COMPLEX LAPLACIANS ON ALMOST-HERMITIAN MANIFOLDS

CHUAN-CHIH HSIUNG \& JOHN J. LEVKO III

Introduction

In [2] Hsiung (i) defined a new complex Laplacian \square_{2} for an almostHermitian structure, which is different from the one, denoted by \square_{1}, given by Kodaira and Spencer [3], (ii) verified for \square_{2} the well-known conjecture that if $\square_{2}=\Delta / 2$ for all 0 - and 1 -forms, where Δ is the real Laplacian, then the structure is Kählerian, (iii) studied the conditions for \square_{2} to be real for all 0 and 1 -forms. Very recently, Ogawa [5] continued Hsiung's work to show that if either \square_{2} or \square_{1} is real for all 0 - and 1-forms, then the structure is Kählerian.

The purpose of this paper is to introduce three more complex Laplacians \square_{3}, \square_{4}, \square_{5} for an almost-Hermitian structure and to study the conditions for these Laplacians to be real, together with some relationships among all \square 's. We shall continue to use Hsiung's method [2] which is somewhat different from Ogawa's, and also for completeness we shall reprove Ogawa's result here.
$\S 1$ contains fundamental notation and real operators on a Riemannian manifold. In $\S 2$ we define various almost-Hermitian structures first and then some complex operators for an almost Hermitian structure leading to the complex Laplacians $\square_{i}, i=1, \cdots, 5$. Some conditions for the tensor of an almostHermitian structure to be Kählerian are also given for use in the proofs of our main theorems. $\S 3$ is devoted to the computation of $\square_{i} \xi$ and $\square_{i} \eta, i=1, \cdots$, 5 , for any 0 -form ξ and 1 -form η on an almost-Hermitian manifold. In $\S 4$ we show that for an almost-Hermitian structure if the complex Laplacian \square_{i}, $i=1,2$ or 4 is real with respect to all 0 - and 1 -forms, then the structure is Kählerian. In §5 we obtain the following relationships among the \square 's: If for an almost-Hermitian structure the relation $\operatorname{Im} \square_{1}=\operatorname{Im} \square_{i}(i=2$ or 4$)$ or $\operatorname{Im} \square_{2}=\operatorname{Im} \square_{j}(j=4$ or 5$)$ holds for all 0 - and 1 -forms, where Im denotes the imaginary part, then the structure is Kählerian.

Throughout this paper, the dimension of a manifold M^{n} is understood to be $n \geq 2$, and all forms and structures are of class at least C^{2}.

[^0]
1. Notation and real operators

Let M^{n} be a Riemannian manifold of dimension $n(\geq 2),\left\|g_{i j}\right\|$ with $g_{i j}=g_{j i}$ be the matrix of the positive definite metric of M^{n}, and $\left\|g^{i j}\right\|$ be the inverse matrix of $\left\|g_{i j}\right\|$. Throughout this paper all Latin indices take the values $1, \cdots, n$ unless stated otherwise. We shall follow the usual tensor convention that indices can be raised and lowered by using $g^{i j}$ and $g_{i j}$ respectively, and also that when a Latin letter appears in any term as a subscript and superscript, it is understood that this letter is summed over its range. Moreover, if we multiply, for example, the components $a_{i j}$ of a tensor of type $(0,2)$ by the components $b^{j k}$ of a tensor of type $(2,0)$, it will always be understood that j is to be summed.

Let \mathscr{N} be the set $\{1, \cdots, n\}$ of positive integers less than or equal to n, and let $I(p)$ denote an ordered subset $\left\{i_{1}, \cdots, i_{p}\right\}$ of the set \mathscr{N} for $p \leq n$. If the elements i_{1}, \cdots, i_{p} are in the natural order, that is, if $i_{1}<\cdots<i_{p}$, then the ordered set $I(p)$ is denoted by $I_{0}(p)$. Furthermore, denote the nondecreasingly ordered p tuple having the same elements as $I(p)$ by $\langle I(p)\rangle$, and let $I(p ; \hat{s} \mid j)$ be the ordered set $I(p)$ with the s-th element i_{s} replaced by another element j of \mathcal{N}, which may or may not belong to $I(p)$. We shall use these notations for indices throughout this paper. When more than one set of indices is needed at one time, we may use other capital letters such as J, K, L, \cdots in addition to I.

At first we define

$$
\varepsilon_{K(p)}^{J(p)}=\left\{\begin{array}{lc}
0, & \text { if }\langle J(p)\rangle \neq\langle K(p)\rangle \tag{1.1}\\
0, & \text { if } J(p) \text { or } K(p) \text { contains repeated integers }, \\
+1 \text { or }-1, & \text { if the permutation taking } J(p) \text { into } K(p) \text { is } \\
& \text { even or odd. }
\end{array}\right.
$$

By counting the number of terms it is easy to verify that

$$
\begin{gather*}
\varepsilon_{1}^{I(p) J(n-p)} \varepsilon_{I(p) K(n-p)}^{I \cdots}=p!\varepsilon_{K(n-p)}^{J(n-p)}, \tag{1.2}\\
\varepsilon_{K(p+q)}^{I(p)(q)} \varepsilon_{I(p)}^{L(p)}=p!\varepsilon_{K(p+q)}^{L(p) J(q)} . \tag{1.3}
\end{gather*}
$$

On the manifold M^{n}, let ∇ denote the covariant derivation with respect to the affine connection Γ, with components $\Gamma_{j k}^{i}$ in local coordinates x^{1}, \cdots, x^{n}, of the Riemannian metric g, and let ϕ be a differential form of degree p given by

$$
\begin{equation*}
\phi=\frac{1}{p!} \phi_{I(p)} d x^{I(p)}=\phi_{I_{0}(p)} d x^{I_{0}(p)} \tag{1.4}
\end{equation*}
$$

where $\phi_{I(p)}$ is a skew-symmetric tensor of type $(0, p)$, and we have placed

$$
\begin{equation*}
d x^{I(p)}=d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} \tag{1.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
d \phi=(d \phi)_{I_{0}(p+1)} d x^{I_{0}(p+1)} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
(d \phi)_{I(p+1)}=\frac{1}{p!} \varepsilon_{I(p+1)}^{k J(p)} \nabla_{k} \phi_{J(p)} . \tag{1.7}
\end{equation*}
$$

Denote

$$
\begin{equation*}
e_{I(n)}=\varepsilon_{I(n)}^{1 \cdots n}\left(\operatorname{det}\left(g_{i j}\right)\right)^{1 / 2} \tag{1.8}
\end{equation*}
$$

Then by using orthonormal local coordinates x^{1}, \cdots, x^{n} and relation (1.2) we can easily obtain

$$
\begin{equation*}
e_{I(p) K(n-p)} e^{I(p) J(n-p)}=p!\varepsilon_{K(n-p)}^{J(n-p)} . \tag{1.9}
\end{equation*}
$$

The dual operator $*$ is defined by (see, for instance, [6])

$$
\begin{equation*}
* \phi=(* \phi)_{I_{0}(n-p)} d x^{I_{0}(n-p)}, \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
(* \phi)_{I(n-p)}=\frac{1}{p!} e_{J(p) I(n-p)} \phi^{J(p)} \tag{1.11}
\end{equation*}
$$

From (1.10), (1.11) it follows that for the scalar 1

$$
\begin{equation*}
* 1=\left(\operatorname{det}\left(g_{i j}\right)\right)^{1 / 2} d x^{1} \wedge \cdots \wedge d x^{n} \tag{1.12}
\end{equation*}
$$

which is just the element of area of the manifold M^{n}. By using orthonormal local coordinates x^{1}, \cdots, x^{n} we can easily verify that

$$
\begin{equation*}
* * \phi=(-1)^{p(n-p)} \phi . \tag{1.13}
\end{equation*}
$$

Denote the inverse operator of $*$ by $*^{-1}$. Then from (1.13) it is seen that on forms of degree p

$$
\begin{equation*}
*^{-1}=(-1)^{p(n-p)} * . \tag{1.14}
\end{equation*}
$$

The codifferential operator δ is defined by

$$
\begin{equation*}
\delta \phi=(-1)^{p+n+1} *^{-1} d * \phi . \tag{1.15}
\end{equation*}
$$

Making use of (1.6), (1.7), (1.10), (1.11) we obtain immediately

$$
\begin{equation*}
\delta \phi=(\delta \phi)_{I_{0}(p-1)} d x^{I_{0}(p-1)} \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
(\delta \phi)_{I(p-1)}=-\nabla_{j} \phi^{j}{ }_{I(p-1)} . \tag{1.17}
\end{equation*}
$$

For a form ϕ of degree p defined by (1.4) we can obtain

$$
\begin{align*}
p!(\Delta \phi)_{I(p)}= & -\nabla^{j} \nabla_{j} \phi_{I(p)}+\sum_{s=1}^{p} \phi_{I(p ; \hat{s} \mid a)} R^{a}{ }_{i_{s}} \tag{1.18}\\
& +\sum_{s<t}^{1, \cdots, p} \phi_{I(\hat{p} ; \hat{s}|a, \hat{\hat{1} \mid}|)} R^{a b}{ }_{i_{s} i_{t}},
\end{align*}
$$

where Δ is the Laplace-Beltrami operator defined by

$$
\begin{equation*}
\Delta=\delta d+d \delta \tag{1.19}
\end{equation*}
$$

and

$$
\begin{gather*}
\nabla^{j}=g^{j k} \nabla_{k}, \tag{1.20}\\
{R^{i}{ }_{j k l}=\partial \Gamma_{j k}^{i} / \partial x^{l}-\partial \Gamma_{j l}^{i} \partial x^{k}+\Gamma_{j k}^{h} \Gamma_{n l}^{i}-\Gamma_{j l}^{h} \Gamma_{n k}^{i},}_{R_{j k}=R^{s}{ }_{j k s} .} \tag{1.21}
\end{gather*}
$$

2. Complex structures and operators

On a Riemannian manifold M^{n} with metric tensor $g_{i j}$, if there exists a tensor $F_{i}{ }^{j}$ of type (1,1) satisfying

$$
\begin{equation*}
F_{i}{ }^{j} F_{j}{ }^{k}=-\varepsilon_{i}^{k}, \tag{2.1}
\end{equation*}
$$

then $F_{i}{ }^{j}$ is said to define an almost-complex structure on the manifold M^{n}, and the manifold M^{n} is called an almost-complex manifold. From (2.1) it follows that the almost-complex structure $F_{i}{ }^{j}$ induces an automorphism J of the tangent space of the manifold M^{n} at each point with $J^{2}=-I, I$ being the identity operator, such that, for any tangent vector v^{k},

$$
\begin{equation*}
J: v^{k} \rightarrow F_{i}{ }^{k} v^{i} \tag{2.2}
\end{equation*}
$$

If an almost-complex structure $F_{i}{ }^{j}$ further satisfies

$$
\begin{equation*}
g_{i j} F_{h}{ }^{i} F_{k}{ }^{j}=g_{h k}, \tag{2.3}
\end{equation*}
$$

then $F_{i}{ }^{j}$ is said to define an almost-Hermitian structure on the manifold M^{n}, and the manifold M^{n} is called an almost-Hermitian manifold. From (2.1), (2.3) it follows that the tensor $F_{i j}$ of type $(0,2)$ defined by

$$
\begin{equation*}
F_{i j}=g_{j k} F_{i}{ }^{k} \tag{2.4}
\end{equation*}
$$

is skew-symmetric. Thus on an almost-Hermitian manifold we have the associated differential form

$$
\begin{equation*}
\omega=F_{i j} d x^{i} \wedge d x^{j} \tag{2.5}
\end{equation*}
$$

By using the multiplication of matrices, from (2.1) we readily see that a necessary condition for the existence of an almost-complex structure on a Riemannian manifold M^{n} is that the dimension n of the manifold M^{n} be even. It should also be remarked that an almost-complex manifold is always orientable, and the orientation depends only on the tensor $F_{i}{ }^{j}$.

