation eλT2, and b2> - >bm+1 agrees with the orientation of T2, and that
ex and Z?2 make a positive acute angle σ2. Let dY-bi = ^ . Then

ex = cos σ2 /o2 — cos ax π2 ,

whence

(4.5) dr A ωλ — —(cos σγ cos σ2)τr2 Λ ρ2 .

Now from the computation in [6, pp. 1324-1326] it follows that
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(dl)1 = ( m - 1 ) ! ( - l)<™-i)(m-2)/2r-m+i c o s v pz A

Λ pm+ι A τr3 A Λ τrm+1 , mod p2, π2 ,

where cos v = fl3 Λ Λ am+1-b3 Λ Λ 6TO+1. From (4.5) and (4.6) we
obtain

dr Λ ωx Λ

= (m — 1 ) ! ( - 1)™<™-»/V-TO+1 cos v cos ^ cos <τ2dF2 Λ dV1 ,

where rfF15 dV2 denote the elements of volume on M at x, y, respectively. Note
that (4.7) agrees with (4.2), so that we need not further distinguish the case
m = 1, except when we interpret v. Let us recall [6] that

(4.8) r(dl)m = m!(- i)™(m-Ό/2r-m+i c o s τ sin σx sin σ2dV2 A dV1 ,

where τ is the angle between the oriented planes S1 and 52.
Proposition 5. Let /: Mm —> Ew fc^ an immersion of class C2. Then

-Σms/(Mm) = Γ r" m + 1 cos τ sin σx sin σ2 dVxdV2

MxM

= — — I r m + 1 cos y cos σx cos σ2dVxdV2 .

ilf X3f

Proof. For m = 1 the proof is simple. On S(M) we consider the form
dX (Y-X). Where ^ is defined, i.e., for (JC, y) e M x M such that /(JC) =£ /GO,
dX-{Y — X) = rω2. Hence by (4.1) we obtain

- Γ dr A ω,= ΐ rdl .
S(M) S(M)

The second equality follows from this, together with (4.7) and (4.8), while the
first follows from Theorem 4 and (4.8).

For general m the first equality follows also from Theorem 4 and (4.8) the
second from (4.1), (4.7) and (4.8) provided that / is an embedding. If / is not
an embedding, we consider En as contained in EN, where N>2n + 2. By the
Thorn transversality theorem we can find a sequence of embeddings fk: M-*EN

which converge to / uniformly, and whose first derivatives also converge uni-
formly to those of /. Since the second equality holds for /fc, it holds for / by
Proposition 2.

We come now to the proof of Theorem 1. From the elementary identity

2 sin2 ^((Ti — σ2) = 1 — cos σ t cos σ2 — sin σx sin σ2
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and Proposition 5, the convergence of the integrals being guaranteed by Propo-
sition 2, we obtain

Γ r~m+12 sin2 \{σx - σ2)dVλdV2

MXM

_l_ I r-m+i(i _|_ c o s Γ) s j n ^ s j n (y2dVιdV2

MXM

+ Γ r " m + 1 ( l — cos v) cos σγ cos σ2dVιdV2

(4.9)

= Γ r-m+xdVxdV2 + f r~m+1cosτ sin σx sin σ2dVxdV2

MXM MXM

— I r~ m+x cos v cos <7j cos σ2dVxdV2

MXM

= J r-^dV.dV, - (1 + m)ΣMj*(tf) .

Now the expression (4.9) is nonnegative, since ax and σ2 are acute and positive
almost everywhere. Hence we have

>0 .

Equality holds if and only if σ1 = σ2, τ = π, and v = 0. This holds for a sphere,
and in fact for several coincident spheres with coincident orientations or, in
case m = 1, for one or several coincident circles each gone around in the same
direction any number of times. Suppose it holds for /: M—>En. Then let p € M
and let Tp denote the tangent m-plane to / at p. Consider all m-spheres in En

tangent to Tp at f(p). Through any point of En — Tp there passes a unique such
sphere and hence their tangent spaces form a field of ra-planes on En — Tp.
The conditions σλ = σ2, τ = π, v = 0 imply that f(M) Π En — Tp is an integral
submanifold of this field of m-planes. Now no component of M can be mapped
into Tp by /, for then this component would not be immersed. Hence each
component of M has a point which is mapped into En — Tp. By the uniqueness
of integral submanifolds, then, each component of M is mapped onto a sphere
through f(p) tangent to Tp at p. But p β M is arbitrary. Hence /(M) is a single
sphere. The condition τ = π implies that the orientations of coincident branches
coincide, and the theorem is proven.

5. In this section we use the methods of the preceeding section to prove
some additional similar inequalities.

Replacing rωx A (d/)™"1 by rqωλ A (dI)m-\ q>l, in the proof of Proposition
5, we obtain
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q(m — 1)! I r-m+q cos v cos ax cos σ2dVxdV2

MxM

= m! I r " m + 9 cos τ sin #! sin σ2dVλdV2

MxM

= (_l)m(^ + l)/2 Γ

M

191

Hence

J
MM

sin2 K*i - σ2)dVλdV2

c o s

MXM

+ j r " m + α ( l — cos v) cos ^ cos σ2dVιdV2

MxM

Γ r - m + ^ F j J F 2 + Γ r"m+« cos τ sin σ1 sin σ2dV1dV2

MXM MxM

— I r~m+Q cos v cos ax cos σ2dVιdV2 ,

f

so that

f r-^ + ̂ F ^ F 2 + (_l)m<m + l>/2 W_±_! Γ

with equality holding for one or several coincident spheres with coincident
orientations, or (m = 1) for one or several coincident circles each traversed a
number of times in the same direction. For convex hypersurfaces, i.e., for
n = m + 1, the last integral is a familiar object. In fact for n = m + 1

1

ml
j r\dl)™ = J Σrq(Xi,Xj)kijdHUm+ι,

where for each line I e Hhm+1, xt are the points of intersection of I and /(M),

and it is the intersection number of / with /(M) at xt. For convex hypersurfaces

we have

= 2 J r"dHum+19

and therefore
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J r-^dVxdV2 -
 2 ( m + q) J r«dHUm+1>0.

For m = 2, q — 2 we get

A2 - A fr2dHlι3 > 0 ,
#1,3

where A is the area of the surface. By a formula of Herglotz [1, vol. 2, p. 77]

we have

and therefore, for m = 2, q = 4,

r2dA]dA2 - 18F2 > 0 ,

where V denotes the volume bounded by the surface. These'are just samples of

the various inequalities which can be obtained by these methods, and of course

the last three formulas may be generalized to higher dimensions.
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