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RIEMANNIAN MANIFOLDS ADMITTING A CERTAIN
CONFORMAL TRANSFORMATION GROUP

YOSHIHIKO SUYAMA & YOTARO TSUKAMOTO

1. Introduction

Several authors have studied compact Riemannian manifolds admitting a
conformal non-Killing vector field. The main results are as follows.

Let M be a connected n-dimensional Riemannian manifold admitting a con-
formal non-Killing vector field.

(1) If M is a complete Einstein space of dimension n > 3, then M is iso-
metric to a sphere (Nagano-Yano [8]).

(2) If M is a complete Riemannian manifold of dimension n > 3 with par-
allel Ricci tensor, then M is isometric to a sphere (Nagano [5]).

(3) If M is compact and homogeneous, then M is isometric to a sphere
provided n > 3 (Goldberg-Kobayashi [2]).

(4) M can not be a compact Riemannian manifold with constant nonposi-
tive scalar curvature (Yano [7], Lichnerowicz [4]).

Recently S. Tanno and W. C. Weber [6] investigated compact connected
Riemannian manifolds which have constant scalar curvature and admit a closed
conformal vector field with certain conditions. The purpose of this paper is to
prove the following theorems.

Theorem I. If a compact connected Riemannian manifold M admits a
closed conformal non-Killing vector field, then M is diffeomorphic to a gener-
alized twisted torus or a sphere.

Theorem 2. If a compact Riemannian manifold M with finite fundamental
group admits a closed conformal non-Killing vector field, then M is diffeomor-
phic to a sphere.

Theorem 3. If a compact connected Riemannian manifold M admits a
closed conformal non-Killing vector field which vanishes at some point of M,
then M is diffeomorphic to a sphere.

Theorem 2 is an immediate consequence of Theorem 1, and Theorem 3 fol-
lows from the proof of Theorem 1.

Ccmmunicated by Y. Matsushima, September 11, 1970.
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2. Preliminaries

Let M be a compact connected n-dimensional Riemannian manifold with
metric g. A vector field X on M is conformal if and only if

2.1 Lyg =21g,

where L denotes the Lie derivation with respect to X, and 2 is a differentiable
function on M which is called the characteristic function of X. If X is a con-
formal non-Killing vector field, then 2 is a non-constant function. Since M is
compact, X generates a global 1-parameter group of transformations ¢, of M.
Then condition (2.1) is equivalent to

(2.2) (pFg) =12,

where

f.p) = exp (2 f tl(gou(p))du) . peM.

If we put X = f} £9/9x* in a coordinate neighborhood of M with local
=1
coordinate (x', - - -, x"), (2.1) is equivalent to
where g;; are the components of g with respect to the coordinate system
&, xM), 6 = i} g:;€, and “;” denotes the covariant derivative with re-
j=1

spect to the coordinates system (x', - - -, x*). From now on, we assume that X is
closed, that is to say,

2.4) £ =Epi
By (2.3) and (2.4) we have

(2.5) €ij = 2845 -
so that

2.6) §hy = A0% ,
where

5i_{1 (=17,
TTlo G#D.

If we denote the divergence of X by div X, from (2.6) follows immediately
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divX = 3 &, =na.
i=1

Let M be an (n — 1)-dimensional differentiable manifold, and ¢ be a diffeo-
morphism of M, and consider M X [0, al,a > 0. If M is a differentiable mani-
fold obtained by identifying M x {0} and M X {a} in M X [0, a] by using the
map ¢, then we call it a generalized twisted torus.

Let N be a compact submanifold of M, and ¢ be a geodesic starting from
p € N such that c is perpendicular to N at p. If the point g on c is the last point
such that the subarc pg of c is the shortest geodesic between g and N, then the
point g is called the cut point of N along c.

3. Proof of Theorem I

Setting M’ = {peM|X, # 0}, M’ is an open subset of M so that M’ is an
open submanifold of M. Then there exists a distribution D of dimension n — 1
on M’ such that for all p e M’ we have

D,={ZeM,|g(Z,X)=0}.

Lemma 3.1. The distribution D is differentiable involutive.