An almost-Hermitian structure $F_{i}{ }^{j}$ defined on a manifold M^{n} is called an almost-Kählerian structure and the manifold M^{n} an almost-Kählerian manifold, if the associated form ω is closed, that is,

$$
\begin{equation*}
d \omega=0 \tag{2.6}
\end{equation*}
$$

From (2.5), (2.6) it follows that an almost-Kählerian structure $F_{i}{ }^{j}$ satisfies

$$
\begin{equation*}
F_{h i j} \equiv \nabla_{h} F_{i j}+\nabla_{i} F_{j h}+\nabla_{j} F_{h i}=0 . \tag{2.7}
\end{equation*}
$$

The tensor $F_{h i j}$ is obviously skew-symmetric in all indices.
An almost-Hermitian structure $F_{i}{ }^{j}$ (respectively manifold) satisfying

$$
\begin{equation*}
F_{i} \equiv-\nabla_{j} F_{i}{ }^{j}=0 \tag{2.8}
\end{equation*}
$$

is called an almost-semi-Kählerian structure (respectively manifold). In particular, the structure $F_{i}{ }^{j}$ is Kählerian if $\nabla_{i} F_{j}{ }^{k}=0$. In this case, by means of (2.1) it is easily seen that the torsion tensor

$$
t_{i j}{ }^{k}=F_{j}{ }^{h}\left(\partial F_{i}{ }^{k} / \partial x^{h}-\partial F_{h}{ }^{k} / \partial x^{i}\right)-F_{i}{ }^{h}\left(\partial F_{j}{ }^{k} / \partial x^{h}-\partial F_{h}{ }^{k} / \partial x^{j}\right)
$$

vanishes, so that the integrability condition of the almost-complex structure $F_{i}{ }^{j}$ is satisfied. But in general when $t_{i j}{ }^{k}=0$, the almost-Hermitian structure $F_{i}{ }^{j}$ is defined to be Hermitian

Multiplying (2.4) by $F^{h i}$ we obtain

$$
\begin{equation*}
F_{i j} F^{h i}=-\varepsilon_{j}^{h} . \tag{2.9}
\end{equation*}
$$

By taking covariant differentiation of both sides of (2.9), noticing that

$$
\begin{equation*}
F^{i j} \nabla_{h} F_{i j}=0, \tag{2.10}
\end{equation*}
$$

and making use of (2.7), (2.8) it is easily seen that

$$
\begin{equation*}
F_{h i j} F^{i j}=2 F_{h}^{i} F_{i} \tag{2.11}
\end{equation*}
$$

Thus an almost-semi-Kählerian structure $F_{i}{ }^{j}$ satisfies

$$
\begin{equation*}
F_{h i j} F^{i j}=0 \tag{2.12}
\end{equation*}
$$

Multiplication of (2.11) by $F_{k}{ }^{h}$ and use of (2.9) give

$$
\begin{equation*}
F_{k}=-\frac{1}{2} F_{h i j} F^{i j} F_{k}{ }^{h} . \tag{2.13}
\end{equation*}
$$

From (2.7), (2.8), (2.13) we hence conclude that an almost-Kählerian structure or manifold is also almost-semi-Kählerian.
In the proofs of our theorems we shall need the following lemmas.
Lemma 2.1. An almost-Hermitian structure F satisfying

$$
\begin{equation*}
\nabla_{i} F_{j k}=\nabla_{j} F_{i k} \tag{2.14}
\end{equation*}
$$

is Kählerian.
Proof. From the skew-symmetry of $F_{i j}$ we have

$$
\begin{equation*}
\nabla_{i} F_{j k}+\nabla_{i} F_{k j}=0 \tag{2.15}
\end{equation*}
$$

Taking the sum of (2.15) and the two similar equations obtained from it by cyclic permutation of the indices i, j, k, and making use of (2.14) we obtain $\nabla_{i} F_{j k}+\nabla_{i} F_{k j}+\nabla_{j} F_{k i}=0$, which together with (2.15) implies immediately $\nabla_{j} F_{k i}=0$.

Lemma 2.2. An almost-Hermitian structure F satisfying

$$
\begin{equation*}
F^{i j} \nabla^{k} \nabla_{k} F_{i j}=0 \tag{2.16}
\end{equation*}
$$

is Kählerian.
Proof. From (2.9) we have

$$
0=\nabla^{k} \nabla_{k}\left(F_{i j} F^{i j}\right)=2\left(F^{i j} \nabla^{k} \nabla_{k} F_{i j}+\nabla_{k} F_{i j} \nabla^{k} F^{i j}\right),
$$

which together with (2.16) gives $\nabla_{k} F_{i j} \nabla^{k} F^{i j}=0$ and therefore $\nabla_{k} F_{i j}=0$.
Lemma 2.3 (S. Kotô [4]). An almost-Hermitian structure F satisfying

$$
\begin{gather*}
\nabla_{i} F_{j}{ }^{k}+\nabla_{j} F_{i}{ }^{k}=0, \tag{2.17}\\
R_{h i}=-\frac{1}{2} R_{h j k l} F^{k l} F_{i}{ }^{j} \tag{2.18}
\end{gather*}
$$

is Kählerian.
Proof. (2.17) can be written as

$$
\begin{equation*}
\nabla_{i} F_{j k}=\nabla_{k} F_{i j} . \tag{2.19}
\end{equation*}
$$

Multiplying (2.19) by $F^{i j}$, using (2.10) and taking the covariant derivative ∇_{l} of the resulting equation, we obtain, in consequence of (2.19),

$$
\begin{equation*}
F^{i j} \nabla_{l} \nabla_{i} F_{j k}+\nabla_{k} F_{i j} \nabla_{l} F^{i j}=0 . \tag{2.20}
\end{equation*}
$$

On the other hand, using (2.19) and the relation $-F^{i j} \nabla_{j} \nabla_{i} F_{k l}=F^{i j} \nabla_{i} \nabla_{j} F_{k l}$, from the Ricci identity it follows respectively that

$$
\begin{align*}
& \nabla_{l} \nabla_{i} F_{j k}=\nabla_{i} \nabla_{j} F_{k l}+R_{a j i l} F_{k}^{a}-R_{a k i l} F_{j}^{a}, \tag{2.21}\\
& F^{i j} \nabla_{i} \nabla_{j} F_{k l}=-\frac{1}{2} F^{i j}\left(R_{k j i}^{a} F_{a l}+R^{a}{ }_{l j i} F_{k a}\right) . \tag{2.22}
\end{align*}
$$

Similarly, the Bianchi identity leads to

$$
\begin{aligned}
2 R_{h i j k} F^{i j} & =R_{h i j k} F^{i j}-R_{h j i k} F^{i j} \\
& =\left(R_{h j i k}+R_{h i k j}\right) F^{i j}-2 R_{h k i j} F^{i j}
\end{aligned}
$$

and therefore to

$$
\begin{equation*}
R_{h i j k} F^{i j}=-\frac{1}{2} R_{h k i j} F^{i j} \tag{2.23}
\end{equation*}
$$

Substituting (2.21) in (2.20) and using (2.22), (2.23), (2.1) we can obtain

$$
\begin{equation*}
\nabla_{k} F_{i j} \nabla_{l} F^{i j}=R_{k l}+F^{i j}\left(\frac{1}{2} R_{a k i j} F_{l}^{a}-R_{a l i j} F_{k}^{a}\right) . \tag{2.24}
\end{equation*}
$$

Interchanging k, l in (2.24) and subtracting the resulting equation from (2.24) we have

$$
\begin{equation*}
R_{a k i j} F_{l}{ }^{a} F^{i j}=R_{a l i j} F_{k}{ }^{a} F^{i j} \tag{2.25}
\end{equation*}
$$

and therefore (2.24) is reduced to

$$
\begin{equation*}
\nabla_{k} F_{i j} \nabla_{l} F^{i j}=R_{k l}-\frac{1}{2} R_{a l i j} F_{k}^{a} F^{i j} \tag{2.26}
\end{equation*}
$$

which together with (2.18) implies

$$
\begin{equation*}
\nabla_{k} F_{i j} \nabla_{l} F^{i j}=0 \tag{2.27}
\end{equation*}
$$

Multiplying (2.27) by $g^{k l}$ we hence obtain $\nabla_{k} F_{i j}=0$.
Lemma 2.4. For an almost-Hermitian structure F, condition

$$
\begin{equation*}
F_{i}{ }^{k} R_{j k}=F_{k}{ }^{l} R^{k}{ }_{i j l} \tag{2.28}
\end{equation*}
$$

implies condition (2.18).
Proof. Since

$$
\begin{aligned}
F^{k l} R_{k j h l} & =\frac{1}{2} F^{k l}\left(R_{k j h l}-R_{l j h k}\right) \\
& =\frac{1}{2} F^{k l}\left(R_{k j h l}+R_{k k l j}\right)=\frac{1}{2} F^{k l} R_{k l j h}
\end{aligned}
$$

by the Bianchi identity, from (2.28) we obtain

$$
\begin{equation*}
F_{j}{ }^{k} R_{h k}=\frac{1}{2} R_{j h k l} F^{k l} \tag{2.29}
\end{equation*}
$$

Multiplying (2.29) by $F_{i}{ }^{j}$ and using (2.1) lead immediately to (2.18).
We now consider an almost-Hermitian manifold M^{n} with an almost-Hermitian structure F, and shall follow Spencer (compare [7, Chapter IX]) to introduce complex operators on the manifold M^{n}. At first we define

$$
\begin{equation*}
\prod_{1,0} i^{j}=\frac{1}{2}\left(\varepsilon_{i}{ }^{j}-\sqrt{-1 F_{i}}{ }^{j}\right) \tag{2.30}
\end{equation*}
$$

and its conjugate ${ }^{1}$ tensor

$$
\begin{equation*}
\prod_{0,1} i^{j}=\prod_{1,0} i^{j}=\frac{1}{2}\left(\varepsilon_{i}^{j}+\sqrt{-1} F_{i}{ }^{j}\right) \tag{2.31}
\end{equation*}
$$

