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Introduction

In [2] Hsiung (i) defined a new complex Laplacian Π2 f°r a n almost-
Hermitian structure, which is different from the one, denoted by Πi, given by
Kodaira and Spencer [3], (ii) verified for Π2 the well-known conjecture that if
• 2 = Δ/2 for all 0- and 1-forms, where Δ is the real Laplacian, then the
structure is Kahlerian, (iii) studied the conditions for • 2 to be real for all 0-
and 1-forms. Very recently, Ogawa [5] continued Hsiung's work to show that
if either • 2 or • 1 is real for all 0- and 1-forms, then the structure is Kahlerian.

The purpose of this paper is to introduce three more complex Laplacians π 3 ,
D 45 D 5 for an almost-Hermitian structure and to study the conditions for these
Laplacians to be real, together with some relationships among all Π's. We
shall continue to use Hsiung's method [2] which is somewhat different from
Ogawa's, and also for completeness we shall reprove Ogawa's result here.

§ 1 contains fundamental notation and real operators on a Riemannian
manifold. In § 2 we define various almost-Hermitian structures first and then
some complex operators for an almost Hermitian structure leading to the com-
plex Laplacians • i9i: = 1, , 5. Some conditions for the tensor of an almost-
Hermitian structure to be Kahlerian are also given for use in the proofs of our
main theorems. § 3 is devoted to the computation of • ̂  and • tη, i = 1, ,
5, for any 0-form ξ and 1-form η on an almost-Hermitian manifold. In § 4 we
show that for an almost-Hermitian structure if the complex Laplacian \ji9

i" = 1,2 or 4 is real with respect to all 0- and 1-forms, then the structure is
Kahlerian. In § 5 we obtain the following relationships among the • 's: If for
an almost-Hermitian structure the relation Im Πi = Im •« (i = 2 or 4) or
Im Π2 = I m Ώj (/ = 4 or 5) holds for all 0- and 1-forms, where Im denotes
the imaginary part, then the structure is Kahlerian.

Throughout this paper, the dimension of a manifold Mn is understood to be
n > 2, and all forms and structures are of class at least C2.

Communicated July 29, 1970. Research partially supported by the National Science
Foundation grant GP-11965.
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1. Notation and real operators

Let Mn be a Riemannian manifold of dimension n(>2), \\ gtj || with gυ = gjt

be the matrix of the positive definite metric of Mn, and \\gίj || be the inverse
matrix of \\gtj, ||. Throughout this paper all Latin indices take the values 1, , n
unless stated otherwise. We shall follow the usual tensor convention that indices
can be raised and lowered by using gίj and gtj respectively, and also that when a
Latin letter appears in any term as a subscript and superscript, it is understood
that this letter is summed over its range. Moreover, if we multiply, for example,
the components ai5 of a tensor of type (0,2) by the components bjk of a tensor
of type (2,0), it will always be understood that / is to be summed.

Let Jί be the set {1, , n} of positive integers less than or equal to n, and let
I(p) denote an ordered subset {il9 , ip) of the set Jί for p < n. If the elements
i19 - ,ip are in the natural order, that is, if ίλ < < ip, then the ordered set
I(p) is denoted by IQ(p). Furthermore, denote the nondecreasingly ordered p-
tuple having the same elements as I(p) by </(p)>, and let I(p s \ j) be the order-
ed set l(p) with the s-th element ίs replaced by another element / of Jί, which
may or may not belong to /(/?). We shall use these notations for indices through-
out this paper. When more than one set of indices is needed at one time, we
may use other capital letters such as /, K, L, in addition to /.

At first we define

0, if <J(p)> ,

J( ) 0 , if J(p) or K(p) contains repeated integers,

£κ(p) — _|_ i o r _ i ? if the permutation taking J(p) into K(p) is

even or odd.

By counting the number of terms it is easy to verify that

α θ\ eI(p)J(n-p)Λ~-n n \ J(n-p)

-£) δl. .n εI(p)K(n-p) — P' εK(n-p) >
Q 3) £Kp)J(q)£L(p) __ p\ £L(p)J(q)

On the manifold Mn, let V denote the covariant derivation with respect to
the affine connection Γ, with components Γ)k in local coordinates x\ ,xn,
of the Riemannian metric g, and let φ be a differential form of degree p given
by

(1.4) φ = \φI

where φnp) is a skew-symmetric tensor of type (0,p), and we have placed

(1.5) dx1^ = dx*1 A - Λ dx*p .