Proof. Since X, # 0 for all pe M’ there exists a coordinate system
(x', ---,x™) around p such that X coincides with the vector field 9/dx' in
this coordinate neighborhood W (cf. Chevalley [1]). Setting

g@/ox',a/oxt) @

Y, =0d/oxt —
llo/ox" |} ox!

fori=2,...,n,

the set Y,, - .-, Y, is a local basis for the distribution D in W. Thus D is differ-
entiable and also involutive. In fact, for any two vector fields Z, Z’ belonging
to D we have

(3.1 812,2'), x) = gW.2', X) — gV..Z,X) .
By (2.6) we obtain

0= Zg(Z,a X) - g(VzZI5 X) + g(z/, VZX)
=gV.Z2,X) + 282, 2) ,
(3.3) 0=2"82,X)=80V..Z,X) + 2(Z',2) ,

(3.2

from which and (3.1) follows immediately g([Z, Z’], X) = 0. So [Z, Z'] belongs
to D, and D is involutive. q.e.d.
Hence there exists an integral manifold of D passing through each point of M’.
Lemma 3.2. There exists a point p on M such that A(p) <0 and X, + 0.
Proof. Let M be an oriented 2-fold covering manifold of M, and X a lift
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of X by the covering map. Then X is a conformal vector field on M. Let 1 be
a characteristic function of X. Then we have div X = ni and

(3.4) ozlfdivfzfz.
nﬁ? o

Since 1 is a non-constant function on M, two sets {pe M|i(p) > 0} and
{pe M | i(p) < 0} are non-empty, and therefore so is A.

Now we assume that X vanishes on the open set ¢. For any vector fields Y,
Z on M we have

(3.5 (Lx)Y,Z2) = X-g(Y,Z) — g(IX,Y],Z2) — g(Y,[X,Z])) =0on O .
On the other hand,

which shows that 2 vanishes on @. Hence there exists a point p on M such that
Ap) <O0and X, # 0. q.e.d.

Let U(p) be a neighborhood of p, where 2 is negative and X never vanishes.
Then

(3.6) X-gX, X) = (Ly®)(X, X) = 228(X, X) ,

which implies that g(X, X) decreases along the integral curve of X on U(p).

Lemma 3.3. There exists a coordinate neighborhood U with local coordi-
nate system (x', - - -, x™) such that

(1) U is contained in U(p),

(2) xi(p)=O>i=1a"'an,

B3 ¥ <ax|<b(@@>2)onU,

(4) the slice of U defined by the equation x' = &, where |§| < a, is an
integral manifold of D,

(5) if weputV={qeU|x'(q) = 0}, then the set ¢ (V) coincides with the
set {ge U|x'(q) = t}.

Proof. By Lemma 3.1. and Frobenius theorem (Chevalley [1]) we have a
coordinate neighborhood U with a local coordinate system (3!, - - -, y") which
satisfies the conditions (1)-(4). Since V is an integral manifold of D and ¢, is
a conformal transformation for a fixed ¢, ¢,(V) is also an integral manifold, and
X never vanishes on U(p). So we can change y* into x? (i = 1, - - -, n) such that
x'(p,(p)) = t. Thus we have a desired coordinate system. q.e.d.

The value of g(X, X) is constant on any integral manifold of D. In fact, for
any Z € D we have

3.7 Z-gX,X) =28V.X,X) = 228(Z,X) =0 .
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Let N be a unique maximal integral manifold of D containing the point p.
Then ¢,(N) N N = 0 for all 1,0 < |¢| < a. By Lemma 3.3 and the above re-
mark, the value of g(X, X) on U is constant on each slice and decreases as the
parameter ¢ increases. This shows that ¢,(V) N N = 0 and therefore ¢,(N) N N
=0, for all £,0 < |¢| < a.

Lemma 3.4. The above maximal integral manifold N is an (n — 1)-dimen-
sional compact manifold.

Proof. We shall show that the closure N of N in M coincides with N. Let
x be a point contained in N, and {x,} be the sequence contained in N such that
x, converges to x in M as n tends to oo. Since the value of g(X, X) is a non-
zero constant on N, g,(X, X) is equal to this value, and so there exists a neigh-
borhood U, of x in which the vector field X never vanishes. Now we take a
coordinate neighborhood U’ of x contained in U, whose local coordinate system
(x, -+ -, x’") has the same properties as in Lemma 3,3. If x" is so taken that
[x"] < a" < a, then it is clear from the above remark of this lemma that in U’
there exists at most one of those slices contained in N. If there does not exist
such a slice, we can not take the sequence {x,} C N such that x, —x as n— co.
Therefore the slice passing through x is contained in N, so that x ¢ N. Moreover
this shows that N has no boundary. q.e.d.

If NN ¢(N) +# 0 for some ¢, then N = ¢,(N), because N and ¢,(N) are
integral manifolds of D. Now we define the mapping F: t — ¢,(N). This
mapping F is locally one-to-one. In fact, we have ¢,(N) #* ¢,(N) for t + ¢/,
—a <t — t < a. Now we can consider the following two cases.