A simple calculation gives the following identities:

$$
\begin{align*}
& \prod_{1,0} i^{j} \prod_{1,0}{ }^{k}=\prod_{1,0} i^{k}, \\
& \prod_{1,0} i^{j} \prod_{0,1} j^{k}=0, \tag{2.32}\\
& \prod_{0,1} i^{j} \prod_{0,1} j^{k}=\prod_{0,1} i^{k} .
\end{align*}
$$

Let $\rho+\sigma=p, \rho \geq 0, \sigma \geq 0$, set

$$
\begin{align*}
& \prod_{\rho, \sigma} I(p) \tag{2.33}\\
& J(p)=\varepsilon_{I(p)}^{M(p) N(\sigma)} \\
& \cdot \prod_{0,1} n_{1}{ }^{s_{1}} \cdots \prod_{0,1}^{r_{1}} \cdots \prod_{1,0} m_{\rho}{ }^{{ }^{s}{ }^{s_{\sigma}} \varepsilon_{R_{0}(p)}^{J}(p) S_{0}(\sigma)},
\end{align*}
$$

and define $\prod_{\rho, \sigma} I_{(p)}{ }^{J(p)}$ to be the identity for $\rho=\sigma=0$ and to be zero for either $\rho<0$ or $\sigma<0$. Then for a form ϕ given by (1.4) we have

$$
\begin{equation*}
\prod_{\rho, \sigma} \phi=\left(\prod_{\rho, \sigma} \phi\right)_{I_{0}(p)} d x^{I_{0}(p)} \tag{2.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\prod_{p, \sigma} \phi\right)_{I(p)}=\prod_{p, \sigma} I(p)^{J_{o}(p)} \phi_{J_{0}(p)} . \tag{2.35}
\end{equation*}
$$

We next define a complex covariant differentiator

[^1]\[

$$
\begin{equation*}
\mathscr{D}_{i}=\prod_{1,0} i^{j} \nabla_{j}, \tag{2.36}
\end{equation*}
$$

\]

and the corresponding contravariant differentiator

$$
\begin{equation*}
\mathscr{D}^{i}=g^{i k} \mathscr{D}_{k}=\prod_{0,1} j^{i} \nabla^{j}=\bar{\prod}_{1,0}{ }_{j} \nabla^{j} . \tag{2.37}
\end{equation*}
$$

The conjugate operators of \mathscr{D}_{i} and \mathscr{D}^{i} are

$$
\begin{align*}
\overline{\mathscr{D}}_{i} & =\prod_{0,1} i^{j} \nabla_{j}, \tag{2.38}\\
\overline{\mathscr{D}}^{i} & =\prod_{1,0}{ }^{i} \nabla^{j} \tag{2.39}
\end{align*}
$$

Now we define the complex analogues of the real operators d and δ defined by (1.7), (1.15) respectively:

$$
\begin{align*}
d_{1} & =\sum_{\rho+\sigma=p} \prod_{\rho+1, \sigma} d \prod_{\rho, \sigma}, \tag{2.40}\\
d_{2} & =\sum_{\rho+\sigma=\rho} \prod_{\rho+2, \sigma-1} d \prod_{\rho, \sigma}, \tag{2.41}\\
\delta_{1} & =\sum_{\rho+\sigma=p} \prod_{\rho, \sigma-1} \delta \prod_{\rho, \sigma}, \tag{2.42}\\
\delta_{2} & =\sum_{\rho+\sigma=p} \prod_{\rho+1, \sigma-2} \delta \prod_{\rho, \sigma} . \tag{2.43}
\end{align*}
$$

The conjugate operators of d_{1}, d_{2} and δ_{1}, δ_{2} have the forms:

$$
\begin{align*}
& \bar{d}_{1}=\sum_{\rho+\sigma=p} \prod_{\rho, \sigma+1} d \prod_{\rho, \sigma}, \tag{2.44}\\
& \bar{d}_{2}=\sum_{\rho+\sigma=p} \prod_{\rho-1, \sigma+2} d \prod_{\rho, \sigma}, \tag{2.45}\\
& \bar{\delta}_{1}=\sum_{\rho+\sigma=p} \prod_{\rho-1, \sigma} \delta \prod_{\rho, \sigma}, \tag{2.46}\\
& \bar{\delta}_{2}=\sum_{\rho+\sigma=p \rho-2, \sigma+1} \prod_{\rho, \sigma} \delta \prod_{\rho, \sigma} . \tag{2.47}
\end{align*}
$$

Furthermore, for a p-form ϕ given by (1.4) we define

$$
\begin{align*}
\left(\partial_{1} \phi\right)_{I(p+1)} & =\left(2 d_{2}+d_{1}-\bar{d}_{2}\right)_{I(p+1)} \tag{2.48}\\
\left(\vartheta_{1} \phi\right)_{I(p-1)} & =\left(2 \delta_{2}+\delta_{1}-\bar{\delta}_{2}\right)_{I(p-1)}, \tag{2.49}\\
\left(\partial_{2} \phi\right)_{I(p+1)} & =\sum_{\rho+\sigma=p} \prod_{\rho+1, \sigma}{ }_{I(p+1)}{ }^{j_{0}(p)} \mathscr{D}_{j} \phi_{J_{0}(p)}, \tag{2.50}\\
\left(\vartheta_{2} \phi\right)_{I(p-1)} & =-\sum_{\rho+\sigma=p} \prod_{\rho, \sigma} i I_{(p-1)}{ }^{J_{0}(p)} \mathscr{D}^{i} \phi_{J_{0}(p)} \tag{2.51}
\end{align*}
$$

together with their conjugate operators:

$$
\begin{align*}
& \left(\partial_{1} \phi\right)_{I(p+1)}=\left(2 \bar{d}_{2}+\bar{d}_{1}-d_{2}\right)_{I(p+i)}, \tag{2.52}\\
& \left(\bar{\vartheta}_{1} \phi\right)_{I(p-1)}=\left(2 \bar{\delta}_{2}+\bar{\delta}_{1}-\delta_{2}\right)_{I(p-1)}, \tag{2.53}\\
& \left(\bar{\partial}_{2} \phi\right)_{I(p+1)}=\sum_{\rho+\sigma=p} \prod_{\rho, \sigma+1} I(p+1){ }^{j J_{0}(p)} \bar{y}_{j} \phi_{J_{0}(p)}, \tag{2.54}\\
& \left(\bar{\vartheta}_{2} \phi\right)_{I(p-1)}=-\sum_{\rho+\sigma=p} \prod_{\rho, \sigma} i I(p-1){ }^{J^{\prime}(p)} \overline{\mathscr{D}}^{i} \phi_{J_{0}(p)} . \tag{2.55}
\end{align*}
$$

It is known that (see [3], [5])

$$
\begin{equation*}
\vartheta_{1}=-* \partial_{1} *, \quad \vartheta_{2}=-* \partial_{2} * \tag{2.56}
\end{equation*}
$$

and that (see [3]) if the structure F of the manifold M^{n} is Kählerian, then $\bar{d}_{2} \phi=d_{2} \phi=0$ for any form ϕ, and therefore $\partial_{1}=d_{1}$.
Now we introduce the following complex Laplace-Beltrami operators:

$$
\begin{align*}
& \square_{i}=\bar{\vartheta}_{i} \partial_{i}+\partial_{i} \bar{\vartheta}_{i}, \quad(i=1,2), \tag{2.57}\\
& \square_{3}=\bar{\vartheta}_{1} \partial_{2}+\partial_{2} \bar{\vartheta}_{1}, \tag{2.58}\\
& \square_{4}=\bar{\vartheta}_{2} \partial_{1}+\partial_{1} \bar{\vartheta}_{2}, \tag{5.59}\\
& \square_{5}=\bar{\delta}_{1} d_{1}+d_{1} \bar{\delta}_{1} . \tag{2.60}
\end{align*}
$$

It should be noted that \square_{1} was first defined by Kodaira-Spencer [3], and \square_{2} by Hsiung [2].

From [3] we know that $d=\partial_{1}+\bar{\partial}_{1}$. In order to apply $\partial_{2}+\bar{\partial}_{2}$, let ξ be any 0 -form. The we have, in consequence of (2.50), (2.36), (2.32), (2.30),

$$
\begin{equation*}
\left(\partial_{2} \xi\right)_{i_{1}}=\prod_{1,0} i_{1}^{j}{ }_{j} \xi=\frac{1}{2}\left(\nabla_{i_{1}} \xi-\sqrt{-1} F_{i_{1}}{ }^{j} \nabla_{j} \xi\right), \tag{2.61}
\end{equation*}
$$

which together with (1.6), (1.7) gives

$$
\begin{equation*}
d \xi=\left(\partial_{2}+\bar{\partial}_{2}\right) \xi \tag{2.62}
\end{equation*}
$$

Similarly, for any 1 -form η, using (2.50), (2.36), (2.33), (2.34), (2.35), (2.32) we can obtain

$$
\begin{align*}
\left(\partial_{2} \eta\right)_{i_{1} i_{2}} & =\prod_{1,0} i_{1}{ }^{j} \prod_{1,0} i_{2}{ }^{k}\left(\nabla_{j} \eta_{k}-\nabla_{k} \eta_{j}\right)+\left(\prod_{1,0} i_{1}{ }^{j} \prod_{0,1} i_{2}{ }^{k}-\prod_{1,0} i_{2}{ }^{j} \prod_{0,1} i_{1}{ }^{k}\right) \nabla_{j} \eta_{k} \\
& =\frac{1}{2}\left[\nabla_{i_{1}} \eta_{i_{2}}-\nabla_{i_{2}} \eta_{i_{1}}+\sqrt{-1}\left(F_{i_{2}}{ }^{j} \nabla_{j} \eta_{i_{1}}-F_{i_{1}}{ }^{j} \nabla_{j} \eta_{i_{2}}\right)\right], \tag{2.63}
\end{align*}
$$

which together with (1.6), (1.7) gives

$$
\begin{equation*}
d \eta=\frac{1}{2}\left(\partial_{2}+\bar{\partial}_{2}\right) \eta . \tag{2.64}
\end{equation*}
$$

The almost-complex structure F of the manifold M^{n} is said [3] to be (completely) integrable if and only if $\partial_{1}^{2}=0$. Now by means of (2.61), (2.50), (2.30), $\cdots,(2.36)$ and the relation

$$
\begin{equation*}
\nabla_{i} \nabla_{j} \xi=\nabla_{j} \nabla_{i} \xi \tag{2.65}
\end{equation*}
$$

for any 0 -form ξ, an elementary but lengthy calculation gives

$$
\begin{align*}
4\left(\partial_{2}^{2} \xi\right)_{i_{1} i_{2}}= & \left(F_{i_{2}}{ }^{j} \nabla_{j} F_{i_{1}}{ }^{k}-F_{i_{1}}{ }^{j} \nabla_{j} F_{i_{2}}{ }^{k}\right) V_{k} \xi \tag{2.66}\\
& +\sqrt{-1}\left(\nabla_{i_{2}} F_{i_{1}}{ }^{k}-\nabla_{i_{1}} F_{i_{2}}{ }^{k}\right) \nabla_{k} \xi .
\end{align*}
$$

If ∂_{2}^{2} is real for any 0 -form ξ, then by taking $\xi=x^{i}$ for any arbitary i with respect to any local coordinates x^{1}, \cdots, x^{n}, from (2.66) we obtain (2.14), and therefore by Lemma 2.1 the structure F is Kählerian.