Then we have
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(1.6)

where

(1-7)

Denote

(1.8) eI(n) = ε\ ̂  υ

Then by using orthonormal local coordinates x1, , xn and relation (1.2) we
can easily obtain

(1.9) eI{p)K{n_p)eW^-* = p ! εJ

κfn~_% .

The dual operator * is defined by (see, for instance, [6])

(1.10) *Φ = {*φ)i«n-v)dxu'n-p) >

where

(i.ii) (*0WP V0 W P >

From (1.10), (1.11) it follows that for the scalar 1

(1.12) * 1 = (det (gijψWx1 Λ Λ dxn ,

which is just the element of area of the manifold Mn. By using orthonormal
local coordinates x1, , xn we can easily verify that

(1.13) **φ= (-\y^-Vφ .

Denote the inverse operator of * by *~*. Then from (1.13) it is seen that on
forms of degree p

(1.14) *-x = (-l)* (*-*>* .

The codifferential operator δ is defined by

(1.15) δφ = (-Ίy+n+1*'ιd*φ.

Making use of (1.6), (1.7), (1.10), (1.11) we obtain immediately

(1.16) δφ = (δφh.wdx1**-" ,

where
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α i 7) (ΆJΛ _ — u .Λj

For a form φ of degree p defined by (1.4) we can obtain

Pl (Δφ)I(p) = -FΨjφI(p) + Σ ΦltpάaiR'i,

(1.18)

Z_ι ψlip sla.tlb)1^ isit ?

where Δ is the Laplace-Beltrami operator defined by

(1.19) Δ = δd + dδ ,

and

(1.20) Fj = gjψk ,

(1-22) Rjk = Rsjics

2. Complex structures and operators

On a Riemannian manifold Mw with metric tensor gij9 if there exists a tensor
/V of type (1,1) satisfying

(2.1) Jpy'F/ = - e ί ,

then Fιj is said to define an almost-complex structure on the manifold Mn, and
the manifold Mn is called an almost-complex manifold. From (2.1) it follows
that the almost-complex structure Ft

j induces an automorphism / of the tangent
space of the manifold Mn at each point with P = —/, / being the identity op-
erator, such that, for any tangent vector vk,

(2.2) J:vk-^Fi

kvί.

If an almost-complex structure Ft

j further satisfies

(2.3)

then FiJ is said to define an almost-Hermitian structure on the manifold Mn,
and the manifold Mn is called an almost-Hermitian manifold. From (2.1), (2.3)
it follows that the tensor Fίό of type (0,2) defined by

(2.4) Fί3 = gJkFi*

is skew-symmetric. Thus on an almost-Hermitian manifold we have the associ-
ated differential form
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(2.5) ω = Fijdx* A dx' .

By using the multiplication of matrices, from (2.1) we readily see that a neces-
sary condition for the existence of an almost-complex structure on a Riemannian
manifold Mn is that the dimension n of the manifold Mn be even. It should also
be remarked that an almost-complex manifold is always orientable, and the
orientation depends only on the tensor F / .

An almost-Hermitian structure FJ defined on a manifold Mn is called an
almost-Kahlerian structure and the manifold Mn an almost-Kahlerian manifold,
if the associated form ω is closed, that is,

(2.6) dω = 0 .

From (2.5), (2.6) it follows that an almost-Kahlerian structure FJ satisfies

(2.7) Fhίj = VhFi5 + FtFJh + FjFhί = 0 .

The tensor Fhij is obviously skew-symmetric in all indices.
An almost-Hermitian structure Ft

j (respectively manifold) satisfying

(2.8) F, = -FjFJ = 0

is called an almost-semi-Kahlerian structure (respectively manifold). In partic-
ular, the structure Ft

j is Kahlerian if F^F/ = 0. In this case, by means of (2.1)
it is easily seen that the torsion tensor

U* = Fj\dFiηdxh - dFJ/dx*) - Fi

h(dFj

k/dxh - dFh*/dx0

vanishes, so that the integrability condition of the almost-complex structure FJ
is satisfied. But in general when tis

k = 0, the almost-Hermitian structure Ft

j is
defined to be Hermitian

Multiplying (2.4) by Fhί we obtain

(2.9) FtjF
hi = - e J .

By taking covariant differentiation of both sides of (2.9), noticing that

(2.10) FiΨhFίj= 0 ,

and making use of (2.7), (2.8) it is easily seen that

(2.11) FΛ i,F« = 2FΛ'F< .