(A) There exists ¢ == 0 such that N = ¢,(N).

(B) There does not exist ¢ %= 0 such that N = ¢,(N).

Lemma 3.5. In the case (A), M is diffeomorphic to a generalized twisted
torus.

Proof. Let t, be the minimum positive number such that ¢, (N) = N, and
put
(3.8) M'= U odN).

0<t<to

We shall show that M”’ is an open and closed subset of M, so that M = M”.
To this end we first show that M” is open in M. For any point g ¢ M”, there
exists s such that 0 < s < ¢, and g € ¢ (N). We take a neighborhood V’ of g

in ¢ (N) and a suitable positive number ¢, so that theset U ¢,(V) is an open
—e<t<e

set of M which contains the point gq.

Next we shall show that M” is closed in M. For any point x of M”, there
exists a sequence {x,} C M” such that x, — x as n — co. Then we can write
X, = ¢;,(¥n), where 0 < ¢, <t and {y,} C N, and can choose the convergent
subsequences of {y,} and {z,}, so that we can assume that y, — y,t, — s as
n— oo, where ye N,0 < s < t. Now we estimate d(x, ¢,(y)), where d is the
metric function on M:
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d(xs st(y)) S d(x7 Sotn(yn)) + d(gotn(yn), GDL,,()’)) + d(%n()’), SDs()’))
S d(xs ¢tn(yn)) + atn(sotn(yn)y %n(J’)) + d(sotn(y)9 9%()’)) >

where c?tn is the metric function on ¢,,(N). On the right hand side of (3.9),
the first and third terms converge to 0 as n — . So we need only to estimate
the second term. For any point p ¢ N,

(310) gw(p)(X’ X) = gw(p)(sotX) SDLX) = (Sat*g)p(X; X) = fz(P)'gp(X, X) .

Since g(X, X) is constant on ¢,(N) for any ¢,f,(p) is independent of pe N.
fu(p), (p € N), is a continuous function of ¢ and satisfies f,(p) = 1, f,,(p) = 1. So
we have the maximum value C of f,(p) on [0, t,], and

(3.11) d, (9., 0), 01, < CVdy(y,, Y) .

Since dy(y,,¥) — 0 as n — oo, 3tn(90zn(yn)’ ¢.,(») — 0 as n — co. This shows
d(x, p,(»)) = 0,i.e.,x = ¢,(y). Therefore M"” = M"”, and hence M" is closed
in M.

Lemma 3.6. In the case (B), M is homeomorphic to S™.

Proof. Since from (2.6) we have I/, X = 21X, for any point p € N the curves
= and ¢’ defined by '

(3.12) = {ep) |t e [0, o0)} ,
(3.13) 7 = {o(p) |t e (— o, 0]}

are geodesics, and therefore their lengths L(z) and L(¢’) are independent of
p e N, due to the fact that g(X, X)(¢,(p)) is independent of p for fixed ¢. Now
we divide our discussion into the following four cases:

(a) L(r) = o and L(z) = oo.

(b) L(r) = o and L(z") < oo.

() L(r) < o and L(¢) = .

(d L(z) < o and L(7) < .

Case (a). Let c be the curve defined by ¢ = {c(®) | c(t) = ¢,(p), 0 < t < o0,
p e N}. Since M and N are compact and c is perpendicular to N at p, we have
the cut point c(t,) of N along c. If #, > t,, then the shortest geodesic ¢’ between
c(t) and N is different from the subarc c|[0, ¢,] of ¢, and the image of ¢’ is
integral curve of X because ¢’ is perpendicular to N by construction. Hence the
composite of ¢|[0, ¢,] and ¢’ is an extension of c|[0, #,]. This contradicts to our
assumption (B), so Case (a) never happens.

Case (b). We first show ¢,(N) converges to one point x as ¢t — — oco. For
any point y € N, ¢,(y) converges to a point y’ as n— — oo . This implies X, = 0.
Using the same argument as in (3.10), we have f,(p) —»0 as t — — oo. For any
two points y,ze N, let x(s),0 < s < 1, be a curve in N joining y to z. Then
for any fixed 7, ¢,(x(s)), 0 < s < 1, is the curve in ¢,(N) joining ¢,(¥) to ¢,(2).
Now we estimate the length of this curve in ¢,(N).