3. Expressions for \square 's

In this section we shall give expressions for $\square_{i} \xi$ and $\square_{i} \eta$, where $i=1, \cdots, 4$, and ξ and η are respectively any 0 - and 1 -forms on an almost-Hermitian manifold M^{n} with an almost-Hermitian structure F.
3.1. Laplacian \square_{2}. In [2, pp. 146-147] we obtained

$$
\begin{align*}
& 4 \square_{2} \xi=2 \Delta \xi+\nabla^{h} F_{h}{ }^{j}\left(-F_{j}{ }^{k} \nabla_{k} \xi+\sqrt{-1} \nabla_{j} \xi\right), \tag{3.1}\\
& 4\left(\square_{2} \eta\right)_{i_{1}}=-F_{i}{ }^{j} \nabla^{i} F_{i_{1}}{ }^{h} \nabla_{h} \eta_{j}-F_{j}{ }^{h} \nabla^{i} F_{i}{ }^{j} \nabla_{h} \eta_{i_{1}}+F_{i_{1}}{ }^{i} \nabla_{i} F_{h}{ }^{j} \nabla^{h} \eta_{j} \\
&-2 \nabla^{i} \nabla_{2} \eta_{i_{1}}+\left[\nabla_{j}, \nabla_{i_{1}}\right] \eta^{j}+F_{i_{1}}{ }^{2} F^{i j}\left[\nabla_{h}, \nabla_{i} \eta_{j}\right. \tag{3.2}\\
&+\sqrt{-1}\left\{\nabla^{i} F_{i}{ }^{j} \nabla_{j} \eta_{i_{1}}-\left(\nabla_{j} F_{i_{1}}{ }^{2}+\nabla_{i_{1}} F_{j}{ }^{k}\right) \nabla_{k} \eta^{j}\right. \\
&\left.\quad+2 F_{j}{ }^{k} \nabla^{j} \nabla_{k} \eta_{i_{1}}-F_{i_{1}}{ }^{k}\left[\nabla_{j}, \nabla_{k}\right] \eta^{j}-F^{k j}\left[\nabla_{k}, \nabla_{i_{1}}\right] \eta_{j}\right\},
\end{align*}
$$

where

$$
\begin{equation*}
\left[\nabla_{h}, \nabla_{i}\right]=\nabla_{h} \nabla_{i}-\nabla_{i} \nabla_{h} . \tag{3.3}
\end{equation*}
$$

3.2. Laplacian \square_{1}. At first we notice that as a result of (2.65) we have

$$
\begin{equation*}
F_{i}{ }^{j} \nabla^{i} \nabla_{j} \xi=0 \tag{3.4}
\end{equation*}
$$

By using (2.57), (2.53), (2.45), \cdots, (2.48), (2.33), ((2.40), (2.41), (2.43),(2.1), (2.30), (2.32), (2.34), (2.35), (3.4), (1.17), (1.18) we can obtain

$$
\begin{equation*}
2 \square_{1} \xi=2 \delta \prod_{1,0} d \xi=\Delta \xi+\sqrt{-1} \nabla^{i} F_{i}{ }^{j} \nabla_{j} \xi \tag{3.5}
\end{equation*}
$$

In order to compute $\square_{1} \eta$, from (2.48), (2.52), (2.40), (2.41), (2.43), (2.45), (2.46), (2.47) we first see that
(3.6) $\quad \partial_{1}=2 \prod_{2,0} d \prod_{0,1}+\prod_{2,0} d \prod_{1,0}+\prod_{1,1} d \prod_{0,1}-\prod_{0,2} d \prod_{1,0}, \quad$ for 1 -forms ,

$$
\begin{equation*}
\overline{\vartheta_{1}}=2 \prod_{0,1} \delta \prod_{2,0}+\prod_{1,0} \delta \prod_{2,0}+\prod_{0,1} \delta \prod_{1,1}-\prod_{1,0} \delta \prod_{0,2}, \quad \text { for 2-forms } \tag{3.7}
\end{equation*}
$$

Next, by means of (1.6), (1.7), (2.33), (2.34), (2.35), (1.2), (1.3), (2.30), (2.31), we obtain

$$
\prod_{2,0} d \prod_{i, 0} \eta=\left[\prod_{1,0} i_{1}{ }^{k} \prod_{1,0} i_{2}^{l}\left(\nabla_{k} \prod_{1,0} i^{j}-\nabla_{l} \prod_{1,0}{ }_{k}{ }^{j}\right) \eta_{j}\right.
$$

$$
\left.+\prod_{1,0} i_{1}{ }^{j} \prod_{1,0} i_{2}{ }^{k}\left(\nabla_{j} \eta_{k}-\nabla_{k} \eta_{j}\right)\right] d x^{I_{0}(2)}
$$

$$
\begin{equation*}
=\frac{1}{8}\left\{\eta_{j}\left[F_{i_{1}}{ }^{k}\left(\nabla_{i_{2}} F_{k}{ }^{j}-\nabla_{k} F_{i_{2}}{ }^{j}\right)+F_{i_{2}}{ }^{k}\left(\nabla_{k} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{k}{ }^{j}\right)\right]\right. \tag{3.9}
\end{equation*}
$$

$$
+2 \nabla_{i_{1}} \eta_{i_{2}}-2 \nabla_{i_{2}} \eta_{i_{1}}+2 F_{i_{1}}{ }^{j} F_{i_{2}}^{k}\left(\nabla_{k} \eta_{j}-\nabla_{j} \eta_{k}\right)
$$

$$
+\sqrt{-1}\left[\eta_{j}\left(\nabla_{i_{2}} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{i_{2}}{ }^{j}+F_{i_{1}}{ }^{k} F_{i_{2}}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j}-\nabla_{l} F_{k}{ }^{j}\right)\right)\right.
$$

$$
\left.\left.+2 F_{i_{1}}{ }^{j}\left(\nabla_{i_{2}} \eta_{j}-\nabla_{j} \eta_{i_{2}}\right)+2 F_{i_{2}}{ }^{j}\left(\nabla_{j} \eta_{i_{1}}-\nabla_{i_{1}} \eta_{j}\right)\right]\right\} d x^{I_{0}(2)},
$$

$$
\prod_{2,0} d \prod_{0,1} \eta=\prod_{1,0} i_{1}{ }^{k} \prod_{1,0} i_{2}^{l}\left(\nabla_{k} \prod_{0,1} i^{j}-\nabla_{l} \prod_{0,1} k^{j}\right) \eta_{j} d x^{I_{0}(2)}
$$

$$
\begin{equation*}
=\frac{1}{8}\left\{\eta_{j}\left[F_{i_{1}}{ }^{k}\left(\nabla_{k} F_{i_{2}}{ }^{j}-\nabla_{i_{2}} F_{k}{ }^{j}\right)+F_{i_{2}}{ }^{k}\left(\nabla_{i_{1}} F_{k}{ }^{j}-\nabla_{k} F_{i_{1}}{ }^{j}\right)\right]\right. \tag{3.10}
\end{equation*}
$$

$$
+\sqrt{-1} \eta_{j}\left[\nabla_{i_{1}} F_{i_{2}}{ }^{j}-\nabla_{i_{2}} F_{i_{1}}{ }^{j}\right.
$$

$$
\left.\left.+F_{i_{1}}{ }^{k} F_{i_{2}}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)\right]\right\} d x^{I_{0}(2)},
$$

$$
-\prod_{0,2} d \prod_{1,0} \eta=\prod_{0,1} i_{2}{ }^{k} \prod_{0,1} i_{1}{ }^{l}\left(\nabla_{k} \prod_{1,0} i^{j}-\nabla_{l} \prod_{1,0} k^{j}\right) \eta_{j} d x^{I_{0}(2)}
$$

$$
+\sqrt{-1} \eta_{j}\left[\nabla_{i_{1}} F_{i_{2}}{ }^{j}-\nabla_{i_{2}} F_{i_{1}}{ }^{j}\right.
$$

$$
\left.\left.+F_{i_{1}}{ }^{k} F_{i_{2}}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)\right]\right\} d x^{I_{0}(2)},
$$

$$
4\left(\prod_{1,0} d \delta \prod_{1,0} \eta\right)_{i_{1}}=\eta_{j} F_{i_{1}}^{l} \nabla_{l} \nabla^{k} F_{k}^{j}+F_{i_{1}}^{l} \nabla^{k} F_{k}^{j} \nabla_{l} \eta_{j}
$$

$$
\begin{align*}
\prod_{1,1} d \prod_{0,1} \eta= & {\left[\prod_{1,0} i_{1}{ }^{k} \prod_{1,0} i_{2}{ }^{l}\left(\nabla_{k} \prod_{0,1}{ }^{j}{ }^{j}-\nabla_{l} \prod_{0,1}{ }_{k}{ }^{j}\right) \eta_{j}+\prod_{1,0} i_{1}{ }^{k} \prod_{0,1} i_{2}{ }^{j} \nabla_{k} \eta_{j}\right.} \\
& \quad-\prod_{1,0} i_{2}{ }^{k} \prod_{0,1} i_{1}{ }^{j} V_{k} \eta_{j}+\prod_{1,0} i_{2}{ }^{k} \prod_{0,1} i_{1}{ }^{l}\left(\nabla_{i} \prod_{0,1}{ }^{j}{ }^{j}-\nabla_{k} \prod_{0,1}{ }^{j}{ }^{j} \eta_{j}\right] d x^{I_{0}(2)} \\
= & \left.\left.\frac{1}{4}\left\{\nabla_{i_{1}{ }_{1} \eta_{i_{2}}-\nabla_{i_{2}} \eta_{i_{1}}+F_{i_{1}}{ }^{k} F_{i_{2}}{ }^{j}\left(\nabla_{k} \eta_{j}-\nabla_{j} \eta_{k}\right)} \quad \begin{array}{l}
\quad+\sqrt{-1}\left[\eta_{j}\left(\nabla_{i_{1}} F_{i_{2}}{ }^{j}-\nabla_{i_{2}} F_{i_{1}}{ }^{j}+F_{i_{1}}{ }^{k} F_{i_{2}}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j}-\nabla_{l} F_{k}{ }^{j}\right)\right)\right. \\
\\
\\
\quad+F_{i_{2}}{ }^{j}\left(\nabla_{i_{1} \eta_{j}}+\nabla_{i} \eta_{i_{1}}\right)-F_{i_{1}}{ }^{j}\left(\nabla_{i_{2}} \eta_{j}\right.
\end{array}+\nabla_{j} \eta_{i_{2}}\right)\right]\right\} d x^{I_{0}(2)}, \tag{3.8}
\end{align*}
$$

$$
\begin{equation*}
=\frac{1}{8}\left\{\eta_{j}\left[F_{i_{1}}{ }^{k}\left(\nabla_{i_{2}} F_{k}{ }^{j}-\nabla_{k} F_{i_{2}}{ }^{j}\right)+F_{i_{2}}{ }^{k}\left(\nabla_{k} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{k}{ }^{j}\right)\right]\right. \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
+F_{i_{1}}{ }^{l} \nabla_{l} F_{k}{ }^{j} \nabla^{k} \eta_{j}-\nabla_{i_{1}} \nabla^{k} \eta_{k}+F_{i_{1}}{ }^{l} F_{k}^{j} \nabla_{l} \nabla^{k} \eta_{j} \tag{3.12}
\end{equation*}
$$

$$
+\sqrt{-1}\left(\eta_{j} \nabla_{i_{1}} \nabla^{k} F_{k}^{j}+\nabla^{k} F_{k}^{j} \nabla_{i_{1}} \eta_{j}+\nabla_{i_{1}} F_{k}^{j} \nabla^{k} \eta_{j}\right.
$$

$$
\left.+F_{k}^{j} \nabla_{i_{1}} \nabla^{k} \eta_{j}+F_{i_{1}}{ }^{l} \nabla_{l} \nabla^{k} \eta_{k}\right) .
$$