Thus an almost-semi-Kahlerian structure F^ satisfies

(2.12) F w F " = 0 .
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Multiplication of (2.11) by Fk

h and use of (2.9) give

(2.13) Fk = -\F

From (2.7), (2.8), (2.13) we hence conclude that an almost-K'άhlerian structure
or manifold is also almost-semi-Kdhlerian.

In the proofs of our theorems we shall need the following lemmas.
Lemma 2.1. An almost-Hermitian structure F satisfying

(2.14) FiFjk = FjFίk

is Kdhlerian.
Proof. From the skew-symmetry of Fi3 we have

(2.15) FίFjk + FiFkJ = 0.

Taking the sum of (2.15) and the two similar equations obtained from it by
cyclic permutation of the indices i,j,k, and making use of (2.14) we obtain
PiFjie + V\Fkj + FjFkί = 0, which together with (2.15) implies immediately
FjFki = 0.

Lemma 2.2. An almost-Hermitian structure F satisfying

(2.16)

is Kdhlerian.
Proof. From (2.9) we have

0 = FΨAFtjF**) Λ j

which together with (2.16) gives FkFί3F
kFίj = 0 and therefore FkFtj = 0.

Lemma 2.3 (5. Koto [4]). An almost-Hermitian structure F satisfying

(2.17) VJFf + FjFί

k = 0,

(2.18) Rhi= -\RhJuFklFij

is Kdhlerian.
Proof. (2.17) can be written as

(2.19) FiFjk = FkFij .

Multiplying (2.19) by Fίj, using (2.10) and taking the covariant derivative Ft

of the resulting equation, we obtain, in consequence of (2.19),

(2.20) FtΨιFiFJk + FkFίjFιF^ = 0 .
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On the other hand, using (2.19) and the relation — FίjVjViFkl = FijFtVjFki9

from the Ricci identity it follows respectively that

(2.21) VιViFjk = FiFjFkl + RajiιFk

a - Ra*tιFja ,

(2.22) FΨtFjFn = -\F^(R\jiFai + RaιjiFka) .

Similarly, the Bianchi identity leads to

2RMJkF*' = RhijkF*t - RhjikF*>

= (Rhjίk + Rhi

and therefore to

(2.23)

Substituting (2.21) in (2.20) and using (2.22), (2.23), (2.1) we can obtain

(2.24) VkFijVιF^ = Rkl

Interchanging k, I in (2.24) and subtracting the resulting equation from (2.24)
we have

(2.25) RauuFfF" = RaliJFk*F" ,

and therefore (2.24) is reduced to

(2.26) VJFtfF* = Rkι - iRaujFuW ,

which together with (2.18) implies

(2.27) V*FisVxF" = 0 .

Multiplying (2.27) by gkl we hence obtain VkFi5 = 0.
Lemma 2.4. For an almost-Hermitian structure F, condition

(2.28)

implies condition (2.18).
Proof. Since

FklRkm = j\F*

IF*

<kRj,

ι(Rk

KRk

jhl Rljhk)

jhl + Rkhlj) =
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by the Bianchi identity, from (2.28) we obtain

(2.29) F/Rhk = i

Multiplying (2.29) by Ft

j and using (2.1) lead immediately to (2.18).
We now consider an almost-Hermitian manifold Mn with an almost-Hermitian

structure F, and shall follow Spencer (compare [7, Chapter IX]) to introduce
complex operators on the manifold Mn. At first we define

(2.30) Π i ' =
1 0Π
1,0

and its conjugate1 tensor

(2.31) π i' = ΪΊ7 =
0,1 1,0

A simple calculation gives the following identities:

Π Π / Π
1,0 1,0 1,0

(2.32) Π tJ Π / = 0 ,

1,0 0,1

0,1 0,1 0,1

Let p + a — p, p > 0, σ > 0, set

Π J(p) _ M(P)N(σ) ΓT n . . . Γί r9
Up) — εKp) I I mx I 1 mp

(2.33) p'σ 1'° 1'°
* Π TO/1 * * * Π nσ

SσεBoP(p)So(σ) ?
0,1 0,1

and define Π κP)
J(p) t o b e t h e identity for p = a = 0 and to be zero for either

p < 0 or σ < 0. Then for a form ^ given by (1.4) we have

(2.34) Π Φ = (Π ̂ )/o(,A7o(p) >

where

(2.35) (Π0i(,>= Π / ( / 0 ( % )