3.9
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[(stoix0), pias = [(@ 100, 26 ds
(3.14) ° 1 0 1
= (@) (ex(s), 2(67"ds = G0 [ 8(x(5), 2(5)ds .

This shows flg(go,:ﬁ?(s), @ %(5))?ds — 0 as t — — oo, i.e., d(¥', ') = 0, where

0
Yy = lim ¢,(y), 2’ = lim ¢,(z), and x(s) is the tangent vector at x(s).

For any s < 0, the curve 7/(s) = {¢:(p) |t € [s, 0]} is the shortest geodesic
between ¢,(p) and N. In fact, if the curve 7’(s) contains the cut point of N in
its inner point, then we have a shortest geodesic 7] between ¢,(p) and N, which
is different from z’(s). Since 7] is perpendicular to N, we can denote ¢] by 7]
={p(@)|s <5 <t <0}or 7 = {p(q)|0 <t < c} for some ge N. But we
can easily show that these two cases do not happen. Hence 7'(s) is the shortest
geodesic between ¢,(p) and N.

For any y e N, put o[y] = {,(y)| — oo < t < 0}. Then it has already been
shown that L(z’[y]) is independent of ye N and 7'[y]l = 7/[y] U {x} is the
shortest geodesic between x and N. This shows that for any ¢ € (— oo, 0], ¢,(N)
is a connected submanifold of S,(I) = {z € M|d(x, z) = I}, where | = d(x, ¢,(p)),
p e N. Since from its construction ¢,(N) is an open and closed subset of S,(J),
we have S,(I) = ¢,(N). For any ¢ R, put z’(t) = {p(p)| — o0 <s < t}. Then
it has already been shown that z”/(f) = ¢”(t) U {x} is a geodesic joining x to
¢,(p). By the same argument as above, z/(f) does not contain the cut point of
x along 7”(#). Since by the assumption L(z”(f)) — o, Case (b) never happens.

Case (¢). This case can not happen in the same way as in Case (b).

Case (d). As we showed in Case (b), ¢,(N) and ¢_,(N) converge to x and
x’ respectively as t — + co. For any y e N, put 7/ = {p,(y)| — o0 <t < oo}.
Then z” is a shortest geodesic joining x to x’, and L(z”) is independent of y ¢ N.
As we showed in Case (b), ¢,(N) = S,() = {zeM|d(x,2) = I,1 = d(x, ¢,(p)),
peN}.

Put d(x, x’) = r._ Let M, be the tangent space of M at x, S* an n-dimz=nsional
sphere of r/z in R™*!, and X’ the antipodal point of X € S*. Then construct the
mapping f: M — S™ by

f = expzoco(exp,)™! on M — {x'},

f&x) =x",

where exp, (resp. exp;) is the exponential mapping at x (resp. X) whose do-
main of definition is the open ball in M, (resp. S;) of radius r/x and with the
origin as its center, and ¢: M, — S is an isometric isomorphism. Then f is a
homeomorphism of M onto S™.
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Lemma 3.7. In the case (B), M is diffeomorphic to S™.

Proof. For any two points y, z € N, put

rU Uiy,
U ) U ).

r={o(]—o00 <t < oo},
= {p(D] =0 <t < o},

Then the images of 7 and & are two shortest geodesics joining x to x". Let «
(resp. «’) be the angle between these two curves at x (resp. x’). Then we have

at(%(}’)’ QDt(Z)) T 35(905()"), %(Z))

a = lim 28202 Foesl a = lim —Er82 FUSZ
e d(x, 0(n) e A, ()

where d,(¢,(), ¢,(2)) is the distance between ¢,(y) and ¢,(z) on ¢,(N), which
is the same set as S, () = {w e M |d(x,w) =} and S,.(I') = {we M |d(x', w) =},
where | = d(x, ¢,(p)) and I’ = d(x’, ¢,(p)), p € N. The proof of this is parallel
to that of the lemma in Kobayashi-Nomizu [3, p. 170].