Substitution of (3.8), \cdots, (3.11) in (3.6) thus gives

$$
\begin{align*}
\partial_{1} \eta=\frac{1}{2}\left\{\nabla_{i_{1}} \eta_{i_{2}}-\nabla_{i_{2}} \eta_{i_{1}}+\sqrt{-1}\right. & {\left[\eta_{j}\left(\nabla_{i_{1}} F_{i_{2}}{ }^{j}-\nabla_{i_{2}} F_{i_{1}}{ }^{j}\right)\right.} \tag{3.13}\\
& +F_{i_{2}{ }^{j} V_{j} \eta_{i_{1}}-}-F_{\left.\left.i_{1}{ }^{j}{ }_{j}{ }_{j} \eta_{i_{2}}\right]\right\} d x^{I_{0}(2)}} .
\end{align*}
$$

Now put

$$
\begin{align*}
& A_{i_{1} i_{2}}=\nabla_{i_{1}} \eta_{i_{2}}+\sqrt{-1}\left(\eta_{j} \nabla_{i_{1}} F_{i_{2}}{ }^{j}+F_{i_{2}}{ }^{j} \nabla_{j} \eta_{i_{1}}\right), \\
& B_{s i_{1}}^{k_{1} k_{2}}=\varepsilon_{s}^{k_{1} \varepsilon_{i_{1}} k_{2}}-\varepsilon_{i_{1}}^{k_{1} k_{s}{ }^{k_{2}}}+F_{i_{1}}{ }^{k_{1}} F_{s}{ }^{k_{2}}-F_{s}{ }^{k_{1}} F_{i_{1}}{ }^{{ }^{k}}{ }^{2}, \tag{3.14}\\
& C_{s i_{1}}^{k_{1} k_{2}}=\varepsilon_{i_{1}}^{k_{1}} F_{s}^{k_{2}}-\varepsilon_{s}^{k_{1}} F_{i_{1}}{ }^{k_{2}}-\varepsilon_{i_{1}}^{k_{2}} F_{s}^{k_{1}}+\varepsilon_{s}{ }^{k_{2}} F_{i_{1}}{ }^{k_{1}} .
\end{align*}
$$

Then

$$
\begin{equation*}
\partial_{1} \eta=\frac{1}{2}\left(A_{i_{1} i_{2}}-A_{i_{2} i_{1}}\right) d x^{I_{0}(2)} . \tag{3.15}
\end{equation*}
$$

By means of (3.13), (2.33), (2.34), (2.35), (2.30), (2.31), (1.16), (1.17), elementary but rather lengthy calculations give

$$
\begin{aligned}
& -8\left(\prod_{0,1} \delta \prod_{i, 1} \partial_{1} \eta\right)_{i_{1}} \\
& \left.=2 \prod_{0,1} \nabla^{s}\left[\varepsilon_{s}^{k_{1} \varepsilon_{i 1} k_{2}}-\varepsilon_{i_{1}}^{k_{1} \varepsilon_{s}}{ }^{k_{2}}+F_{s}{ }^{k_{1}} F_{i_{1}}{ }^{k_{2}}-F_{i_{1}}{ }^{k_{1}} F_{s}{ }^{k_{2}}\right) A_{k_{1} k_{2}}\right] \\
& =\eta_{j}\left[\nabla^{s} F_{s}{ }^{k}\left(\nabla_{k} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{k}{ }^{j}\right)+F_{i_{1}}{ }^{r} F_{s}{ }^{k} \nabla^{s} F_{r}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)\right. \\
& \left.+F_{i_{1}}{ }^{r}\left(\nabla^{s} \nabla_{r} F_{s}{ }^{j}-\nabla^{s} \nabla_{s} F_{r}{ }^{j}\right)+F_{s}{ }^{k}\left(\nabla^{s} \nabla_{k} F_{i_{1}}{ }^{j}-\nabla^{s} \nabla_{i_{1}} F_{k}{ }^{j}\right)\right] \\
& +\left(2 F_{i_{1}}{ }^{l} \nabla^{s} F_{s}{ }^{k}-F_{s}{ }^{l} \nabla^{s} F_{i_{1}}{ }^{k}\right) \nabla_{k} \eta_{l}+F_{i_{1}}{ }^{r} \nabla^{s} \eta_{j}\left(\nabla_{r} F_{s}{ }^{j}-2 \nabla_{s} F_{r}{ }^{j}\right) \\
& -F_{s}{ }^{k} \nabla_{i_{1}} F_{k}{ }^{j} \nabla^{s} \eta_{j}-F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{j} \nabla_{j} \eta_{s}+2 \nabla^{s} \nabla_{s} \eta_{i_{1}} \\
& +2 F_{i_{1}}{ }^{k} F_{s}{ }^{l} \nabla^{s} \nabla_{l} \eta_{k}+\sqrt{-1}\left\{\eta _ { j } \left[F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j}-\nabla_{l} F_{k}{ }^{j}\right)\right.\right. \\
& +F_{i_{1}}{ }^{k} \nabla^{s} F_{s}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)+\nabla^{s} \nabla_{s} F_{i_{1}}{ }^{j}-\nabla^{s} \nabla_{i_{1}} F_{s}{ }^{j} \\
& \left.+F_{i_{1}}{ }^{k} F_{s}{ }^{l}\left(\nabla^{s} \nabla_{l} F_{k}{ }^{j}-\nabla^{s} \nabla_{k} F_{l}{ }^{j}\right)\right]+\left(2 \nabla_{s} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{s}{ }^{j}\right) \nabla^{s} \eta_{j} \\
& -2 \nabla^{s} F_{s}{ }^{j} \nabla_{j} \eta_{i_{1}}+\nabla^{s} F_{i_{1}}{ }^{j}{ }_{j} \eta_{s}-F_{i_{1}}{ }^{k} F_{s}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j} \nabla^{s} \eta_{j}+\nabla^{s} F_{k}{ }^{j} \nabla_{j} \eta_{l}\right) \\
& \left.+2 F_{i_{1}}{ }^{j} \nabla^{s} \nabla_{s} \eta_{j}-2 F_{s}{ }^{j} \nabla^{s} \nabla_{j} \eta_{i_{1}}\right\}, \\
& -8\left(\prod_{1,0} \delta \prod_{2,0} \partial_{1} \eta\right)_{i_{1}} \\
& =\prod_{1,0} \nabla^{s}\left[\left(B_{s i_{1}}^{k_{1} k_{2}}+\sqrt{-1} C_{s i_{1}}^{k_{1} k_{2}}\right) A_{k_{1} k_{2}}\right] \\
& =\eta_{j}\left[\frac{1}{2} \nabla^{s} F_{i_{1}}{ }^{k}\left(\nabla_{s} F_{k}{ }^{j}-\nabla_{k} F_{s}{ }^{j}\right)+\frac{1}{2} F_{i_{1}}{ }^{r} F_{s}{ }^{k} \nabla^{s} F_{r}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)\right. \\
& +\nabla^{s} F_{s}{ }^{k}\left(\nabla_{k} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{k}{ }^{j}\right)+F_{i_{1}}{ }^{k}\left(\nabla^{s} \nabla_{s} F_{k}{ }^{j}-\nabla^{s} \nabla_{k} F_{s}{ }^{j}\right) \\
& \left.+F_{s}{ }^{k}\left(\nabla^{s} \nabla_{k} F_{i_{1}}{ }^{j}-\nabla^{s} \nabla_{i_{1}} F_{k}{ }^{j}\right)\right]+2 F_{i_{1}}{ }^{k} \nabla^{s} F_{s}{ }^{l}\left(\nabla_{k} \eta_{l}-\nabla_{l} \eta_{k}\right)
\end{aligned}
$$