We next define a complex covariant differentiator

1 Throughout this paper a bar over a letter or symbol denotes the conjugate of the
complex number or operator defined by the letter or symbol.
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(2.36)
1,0

and the corresponding contravariant differentiator

(2.37) &

The conjugate operators

(2.38)

(2.39)

= 8ik2k =

of 2>i and

= Π jψj = Π / ^ •
0,1 1,0

Q)1 are

0,1

1,0

Now we define the complex analogues of the real operators d and δ defined by
(1.7), (1.15) respectively:

(2.40) dx = Σ p Π <* Π >

(2.41) dt = Σ Π t

 d Π »

(2.42) ίi = Σ Π S Π ,
p + σ = p p,σ—l p,σ

(2.43) J2 =

 P + ? P tfϊ , ί Π . '

The conjugate operators of dλ, d2 and δλ, δ2 have the forms:

(2.44) d, = Σ Π rf Π ,

(2.45)

(2.46)

(2.47)

Furthermore,

(2.48)

(2.49)

(2.50)

(2.51)

together with

2 = ,+?-,
?,= Σ

2̂ = + Σ

for a p-form 0 given by

\ulψ/I(p + l) — \^U2 i

(ΰiφlup-D = (2δ2 +

(d φ) = Σ

(^20)/ 1 — "~ Σ
p + σ=:

π ^ π >
p — l , a + 2 p , σ

Π an ,
ρ — l , σ p , σ

Π ^ π

(1.4) we define

4 - £)/«„.., ,

nf«p+ι>'Jtw9jφj.ip,,

ΓT . Jo(p)^ίφ

their conjugate operators:
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(2.52) 0 i0/ ( p + , , = (2d2 + 3,- d2)I{p+:) ,

(2.53) (&ιφ)i(P-n = (2§2 + 3, - δύiιp.t) ,

(2.54) (5^)/(,+i, = Σ Π i(P,n

(2.55) (^)/ ( P _ H = - Σ Π i7(p-i,Ja""^.(p,
p + σ = p p , σ

It is known that (see [3], [5])

(2.56) ^ r r z - * ^ * , ^ 2 = - * a 2 * ,

and that (see [3]) if the structure F of the manifold Mn is Kahlerian, then
d2φ — d2φ — 0 for any form φ, and therefore dx~ dλ.

Now we introduce the following complex Laplace-Beltrami operators:

(2.57) Dt = $idi + didi , (/ = 1,2) ,

(2.58) Π3 = $A + dA ,

(5.59) π 4 = M + a A ,

(2.60) Π5 = Mi + <*A .

It should be noted that Πi was first defined by Kodaira-Spencer [3], and Π 2

by Hsiung [2].
From [3] we know that d = dx + dx. In order to apply 92 + 92, let f be any

0-foπn. The we have, in consequence of (2.50), (2.36), (2.32), (2.30),

(2.61) (d2ξ)h = Π iJVjξ = Wiβ ~ V^ΐF^Ψjξ) 9
1,0

which together with (1.6), (1.7) gives

(2.62) dξ = 0 , + d2)ξ .

Similarly, for any 1-form η, using (2.50), (2.36), (2.33), (2.34), (2.35), (2.32)

we can obtain

Λ = Π if Π *,*(^7» - ^*^> + (Π </ Π <.* - Π ί/ Π i,
1,0 1,0 1,0 0,1 1,0 0,1

which together with (1.6), (1.7) gives

(2.64) dη = 1(92 + 32)η .
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The almost-complex structure F of the manifold Mn is said [3] to be
(completely) integrable if and only if d\ = 0. Now by means of (2.61), (2.50),
(2.30), , (2.36) and the relation

(2.65) FJfjξ = FjFtξ

for any 0-form ξ, an elementary but lengthy calculation gives

+ S^ϊφjs - FhFh*wkζ .

If 3J is real for any 0-form ξ, then by taking ξ = xι for any arbitary i with
respect to any local coordinates x\ • , xn, from (2.66) we obtain (2.14), and
therefore by Lemma 2.1 the structure F is Kdhlerian.

3. Expressions for • 's

In this section we shall give expressions for • tξ and • tη, where / = 1, , 4,
and ξ and η are respectively any 0- and 1-forms on an almost-Hermitian mani-
fold Mn with an almost-Hermitian structure F.

3.1. Laplacian Π 2 I n [2, pp. 146-147] we obtained

(3.1) 4D2? = 2Δξ + r»FA-FiΨtξ + V^ΪFjζ) ,

4(DΛ) 4 I = -FJ^FtlWhVj - FjΨΨJF^ + FtιΨtFhΨ%

( 3 2 ) - WWjItt + Wj, Pitty + FJF'Wi, VAη,

+ J^\{VΨΨ - (PjFif + Pif/Wrf

where

(3.3) [P*,Pi] = P*F (-FiF f t.