We have .

dfp.¥), 0.2)) = f,(N"d,2) ,

¢ t
a1 PON= [ ot e = [Te, 0K, X0

= ft((pj:g)y(X, X)%du = g (X, X)x/zf‘fu(y)l/zdu ,

and therefore

£, (y, 2)
([ 1u0r2au) g, x 20"

o = lim

t——oo

)y, 2)
(fwf_u()’)l/zdu) g, (X, X)"?

t—+o

Similarly,

f()d |, 2) |
(fwfu(}’)l/zdu) . g,(X, X)”

o = lim
Lo +oo

In order to prove @ = «/, we estimate the ratio o’ /«:
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: ([ huorau) -g,0x, X
3.16) ¢ —jim 1O"d0D

“ [ o) X, X0 0)"d . 2

3

where

5 exp f Ao () du
lim f_t(Y) — lim 0

RO T f A pu))du
(3.17) S
exp (— ["2p.0du)
= lim : =fm L
exp f Apu3))du exp f Apu(3))du

Since M is homeomorphic to S”, M is orientable and N is also orientable by the
construction, so that

0= f AX)dv = f dv, f ”1z(¢u(x)) exp (u f ul((pt(x))dt)}du
(3.18) " rooo ’

_ f [% (exp (u f " M (0)dt — exp (u f "mz(got(x))dt))]dvl,

where dv and dv, are volume elements on M and N respectively. Since the
integrand of the right hand side of (3.18) is independent of x, we have

exp ( f wi(goc(x))dt) — exp ( f wl(gm(x))dt) .

Hence we have

(3.19) lim f= " _

Since the values of d(x’, ¢,(y)) and d(x, ¢,(y)) are bounded, we obtain, in con-
sequence (3.15),

G20 lm [Loyau=0, lim [T 0)du=0,
t t

which together with (3.19) and I’Hospital’s theorem implies
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f " £.0)edu y
(3.21) fim : — lim 2O _ 4

b fwf_u(y)l/zdu e f ()

Hence by (3.19) and (3.21) we have
(3.22) a=a .

Now we construct a diffeomorphism of M onto $”. We put d(x,x’) = r.
Let M, be the tangent space of M at x, S be an n-dimensional sphere of radius
r/z in R™*', X’ be the antipodal point X ¢ §*, ¢,, - - -, e, be an orthonormal basis
for M,, and e/ (i = 1, - - -, n) be the tangent vector at x’, obtained by parallelly
displacing e; along the geodesic exp, te;, 0 < ¢t < r. By (3.22),¢/, - - -, e, is also
an orthonormal basis for M,.. Now we choose an orthonormal basis &, - - -, &,
for S2. Lete; (i = 1,2, - - -, n) be the tangent vector at ', obtained by paral-
lelly displacing &, along the geodesic exp;t€,,0 < t < r. Then &;, - - -, &, is
also an orthonormal basis for S©. Let  be the isometric isomorphism of M,

onto S% such that «(e;) = &;,i = 1, - . ., n, and / be the isometric isomorphism
of M; onto S% such that /(e)) =é&},i=1, ---,n. Now define two mapping
f,f': M — 8" by:
= expg oo (exp,)! on M — {x},
f) = %,
f = expgz o ¢ o (exp,)! on M — {x},
fx) =%.

By the construction, f is a diffeomorphism of M — {x’} onto §* — {¥'}, f’
is a diffeomorphism of M — {x} onto S” — {x}, and f = f’. Hence f is a dif-
feomorphism of M onto S™.

3. Examples

In this section we give two examples of compact Riemannian minifolds ad-
mitting a closed conformal non-Killing vector field.

Example 1. In the (x, y)-plane, consider a curve y =sinx + a, 0 < x < 2x,
a > 1. If we place this curve in the (x, y, z)-space and revolve it about the x-
axis, then we obtain a smooth closed surface M’ with boundary, on which we
induce the natural Riemannian metric:

ds’ = dr* + (sin x(r) + a)?de” ,

where we put
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x
r= f V1 + cos?tdt .
0

Now we obtain a compact Riemannian manifold M by identifying a boundary,
with two components, of M’ by an isometry of two circles. Then M is diffeo-
morphic to a torus or a Klein’s bottle, and X = (sin x(r) + a)-d/dr is a closed
conformal non-Killing vector field on M because it satisfies

Lyg = 2 cos x(r)ﬂg .
dr

Example 2. Inthe (x, y)-plane, consider a smooth curve y = f(x), 0 < x <,
such that f(0) = f(I) = 0, f(x) > 0 on (0, ]) and (dx/dy),_, = (dx/dy),_, = 0.
If we place this curve in the (x,y, z)-space and revolve it about the x-axis,
then we obtain a smooth closed surface M on which we induce the natural
Riemannian metric:

ds* = dr* + f(x(r))¥de* ,
where we put

r = wa/l TPz .

0

Thus M is diffeomorphic to a sphere S°. If we set f(x) = J 1— %(x — %)2,
X = f(x(r))a/dr, then X is a closed conformal non-Killing vector field on M,
because it satisfies

df dx

Lyg=2""""g,

x8 dx dr &
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