$$
\begin{align*}
& +F_{i_{1}}{ }^{r} \nabla_{j} \eta^{s}\left(\nabla_{r} F_{s}{ }^{j}+\nabla_{s} F_{r}{ }^{j}\right)+F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{l} \eta_{k}-2 \nabla_{k} \eta_{l}\right) \\
& -F_{s}{ }^{k} \nabla_{i_{1}} F_{k}{ }^{j} \nabla^{s} \eta_{j}+2 \nabla^{s} \nabla_{s} \eta_{i_{1}}-2 \nabla^{s} \nabla_{i_{1}} \eta_{s} \\
& +2 F_{i_{1}}{ }^{k} F_{s}{ }^{l}\left(\nabla^{s} \nabla_{k} \eta_{l}-\nabla^{s} \nabla_{l} \eta_{k}\right) \tag{3.17}\\
& +\sqrt{-1}\left\{\eta _ { j } \left[\frac{1}{2} F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{k}\left(\nabla_{k} F_{s}{ }^{j}-\nabla_{s} F_{k}{ }^{j}\right)+F_{i_{1}}{ }^{k} \nabla^{s} F_{s}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j}\right.\right.\right. \\
& \left.-\nabla_{l} F_{k}{ }^{j}\right)+\frac{1}{2} F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)+\nabla^{s} \nabla_{s} F_{i_{1}}{ }^{j} \\
& \left.-\nabla^{s} \nabla_{i_{1}} F_{s}{ }^{j}+F_{i_{1}}{ }^{k} F_{s}{ }^{l}\left(\nabla^{s} \nabla_{k} F_{l}{ }^{j}-\nabla^{s} \nabla_{l} F_{k}{ }^{j}\right)\right]+\nabla^{s} F_{i_{1}}{ }^{j} \nabla_{j} \eta_{s} \\
& -\nabla_{i_{1}} F_{s}{ }^{j} \nabla^{s} \eta_{j}+F_{i_{1}}{ }^{k} F_{s}{ }^{l} \nabla_{k} F_{l}{ }^{j} \nabla^{s} \eta_{j}-F_{i_{1}}{ }^{r} F_{s}{ }^{l} \nabla^{s} F_{r}{ }^{k} \nabla_{k} \eta_{l} \\
& +2 \nabla^{s} F_{s}{ }^{j}\left(\nabla_{i_{1}} \eta_{j}-\nabla_{j} \eta_{i_{1}}\right)-2 F_{s}{ }^{k} F_{i_{1}}{ }^{l} \nabla_{k} F_{l}{ }^{j} \nabla^{s} \eta_{j} \\
& \left.+2 F_{s}{ }^{k}\left(\nabla^{s} \nabla_{i_{1}} \eta_{k}-\nabla^{s} \nabla_{k} \eta_{i_{1}}\right)+2 F_{i_{1}}{ }^{j}\left(\nabla^{s} \nabla_{j} \eta_{s}-\nabla^{s} \nabla_{s} \eta_{j}\right)\right\}, \\
& -8\left(\prod_{0,1} \delta \prod_{2,0} \partial_{1} \eta\right)_{i_{1}} \\
& =\eta_{j}\left[\frac{1}{2} \nabla^{s} F_{i_{1}}{ }^{k}\left(\nabla_{s} F_{k}{ }^{j}-\nabla_{k} F_{s}{ }^{j}\right)+\frac{1}{2} F_{i_{1}}{ }^{r} F_{s}{ }^{k} \nabla^{s} F_{r}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j}-\nabla_{l} F_{k}{ }^{j}\right)\right] \\
& +F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{l} \eta_{k}-\nabla_{k} \eta_{l}\right)+F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{k}\left(\nabla_{s} \eta_{k}-\nabla_{k} \eta_{s}\right) \tag{3.18}\\
& +\sqrt{-1}\left\{\eta _ { j } \left[\frac{1}{2} F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)\right.\right. \\
& \left.+\frac{1}{2} F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{k}\left(\nabla_{s} F_{k}{ }^{j}-\nabla_{k} F_{s}{ }^{j}\right)\right] \\
& \left.+F_{i_{1}}{ }^{r} F_{s}{ }^{k} \nabla^{s} F_{r}{ }^{l}\left(\nabla_{l} \eta_{k}-\nabla_{k} \eta_{l}\right)+\nabla^{s} F_{i_{1}}{ }^{j}\left(\nabla_{j} \eta_{s}-\nabla_{s} \eta_{j}\right)\right\}, \\
& -16\left(\prod_{1,0} \delta \prod_{0,2} \partial_{1} \eta\right)_{i_{1}}=2 \prod_{1,0} \nabla^{s}\left[\left(B_{s i i_{1}}^{k_{1} k_{2}}-\sqrt{-1} C_{s i i_{1}}^{k_{1} k_{2}}\right) A_{k_{1} k_{2}}\right] \\
& =\eta_{j}\left[\nabla^{s} F_{i_{1}}{ }^{k}\left(\nabla_{k} F_{s}{ }^{j}-\nabla_{s} F_{k}{ }^{j}\right)+F_{i_{1}}{ }^{r} F_{s}{ }^{k} \nabla^{s} F_{r}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)\right] \\
& +\sqrt{-1} \eta_{j}\left[F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)\right. \tag{3.19}\\
& \left.+F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{k}\left(\nabla_{s} F_{k}{ }^{j}-\nabla_{k} F_{s}{ }^{j}\right)\right] .
\end{align*}
$$

Substituting (3.6), (3.7), (3.12), (3.16), \cdots, (3.19) in (2.57) and using (2.32) and

$$
\begin{equation*}
2 F_{j}{ }^{k} \nabla^{j} \nabla_{k} \eta_{i_{1}}=F^{j k}\left[\nabla_{j}, \nabla_{k}\right] \eta_{i_{1}}, \tag{3.20}
\end{equation*}
$$

we can obtain, after some elementary simplification,

$$
\begin{aligned}
4\left(\square{ }_{1} \eta\right)_{i_{1}}= & 4\left[\left(2 \prod_{0,1} \delta \prod_{2,0}+\prod_{1,0} \delta \prod_{2,0}+\prod_{0,1} \delta \prod_{1,1}-\prod_{1,0} \delta \prod_{0,2}\right) \partial_{1} \eta+\prod_{1,0} d \delta \prod_{1,0} \eta\right]_{i,} \\
= & \eta_{j}\left[\nabla^{s} F_{s}{ }^{k}\left(\nabla_{i_{1}} F_{k}{ }^{j}-\nabla_{k} F_{i_{1}}{ }^{j}\right)+\nabla^{s} F_{i_{1}}{ }^{k}\left(\nabla_{k} F_{s}{ }^{j}-\nabla_{s} F_{k}{ }^{j}\right)\right. \\
& \left.\quad+F_{s}{ }^{k}\left(\nabla^{s} \nabla_{i_{1}} F_{k}{ }^{j}-\nabla^{s} \nabla_{k} F_{i_{1}}{ }^{j}\right)+F_{i_{1}}{ }^{l} \nabla_{l} \nabla^{k} F_{k}{ }^{j}\right] \\
& +F_{s}{ }^{k} \nabla^{s} \eta_{j}\left(\nabla_{i_{1}} F_{k}{ }^{j}-2 \nabla_{k} F_{i_{1}{ }^{j}}\right)+F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{k} \eta_{l}-\nabla_{l} \eta_{k}\right) \\
& +F_{i_{1}{ }^{l} \nabla_{l} F_{k}{ }^{j} \nabla^{k} \eta_{j}+F_{i_{1}}{ }^{j} \nabla^{j} F_{l}{ }^{k} \nabla_{k} \eta_{j}-2 \nabla^{s} \nabla_{s} \eta_{i_{1}}} \\
& +\left[\nabla_{k}, \nabla_{i_{1}}\right] \eta^{k}+F_{i_{1}} F^{k j}\left[\nabla_{l}, \nabla_{k}\right] \eta_{j} \\
& +\sqrt{-1}\left\{\eta_{j}\left(\nabla^{s} \nabla_{i_{1}} F_{s}{ }^{j}-\nabla^{s} V_{s} F_{i_{1}}{ }^{j}+\nabla_{i_{1}} \nabla^{s} F_{s}{ }^{j}\right)+2 \nabla^{s} F_{s}{ }^{j} \nabla_{j} \eta_{i_{1}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -2\left(\nabla_{s} F_{i_{1}}{ }^{j}+\nabla_{i_{1}} F_{s}{ }^{j}\right) \nabla_{j} \eta^{s}+F^{s j}\left[\nabla_{s}, \nabla_{j}\right] \eta_{i_{1}} \\
& \left.-F^{s j}\left[\nabla_{s}, \nabla_{i_{1}}\right] \eta_{j}-F_{i_{1}}{ }^{j}\left[\nabla_{s}, \nabla_{j}\right] \eta^{s}\right\} .
\end{aligned}
$$

3.3. Laplacian \square_{3}. In the same way as above we can compute $\square_{i} \xi$ and $\square_{i} \eta, i=3,4,5$, but we shall omit the details in this section and $\S \S 3.4,3.5$. We find that

$$
\begin{align*}
& \square_{3} \xi=\square_{1} \xi, \tag{3.22}\\
& 2 \bar{\vartheta}_{1} \eta=-\nabla^{k} \eta_{k}+\sqrt{-1}\left(F_{k}{ }^{j} \nabla^{k} \eta_{j}+\eta_{j} \nabla^{k} F_{k}{ }^{j}\right), \tag{3.23}\\
& 4\left(\partial_{2} \bar{\vartheta}_{1} \eta\right)_{i_{1}}=\eta_{j} F_{i_{1}}{ }^{l} \nabla_{l} \nabla^{k} F_{k}{ }^{j}+F_{i_{1}}{ }^{l} \nabla_{k}^{j} \nabla^{k} \eta_{j}+F_{i_{1}}{ }^{l} \nabla^{k} F_{k}{ }^{j} \nabla_{l} \eta_{j} \\
& -\nabla_{i} \nabla^{k} \eta_{k}+F_{i_{1}}{ }^{l} F_{k}{ }^{j} \nabla_{l} \nabla^{k} \eta_{j}+\sqrt{-1}\left[\eta_{j} \nabla_{i_{1}} \nabla^{k} F_{k}{ }^{j}\right. \tag{3.24}\\
& \left.+\nabla_{i_{1}} F_{k}{ }^{j} \nabla^{k} \eta_{j}+\nabla^{k} F_{k}{ }^{j} \nabla_{i_{1} \eta_{j}}+F_{k}{ }^{j} \nabla_{i_{1}} \nabla^{k} \eta_{j}+F_{i_{1}}{ }^{l} \nabla_{l} \nabla^{k} \eta_{k}\right], \\
& 2\left(\bar{\vartheta}_{1} \partial_{2} \eta\right)_{i_{1}}=2\left[\left(2 \prod_{0,1} \delta \prod_{2,0}+\prod_{1,0} \delta \prod_{2,0}+\prod_{0,1} \delta \prod_{1,1}-\prod_{1,0} \delta \prod_{0,2}\right) \partial_{2} \eta\right]_{i_{1}} \\
& =F_{s}{ }^{j} \nabla^{s} F_{i_{1}}{ }^{k}\left(\nabla_{j} \eta_{k}-\nabla_{k} \eta_{j}\right)+F_{i_{1}}{ }^{r}\left(\nabla^{s} F_{r}{ }^{j} \nabla_{j} \eta_{s}-\nabla^{s} F_{s}{ }^{j} \nabla_{r} \eta_{j}\right) \\
& -2 \nabla^{s} \nabla_{s} \eta_{i_{1}}+\nabla^{s} \nabla_{i_{1}} \eta_{s}-F_{i_{1}}{ }^{k} F_{s} V^{s} \nabla_{k} \eta_{l} \tag{3.25}\\
& +\sqrt{-1}\left[\nabla^{s} F_{i_{1}}{ }^{j}\left(\nabla_{s} \eta_{j}-2 \nabla_{j} \eta_{s}\right)+\nabla^{s} F_{s}{ }^{j}\left(2 \nabla_{j} \eta_{i_{1}}-\nabla_{i_{1} \eta_{j}}\right)\right. \\
& \left.-F_{i_{1}}{ }^{j} \nabla^{s} \nabla_{j} \eta_{s}+F_{s}{ }^{j}\left(2 \nabla^{s} \nabla_{j} \eta_{i_{1}}-\nabla^{s} \nabla_{i_{1}} \eta_{j}\right)\right], \\
& 4\left(\square_{3} \eta\right)_{i_{1}}=\eta_{j} F_{i_{1}}{ }^{l} \nabla_{l} \nabla^{k} F_{k}{ }^{j}+2 F_{s}{ }^{j} \nabla^{s} F_{i_{1}}{ }^{k}\left(\nabla_{j} \eta_{k}-\nabla_{k} \eta_{j}\right) \\
& +F_{i_{1}}{ }^{r}\left(\nabla_{r} F_{k}{ }^{j} \nabla^{k} \eta_{j}-\nabla^{k} F_{k}{ }^{j} \nabla_{r} \eta_{j}\right)+2 F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{j} \nabla_{j} \eta_{s} \\
& -4 \nabla^{s} \nabla_{s} \eta_{i_{1}}+2 \nabla^{s} \nabla_{i_{1}} \eta_{s}-\nabla_{i_{1}} \nabla^{k} \eta_{k} \\
& +F_{i_{1}}{ }^{l} F_{k}{ }^{j}\left(\nabla_{l} \nabla^{k} \eta_{j}-2 \nabla^{k} \nabla_{l} \eta_{j}\right) \tag{3.26}\\
& +\sqrt{-1}\left[\eta_{j} \nabla_{i_{1}} \nabla^{k} F_{k}{ }^{j}+\nabla^{s} F_{s}{ }^{j}\left(4 \nabla_{j} \eta_{i_{1}}-\nabla_{i_{1} \eta_{j}}\right)\right. \\
& +2 \nabla^{s} F_{i_{1}}{ }^{j}\left(\nabla_{s} \eta_{j}-2 \nabla_{j} \eta_{s}\right) \\
& +\nabla_{i_{1}} F_{k}{ }^{j} \nabla^{k} \eta_{j}+2 F_{s}{ }^{j}\left(2 \nabla^{s} \nabla_{j} \eta_{i_{1}}-\nabla^{s} \nabla_{i_{1}} \eta_{i}\right) \\
& \left.+F_{i_{1}}{ }^{j}\left(\nabla_{j} \nabla^{k} \eta_{k}-2 \nabla^{k} \nabla_{j} \eta_{k}\right)+F_{k}{ }^{j} \nabla_{i_{1}} \nabla^{k} \eta_{j}\right] .
\end{align*}
$$