3.2. Laplacian Πi At first we notice that as a result of (2.65) we have

(3.4) FJFΨjξ = 0 .

By using (2.57), (2.53), (2.45), ,(2.48),(2.33),((2.40),(2.41),(2.43),(2.1),
(2.30), (2.32), (2.34), (2.35), (3.4), (1.17), (1.18) we can obtain

(3.5) 2πiξ = 2δUdξ = Δξ + S=ΪFiFiΨJξ.
1,0

In order to compute • # , from (2.48), (2.52), (2.40), (2.41), (2.43), (2.45),
(2.46), (2.47) we first see that

(3.6) a i = 2 Π ^ π + Π ^ Π + Π ^ Π - Π ^ Π ? for 1-forms ,
2,0 0,1 2,0 1,0 1,1 0,1 0,2 1,0
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(3.7) ^ = 2 Π 5 Π + ΓHΠ + Γ U Π - Γ U Π . for 2-forms .
0,1 2,0 1,0 2,0 0,1 1,1 1,0 0,2

Next, by means of (1.6), (1.7), (2.33), (2.34), (2.35), (1.2), (1.3), (2.30), (2.31),
we obtain

Π d π η = tΠ *,* Π ,,'(?* Π i1 -VιY\»% + Π u" Π u'v*)!
1,1 0,1 1,0 1,0 0,1 0,1 1,0 0,1

- Π * . * Π Λ , + Π«.*Π,/OVΠ*'-^Π
1,0 0,1 1,0 0,1 0,1 0,1

(3.8) = WuVu- VuVu + Fh"FhψkVj - F]Vk)

\ η Y [ X \ u X \ X \
2,0 1,0 1,0 1,0 1,0 1,0

+ ΓU'Γ
1,0 1,0

(3.9) = bWJWif*' - ?*Fi^ + Fu(P*FiJ ~ ^ Λ

- FjVk)

2FhψhVj -

Π d Π η = Π i* Π ^ O 7 * Π « ' - F, Π
2,0 0,1 1,0 1,0 0,1 0,1

(3.10)

• - Π < * Π 7 = Γ U * Π i/C7* Π Is - Pi Π ί
0,2 1,0 0,1 0,1 1,0 1,0

(3.11) = UvλFiWiΛ3 - PKFIJ) +

4(Π dδ Π 9)(I = ijFJViVFJ + FtlΨ*FkΨιVί
1,0 1,0

(3.12) + FiΪFιFktP
kηj - F,/*?* + FJFJ

V^ΐF^ + P / V F ^ +
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Substitution of (3.8), , (3.11) in (3.6) thus gives

(3.13) 9 ? = *t F < >" ~ Γ* "

Now put

Λ , Λ = F l Λ l , + V

(3.14) B*/*« = ef 'φ - efί̂ f- + F(l*»F,* - Ff*»F4l* ,

^βii — ε i i Γ s ~" εs Γ H £i!Γ s + €« ^ ίx

Then

(3.15) 3 l 3 7 = | U M 2 - ^ ^ / 0 ( 2 ) .

By means of (3.13), (2.33), (2.34), (2.35), (2.30), (2.31), (1.16), (1.17), ele-
mentary but rather lengthy calculations give

-scπaΠβΛk

0,1 1,1

0,1

= ηjW'FWM - F^F.O + FSF.Ψ FrΨM - rkFt0

+ FiWFrF.i - F FfrO + FWFJF^ - FT^F.Ol

+ QFiSFΨ,* - F.WF^WM + FijF'ηjiFrFS - 2F/V)

(3.16) - F.'FtfJF'η, - F^F FrΨjη, + 2F»FΛi l

+ 2Ftι*F,ΨΦιVk +

2F'F,>FΛ(1 + F ' F ( / F Λ . - F^F.ψtFtΨ η, + FΨkΨjVι)

2FtlΨΨsVj - 2FsΨΨjVh} ,

8(Π $ Π 3.9)^
1,0 2,0

= π p w j ; + v ^ c ϊ ίίM.,*,]
1,0

tfiW - l7^/) + tFtjF.Ψ'FWM -

FWtFtJ - F4lFfc0 + F4t*(F F.F tί - F'F*

WFtFif - FΨhFk0] + 2F i l*F F#'(F»7l -
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+ FsFrJ) + FsΨΨh\FιVk - 2FkVι)

- FsΨhFkΨ% + 2FΨsViι - 2FΨilVs

(3.17) + 2Fh*FsψΨkVι - FΨιVk)

rΨAW - W) + FJVFW

- FΨhFsJ + FSFWΨM - FΨtFS1 + FΨtlΨjVs

- FtJF.Ψ η, + F^Fs

lFkF^Vj - F^F.ΨΨ^V^

+ 2FΨΛFilV) - FjViι) - 2Fs«FiιΨkF,Ψ%

+ 2F.*(P P i Λ ί - FΨkVil) + 2FhψΨjVs - FΨsVj)} ,

Π Π
0,1 2,0

(3.18) + F *v'F<Wflt - FkVι) + FtιΦ FΛr#k - Fkηs)

^ - FkFΛ

Fk

j - FkFsW

- FkVι) + FΨhψjVs - FsVj)}

- 1 6 ( Π δ Π BιV)tι = 2
1,0 0,2

Substituting (3.6), (3.7), (3.12), (3.16), , (3.19) in (2.57) and using (2.32)
and

(3.20) 2F3ΨΨkVh = F'*[Pjt Fk]Vil ,

we can obtain, after some elementary simplification,

4 ( D Λ = 4[(2 ΓfSΠ + Π ^ Π + Π S Π - Π δ Π)3i? + Π dδ Π ηli,
0,1 2,0 1,0 2,0 0,1 1,1 1,0 0,2 1,0 1,0

XW - FkFtJ) + FΨlt\FkFJ - FsFkJ)

^ - 2FkFιi) + FsΨΨ{ι

ι(FkVι - FιVk)

(3.21) + Fh

lFtFkW% + FilΨΨιΨkηj - 2FΨsVh

2FΨsΨjVh
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3.3. Laplacΐan Π 3 In the same way as above we can compute • tξ and
Πi>}, i = 3,4, 5, but we shall omit the details in this section and §§ 3.4, 3.5.
We find that

(3.22) D3ξ = D,l ,

(3.23) 2$ιV = -F«ηk + V=ί(FkΨ% + 9 / * F * 0 ,

(3.24) - F/*, , + Fi;FhΨιVηi + S-ίhi

+ VtWη, + FkFkΨilVj + FkΨhV%

A v ) i , = 2 [ ( 2 Π ^ Π + Π δ Π + Π δ Π - Π W
0,1 2,0 1,0 2,0 0,1 1,1 1,0 0,2

- FkVj) + FtW

(3.25) - 2F FΛ (, + VΨilVs - F^FsΨ

+ V^ΐWΨuWsVj - 2FjVs) +

- FhΨΨjVs + F.H2VΨjViι - FΨilVj)] ,

'FS + 2FsΨΨiι«(FjVk- FkVj)

FtΨ% - FkFkΨrVj) + 2FiιΨΨrΨjη,

h + 2FΨhy)s - FhF%

Wηj - 2FΨιVj)

Fj + VΨΛAFjVn - FhVj)

+ 2FΨiJ(FsVj - 2FjVs)

+ FuFkΨ% + 2FΛ2FΨjVίι - FΨiιVi)

+ FtιψjF% - 2FΨjVk) + FkΨtιF%]^

3.4. Laplacian Π4 For Π4I, Ώfl we obtain the following equations:

(3.27) 2(3,©,, = Fhξ - V^ΪFtlΨ}ξ ,

(3.28) D4f = D2f ,

(3.29) S=i

(3 30)
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- FΨjΨkVil) + 2FΨjVh - FΨilVj

(3.31) + FJFJVΨtη, + V^

FtlΨΨjVt - 2FjΨΨkVh + FjΨΨilVk] ,

- FlF/FkVil)

2FΨjVil + FtW

(3.32)

(FkFtJ - 2FhFkψ%

FΨuΨkVj -

3.5. Laplacian Π s Finally, for the remaining Laplacian Π5 we first have

(3.33) Πrf = Π,f ,

(3.34) 5 l 7 = - , / ' Π iJ - Π
1,0 1,0

Adding (3.8) to (3.9) gives

(3.35) + S^

Now put

3 8G i l ί a = 4FilVi

+ V
Then

(3.37) 8dlV = {Giιh - Gi2iι)dx'°™

As in the derivation of (3.16), (3.17) we can obtain

(3.38) - 2 ( Π δ Π dlV)h = Π F Kef εS - < ε* + F
0,1 1,1 0,1
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(3.39) -4(Π δ Π diV)h = Π F W f ί + ^-ίC^)Gkltt] ,
1,0 2,0 1,0

where Bklkf and C*1*2 are defined in (3.14). After some calculations we can
thus have