3.4. Laplacian \square_{4}. For $\square_{4} \xi, \square_{4} \eta$ we obtain the following equations:

$$
\begin{gather*}
2\left(\partial_{1} \xi\right)_{i_{1}}=\nabla_{i_{1}} \xi-\sqrt{-1} F_{i_{1}}^{j} \nabla_{j} \xi, \tag{3.27}\\
\square_{4} \xi=\square \square_{2} \xi, \tag{3.28}\\
2 \bar{\vartheta}_{2} \eta=-\nabla^{k} \eta_{k}+\sqrt{-1} F_{k}^{j} \nabla^{k} \eta_{j}, \tag{3.29}\\
4\left(\partial_{1} \bar{\vartheta}_{2} \eta\right)_{i_{1}}=F_{i_{1}}{ }^{l} \nabla_{l} F_{k}^{j} \nabla^{k} \eta_{j}-\nabla_{i_{1}} \nabla^{k} \eta_{k}+F_{i_{1}}{ }^{l} F_{k}{ }^{j} \nabla_{l} \nabla^{k} \eta_{j} \tag{3.30}\\
+\sqrt{-1}\left(\nabla_{i_{1}} F_{k}^{j} \nabla^{k} \eta_{j}+F_{k}{ }^{j} \nabla_{i_{1}} \nabla^{k} \eta_{j}+F_{i_{1}}{ }^{j} \nabla_{j} \nabla^{k} \eta_{k}\right),
\end{gather*}
$$

$$
\begin{align*}
-4\left(\bar{\vartheta}_{2} \partial_{1} \eta\right)_{i_{1}}= & \eta_{j} F_{k}{ }^{l}\left(\nabla^{k} \nabla_{l} F_{i_{1}}{ }^{j}-\nabla^{k} \nabla_{i_{1}} F_{l}{ }^{j}\right)+\left(\nabla_{l} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{l}{ }^{j}\right) F_{k}{ }^{l} \nabla^{k} \eta_{j} \\
& +F_{l}{ }^{j}\left(\nabla^{l} F_{i_{1}}{ }^{k} \nabla_{k} \eta_{j}-\nabla^{l} F_{j}{ }^{k} \nabla_{k} \eta_{i_{1}}\right)+2 \nabla^{j} \nabla_{j} \eta_{i_{1}}-\nabla^{j} \nabla_{i_{1} \eta_{j}} \\
& +F_{l}{ }^{j} F_{i_{1}}{ }^{k} \nabla^{l} \nabla_{k} \eta_{j}+\sqrt{-1}\left[\left(V^{j} \nabla_{j} F_{i_{1}}{ }^{k}-\nabla^{j} \nabla_{i_{1}} F_{j}{ }^{k}\right) \eta_{k}\right. \tag{3.31}\\
& +\left(\nabla_{k} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{k}{ }^{j}\right) \nabla^{k} \eta_{j}+\nabla^{j} F_{i_{1}}{ }^{k} \nabla_{k} \eta_{j}-\nabla^{j} F_{j}{ }^{k} \nabla_{k} \eta_{i_{1}} \\
-4\left(\square_{4} \eta\right)_{i_{1}}= & \eta_{j} F_{k}{ }^{l}\left(\nabla^{k} \nabla_{l} F_{i_{1}}{ }^{j}-\nabla^{k} \nabla_{i_{1}} F_{l}{ }^{j}\right)+\left(\nabla_{l} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{l}^{j}\right) F_{k}{ }^{l} \nabla^{k} \eta_{j} \\
& +F_{l}{ }^{j}\left(\nabla^{l} F_{i_{1}}{ }^{k} \nabla_{k} \eta_{j}-\nabla^{l} F_{j}{ }^{k} \nabla_{k} \eta_{i_{1}}\right)-F_{i_{1}}{ }^{l} \nabla_{l} F_{k}{ }^{j} \nabla^{k} \eta_{j} \\
+ & {\left[\nabla_{i_{1}}, \nabla_{j}\right] \eta^{j}+2 \nabla^{j} \nabla_{j} \eta_{i_{1}}+F_{l}{ }^{j} F_{i_{1}}{ }^{k} \nabla^{l} \nabla_{k} \eta_{j} } \\
& -F_{i_{1}}{ }^{l} F_{k}{ }^{j} \nabla_{l} \nabla^{k} \eta_{j} \\
+ & \sqrt{-1}\left\{\left(\nabla^{j} \nabla_{j} F_{i_{1}}{ }^{k}-\nabla^{j} \nabla_{i_{1}} F_{j}{ }^{k}\right) \eta_{k}\right. \tag{3.32}\\
& +\left(\nabla_{k} F_{i_{1}}{ }^{j}-2 \nabla_{i_{1}} F_{k}{ }^{j}\right) \nabla^{k} \eta_{j} \\
& +\nabla^{j} F_{i_{1}}{ }^{k} \nabla_{k} \eta_{j}-\nabla^{j} F_{j}{ }^{k} \nabla_{k} \eta_{i_{1}}+F^{k j}\left[\nabla_{k}, \nabla_{i_{1}}\right]_{\eta_{j}} \\
& \left.+F^{k j}\left[\nabla_{j}, \nabla_{k}\right] \eta_{i_{1}}+F_{i_{1}}{ }^{j}\left[\nabla_{k}, \nabla_{j}\right] \eta^{k}\right\} .
\end{align*}
$$

3.5. Laplacian \square_{5}. Finally, for the remaining Laplacian \square_{5} we first have

$$
\begin{gather*}
\square_{5} \xi=\square_{1} \xi \tag{3.33}\\
\bar{\delta}_{1} \eta=-\eta_{j} \nabla^{i} \prod_{1,0} i^{j}-\prod_{1,0} i^{j} \nabla^{i} \eta_{j} \tag{3.34}
\end{gather*}
$$

Adding (3.8) to (3.9) gives

$$
\begin{gather*}
8\left(d_{1} \eta\right)_{i_{1} i_{2}}=4 \nabla_{i_{1} \eta_{i_{2}}}-4 \nabla_{i_{2}} \eta_{i_{1}}+\eta_{j}\left[F_{i_{1}}{ }^{k}\left(\nabla_{i_{2}} F_{k}{ }^{j}-\nabla_{k} F_{i_{2}}{ }^{j}\right)\right. \\
\left.+F^{k}\left(\nabla_{k} F_{i_{1}}{ }^{j}-\nabla_{i_{1}} F_{k}{ }^{j}\right)\right] \\
+\sqrt{-1}\left\{\eta _ { j } \left[3 F_{i_{1}}{ }^{k} F_{i_{2}}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j}-\nabla_{l} F_{k}{ }^{j}\right)\right.\right. \tag{3.35}\\
\\
+\nabla_{\left.i_{1} F_{i_{2}}{ }^{j}-\nabla_{i_{2}} F_{i_{1}}{ }^{j}\right]+4 F_{i_{2}}{ }^{k} \nabla_{k} \eta_{i_{1}}} \\
\left.-4 F_{i_{1}}{ }^{k} \nabla_{k} \eta_{i_{2}}\right\} .
\end{gather*}
$$

Now put

$$
\begin{align*}
8 G_{i_{1} i_{2}}= & 4 \nabla_{i_{1} \eta_{i_{2}}}+\eta_{j}\left(F_{i_{1}}{ }^{k} \nabla_{i_{2}} F_{k}{ }^{j}+F_{i_{2}}{ }^{k} \nabla_{k} F_{i_{1}}{ }^{j}\right) \tag{3.36}\\
& +\sqrt{-1}\left(3 \eta_{j} F_{i_{1}}{ }^{k} F_{i_{2}}{ }^{l} \nabla_{k} F_{l}{ }^{j}+\eta_{j} \nabla_{i_{1}} F_{i_{2}}{ }^{j}+4 F_{i_{2}}{ }^{j} V_{j} \eta_{i_{1}}\right) .
\end{align*}
$$

Then

$$
\begin{equation*}
8 d_{1} \eta=\left(G_{i_{1} i_{2}}-G_{i_{2} i_{1}}\right) d x^{I_{0}(2)} . \tag{3.37}
\end{equation*}
$$