^ = 16KΠ * Π + Π δ Π)dtf + Π d8lV]tl
1,0 2,0 0,1 1,1 1,0

( 3 β 4 0 ) + 4F,/F^[F,, Fk]Vj

ΦtFJ - FιFki)] + SFΨsΨkVίl

F r F s

i + FsFr

ι)FιVk - 4(F< XF/ + FjF

F 4 ] 9 , + 4F < 1 ' [F ι ,F*] 9 * + 4F s fc[FSJ Fk]Vu} .

4. Realization of Π 's

Theorem 4.1. The complex Laplacian D ί } / = 1, , 5, for an almost-
Hermitian structure is real with respect to every 0-form if and only if the struc-
ture is almost-semi-Kdhlerian. Moreover, with respect to every 0-form, if •*,
/ = 1, , 5, for an almost-Hermitian structure is real, then Πi = A/2 for
ΐ = l , - - . , 5 .

Proof. The theorem follows immediately from (3.1), (3.5), (3.22), (3.28),
(3.33) and (2.8) by choosing the 0-form ξ to be xk for an arbitary k with re-
spect to any local coordinates x\ , xn.

Theorem 4.2. For an almost-Hermitian structure, if the Laplacian Π*,
i = 1,2 or 4, is real with respect to all 0- and 1-forms, then the structure is
Kάhlerian.

Kodaira and Spencer [3] have shown that if the relation

(4.1) D! = J/2

holds for an almost-Hermitian structure, then the structure is integrable. The
particular case of Theorem 4.2 in which

(4.2) D* = J/2 ( ί = 1,2 or 4)

holds was a conjecture for some time it was proved by Hsiung [2] for / = 2
and by A. W. Adler [1] for i = 1 by a different method under a stronger as-
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sumption that (4.1) holds for a Hermitian structure and all 0-, 1- and 2-forms.
Theorem 4.2 was proved by Hsiung [2] and Ogawa [5] for i = 2, and by
Ogawa [5] for / = 1 by a somewhat different method.

Proof, (i) / = 2. In [2, p. 148] Hsiung proved that under the assumption
of the theorem the structure F satisfies2 (2.17) and (2.28). Then the theorem
follows immediately from Lemmas 2.4 and 2.3 this was pointed out to one of
the authors by H. Wakakuwa.

(ii) i = 1. Using the Ricci and Bianchi identities and (2.23) we can easily
obtain

(4.3) F^[Pj9Fk]^ = F^Rk%9

(4.4) F*Wu, PiJvj ~ FjkWj, V«\y}ix = - ΪFklR\lklVj ,

(4.5) F.F,χf" ~ VtfJF** = FJRtl* - iF *R>iιβa .

By assumption, for any 1-form η, Im Πfl = 0 which is reduced to, in conse-
quence of Theorem 4.1, (2.8), (3.21), (4.3), (4.4), (4.5),

(4.6) 2(FS/V + FtlF8φrf + (FΨsFtJ + Ftl*Rk' - Rtl*Fk0Vj = 0 .

By choosing

(4.7) η = dxh , for an arbitary h

with respect to any local coordinates x\ , xn, from (4.6) it thus follows that

(4.8) VΨsFiχ

h + Fiχ

kRk

h - Riχ*Fk

h = 0 .

Multiplying (4.8) by Fh

ix and using (2.1) we obtain (2.16), and therefore the
structure F is Kahlerian by Lemma 2.2.

(iii) i = 4. At a general point P of the manifold Mn we choose orthogonal
geodesic local coordinates x\ , xn so that

(4.9) gίj(P) = δυ , Πj(P) = 0 ,

where 3^ are Kronecker deltas. By using Theorem 4.1, and choosing η to satisfy

(4.7) first and then

(4.10) η — xhdxι , for any fixed distinct h and /

with respect to the geodesic local coordinates x\ , xn, from (3.32) the con-

dition Im (Πiφ = 0 for any 1-form η is reduced to

(4.11) FΨjFt* - VΨίχFjh = 0 ,

2 By mistake, (2.28) was printed as F^R^ u = F/R^u in [2, p. 148].Q
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(4.12) FhFίχl + 2FhFt

h + VιFil

h = 0 .

Interchanging /, ix in (4.12) and adding the resulting equation to (4.12) we ob-
tain

(4.13) FiχFt

h + FlFi* = 0.

From (4.11), (4.13) it thus follows that

(4.14) FΨJFiί

h = 0,

and hence by Lemma 2.2 the structure is Kahlerian.

5. Relationships among • 's

Theorem 5.1. // for an almost-Hermitian structure the relation

(5.1) Im Πi = Im D* 0' = 2 or 4)

holds for all 0- and 1-forms, then the structure is Kahlerian.
Proof, (i) i = 2. From (3.5), (3.1) and condition (5.1) for any 0-form

ξ, we have

(5.2) FhFhΨjξ = 0 .

By choosing ξ = xι for an arbitary / with respect to any local coordinates x\
- - -,xn, from (5.2) follows immediately (2.8), which together with (3.2), (3.21),
(3.20) reduces condition (5.1) for any 1-form η to

(5.3) (F/V + PifsΨjV8 - ΦViFJ ~ VVJFiDη, = 0 .

Choosing η to satisfy (4.7) first and then (4.10) with respect to the local co-
ordinates x1, - - , xn defined by (4.9) we therefore obtain (4.11), (4.13), and
hence the structure is Kahlerian for the same reasoning given in the proof (iii)
of Theorem 4.2.

(ii) i = 4. As in part (i), from (3.5), (3.28), (3.1) and condition (5.1) for
any 0-form ξ, we obtain (2.8), which together with (3.21), (3.32) reduces con-
dition (5.1) for any 1-form η to

(5.4) (FjFS - F*FtιJ)Fkη> = 0 .

By choosing η to satisfy (4.10) with respect to the local coordinates x\ , xn

defined by (4.9), we have

(5.5) FιFhil - FhFlίχ = 0 .

Thus by Lemma 2.1 the structure is Kahlerian.
Theorem 5.2. // for an almost-Hermitian structure either the relation
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(5.6) Im Π 2 = Im D 4

or

(5.7) R e Π 2 = R e D 4

holds for all 1-forms, where Re denotes the real part, then the structure is
Kdhlerian.

Proof. From (3.1), (3.32), by the same argument as in the proof of Theo-
rem 5.1 for i = 4 it is easily seen that conditions (5.6), (5.7) imply

(5.8) V%F%} = FuFh

l = 0 ,

(5.9) /yίW - F^M = 0 ,

respectively. By multiplying (5.9) by Fk

h, we can reduce (5.9) to (5.8). Hence
by Lemma 2.1, the structure is Kahlerian under either (5.6) or (5.7).

Theorem 5.3. // for an almost-Hermίtian structure the relation

(5.10) I m Π 2 = I m Π 5

holds for all 0- and 1-forms, then the structure is Kdhlerian.
Proof. From (3.33), (3.5), (3.1) and condition (5.10) for any 0-form ξ we

obtain (2.8). Then by the same argument as in the proof of Therem 5.1 for
i = 2, (2.8), (3.2), (3.40) reduce condition (5.10) for any 1-form η to

(5 11) WFr*(P*F*h - F*Fk

h) + 3F*VFil\VιFk

h - FkFt

h)

+ ΛF^F/Fψ.FS - ΓΛΛ) = 0 ,

(5.12) FijF
sl(FrFs

h + VsFr

h} = 0 ,

Multiplying (5.12) by Ffφf and use of (2.1) give

(5.13) FjFk

h + FkFjh = 0 .

Substituting (5.13) in (5.11) we can easily obtain

(5.14) 2Fil

kFsΨΨkFι

h - FsΨΨilΨkFι

h = 0 .

Multiplying (5.14) by Fh

i3 and using (2.1), (2.8), (5.13) we therefore have

(5.15) FsFiltF
sF^ = 0,

which implies that FsFhl = 0. Hence the structure is Kahlerian. q.e.d.
Finally, it should be reiήarked that there are no theorems involving the

Laplacian Π 3 similar to Theorems 4.2,5.1,5.2,5.3. However, we have the
following two theorems, the proofs of which are omitted.
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Theorem 5.4. // for an almost-Hermitian structure the relation

(5.16) Im Π3 = Im Πi + I Im φxd2)

holds for all 1-forms, then the structure is Kάhlerian.

Theorem 5.5. // for an almost-semi-Kahlerian structure the relation

(5.17) Im Π3 = Im Π* + \ Im ( M ) (i = 2 or 4)

holds for all 1-forms, then the structure is Kdhlerian.
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