As in the derivation of (3.16), (3.17) we can obtain

$$
\begin{equation*}
-2\left(\prod_{0,1} \delta \prod_{1,1} d_{1} \eta\right)_{i_{1}}=\prod_{0,1} \nabla^{s}\left[\left(\varepsilon_{s}^{k_{1}} \varepsilon_{i_{1}}^{k_{2}}-\varepsilon_{i_{1}}^{k_{1} \varepsilon_{s}}{ }^{k_{2}}+F_{s}{ }^{k_{1}} F_{i_{1}}{ }^{k_{2}}-F_{i_{1}}{ }^{k_{1}} F_{s}{ }^{k_{2}}\right) G_{i_{1} i_{2}}\right], \tag{3.38}
\end{equation*}
$$

$$
\begin{equation*}
-4\left(\prod_{1,0} \delta \prod_{2,0} d_{1} \eta\right)_{i_{1}}=\prod_{1,0} \nabla^{s}\left[\left(B_{s}^{k_{1} k_{i 1}} k_{2}+\sqrt{-1} C_{s}^{k_{1} k_{i} k_{2}}\right) G_{k_{1} k_{2}}\right], \tag{3.39}
\end{equation*}
$$

where $B_{s i_{1}}^{k_{1} k_{2}}$ and $C_{s}^{k_{1} k_{i} k_{2}}$ are defined in (3.14). After some calculations we can thus have

$$
\begin{align*}
& 16\left(\square_{5} \eta\right)_{i_{1}}=16\left[\left(\prod_{1,0} \delta \prod_{2,0}+\prod_{0,1} \delta \prod_{1,1}\right) d_{1} \eta+\prod_{1,0} d \bar{\delta}_{1} \eta\right]_{i_{1}} \\
& =\eta_{j}\left[\nabla^{s} F_{i_{1}}{ }^{k}\left(\nabla_{s} F_{k}{ }^{j}-\nabla_{k} F_{s}{ }^{j}\right)+F_{i_{1}}{ }^{r} F_{s}{ }^{k} \nabla^{s} F_{r}{ }^{l}\left(\nabla_{k} F_{l}{ }^{j}\right.\right. \\
& \left.\left.-\nabla_{l} F_{k}{ }^{j}\right)+4 F_{i_{1}}{ }^{k}\left(\nabla^{s} \nabla_{s} F_{k}{ }^{j}-\nabla^{s} \nabla_{k} F_{s}{ }^{j}+\nabla_{k} \nabla^{l} F_{l}{ }^{j}\right)\right] \\
& +8 F_{i_{1}}{ }^{k} \nabla_{s} F_{k}{ }^{j} \nabla^{s} \eta_{j}-8 \nabla^{s} \nabla_{s} \eta_{i_{1}}+4\left[\nabla_{k}, \nabla_{i_{1}}\right] \eta^{k} \\
& +4 F_{i_{1}}{ }^{l} F^{k j}\left[\nabla_{l}, \nabla_{k}\right] \eta_{j}+\sqrt{-1}\left\{\eta _ { j } \left[4 F _ { i _ { 1 } } { } ^ { k } \nabla ^ { s } F _ { s } { } ^ { l } \left(\nabla_{k} F_{l}{ }^{j}\right.\right.\right. \tag{3.40}\\
& \left.-\nabla_{l} F_{k}{ }^{j}\right)+F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{k}\left(\nabla_{k} F_{s}{ }^{j}-\nabla_{s} F_{k}{ }^{j}\right) \\
& +3 F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{l} F_{k}{ }^{j}-\nabla_{k} F_{l}{ }^{j}\right)+4 \nabla_{i_{1}} \nabla^{k} F_{k}{ }^{j} \\
& \left.+4 F_{i_{1}}{ }^{k} F_{s}{ }^{l} V^{s}\left(\nabla_{k} F_{l}{ }^{j}-\nabla_{l} F_{k}{ }^{j}\right)\right]+8 \nabla^{s} F_{s}{ }^{k} \nabla_{k} \eta_{i_{1}} \\
& +4 F_{i_{1}}{ }^{r} F^{s k}\left(\nabla_{r} F_{s}{ }^{l}+\nabla_{s} F_{r}{ }^{l}\right) \nabla_{l} \eta_{k}-4\left(\nabla_{i_{1}} F_{j}{ }^{k}+\nabla_{j} F_{i_{1}}{ }^{k}\right) \nabla_{k} \eta^{j} \\
& \left.+4 F^{k j}\left[\nabla_{i_{1}}, \nabla_{k}\right] \eta_{j}+4 F_{i_{1}}{ }^{l}\left[\nabla_{l}, \nabla_{k}\right] \eta^{k}+4 F^{s k}\left[\nabla_{s}, \nabla_{k}\right] \eta_{i_{1}}\right\} .
\end{align*}
$$

4. Realization of \square 's

Theorem 4.1. The complex Laplacian $\square_{i}, i=1, \cdots, 5$, for an almostHermitian structure is real with respect to every 0-form if and only if the structure is almost-semi-Kählerian. Moreover, with respect to every 0 -form, if \square_{i}, $i=1, \cdots, 5$, for an almost-Hermitian structure is real, then $\square_{i}=\Delta / 2$ for $i=1, \cdots, 5$.

Proof. The theorem follows immediately from (3.1), (3.5), (3.22), (3.28), (3.33) and (2.8) by choosing the 0 -form ξ to be x^{k} for an arbitary k with respect to any local coordinates x^{1}, \cdots, x^{n}.
Theorem 4.2. For an almost-Hermitian structure, if the Laplacian \square_{i}, $i=1,2$ or 4 , is real with respect to all 0 - and 1 -forms, then the structure is Kählerian.

Kodaira and Spencer [3] have shown that if the relation

$$
\begin{equation*}
\square_{1}=\Delta / 2 \tag{4.1}
\end{equation*}
$$

holds for an almost-Hermitian structure, then the structure is integrable. The particular case of Theorem 4.2 in which

$$
\begin{equation*}
\square_{i}=\Delta / 2 \quad(i=1,2 \text { or } 4) \tag{4.2}
\end{equation*}
$$

holds was a conjecture for some time; it was proved by Hsiung [2] for $i=2$ and by A. W. Adler [1] for $i=1$ by a different method under a stronger as-
sumption that (4.1) holds for a Hermitian structure and all 0 -, 1 - and 2 -forms. Theorem 4.2 was proved by Hsiung [2] and Ogawa [5] for $i=2$, and by Ogawa [5] for $i=1$ by a somewhat different method.

Proof. (i) $i=2$. In [2, p. 148] Hsiung proved that under the assumption of the theorem the structure F satisfies 2 (2.17) and (2.28). Then the theorem follows immediately from Lemmas 2.4 and 2.3; this was pointed out to one of the authors by H. Wakakuwa.
(ii) $\quad i=1$. Using the Ricci and Bianchi identities and (2.23) we can easily obtain

$$
\begin{gather*}
F_{i_{1}}{ }^{k}\left[\nabla_{j}, \nabla_{k}\right] \eta^{j}=F_{i_{1}}{ }^{k} R_{k}{ }^{j} \eta_{j}, \tag{4.3}\\
F^{k j}\left[\nabla_{k}, \nabla_{i_{1}} \eta_{j}-F^{j k}\left[\nabla_{j}, \nabla_{k}\right] \eta_{i_{1}}=-\frac{1}{2} F^{k l} R^{j}{ }_{i_{1} k l} \eta_{j},\right. \tag{4.4}\\
\nabla_{s} \nabla_{i_{1}} F^{s j}-\nabla_{i_{1}} \nabla_{s} F^{s j}=F_{a}{ }^{j} R_{i_{1}}{ }^{a}-\frac{1}{2} F^{s a} R^{j}{ }_{i_{1} s a} . \tag{4.5}
\end{gather*}
$$

By assumption, for any 1 -form $\eta, \operatorname{Im} \square_{1} \eta=0$ which is reduced to, in consequence of Theorem 4.1, (2.8), (3.21), (4.3), (4.4), (4.5),

$$
\begin{equation*}
2\left(\nabla_{s} F_{i_{1}}{ }^{j}+\nabla_{i_{1}} F_{s}{ }^{j}\right) \nabla_{j} \eta^{s}+\left(\nabla^{s} \nabla_{s} F_{i_{1}}{ }^{j}+F_{i_{1}}{ }^{k} R_{k}{ }^{j}-R_{i_{1}}{ }^{k} F_{k}{ }^{j}\right) \eta_{j}=0 . \tag{4.6}
\end{equation*}
$$

By choosing

$$
\begin{equation*}
\eta=d x^{h}, \quad \text { for an arbitary } h \tag{4.7}
\end{equation*}
$$

with respect to any local coordinates x^{1}, \cdots, x^{n}, from (4.6) it thus follows that

$$
\begin{equation*}
\nabla^{s} \nabla_{s} F_{i_{1}}{ }^{h}+F_{i_{1}}{ }^{k} R_{k}{ }^{h}-R_{i_{1}}{ }^{k} F_{k}{ }^{h}=0 . \tag{4.8}
\end{equation*}
$$

Multiplying (4.8) by $F_{h}{ }^{i_{1}}$ and using (2.1) we obtain (2.16), and therefore the structure F is Kählerian by Lemma 2.2.
(iii) $\quad i=4$. At a general point P of the manifold M^{n} we choose orthogonal geodesic local coordinates x^{1}, \cdots, x^{n} so that

$$
\begin{equation*}
g_{i j}(P)=\delta_{i j}, \quad \Gamma_{i j}^{k}(P)=0 \tag{4.9}
\end{equation*}
$$

where $\delta_{i j}$ are Kronecker deltas. By using Theorem 4.1, and choosing η to satisfy (4.7) first and then

$$
\begin{equation*}
\eta=x^{h} d x^{l}, \quad \text { for any fixed distinct } h \text { and } l \tag{4.10}
\end{equation*}
$$

with respect to the geodesic local coordinates x^{1}, \cdots, x^{n}, from (3.32) the condition $\operatorname{Im}\left(\square_{4} \eta\right)=0$ for any 1 -form η is reduced to

$$
\begin{equation*}
\nabla^{j} \nabla_{j} F_{i_{1}}{ }^{h}-\nabla^{j} \nabla_{i_{1}} F_{j}{ }^{h}=0, \tag{4.11}
\end{equation*}
$$

[^2]\[

$$
\begin{equation*}
\nabla^{h} F_{i_{1} l}+2 \nabla_{i_{1}} F_{l}{ }^{h}+\nabla_{l} F_{i_{1}}{ }^{h}=0 . \tag{4.12}
\end{equation*}
$$

\]

Interchanging l, i_{1} in (4.12) and adding the resulting equation to (4.12) we obtain

$$
\begin{equation*}
\nabla_{i_{1}} F_{l}{ }^{h}+\nabla_{l} F_{i_{1}}{ }^{h}=0 . \tag{4.13}
\end{equation*}
$$

From (4.11), (4.13) it thus follows that

$$
\begin{equation*}
\nabla^{j} \nabla_{j} F_{i_{1}}{ }^{h}=0 \tag{4.14}
\end{equation*}
$$

and hence by Lemma 2.2 the structure is Kählerian.

5. Relationships among \square 's

Theorem 5.1. If for an almost-Hermitian structure the relation

$$
\begin{equation*}
\operatorname{Im} \square_{1}=\operatorname{Im} \square_{i} \quad(i=2 \text { or } 4) \tag{5.1}
\end{equation*}
$$

holds for all 0- and 1-forms, then the structure is Kählerian.
Proof. (i) $i=2$. From (3.5), (3.1) and condition (5.1) for any 0 -form ξ, we have

$$
\begin{equation*}
\nabla^{h} F_{h}^{j} \nabla_{j} \xi=0 \tag{5.2}
\end{equation*}
$$

By choosing $\xi=x^{i}$ for an arbitary i with respect to any local coordinates x^{1}, \cdots, x^{n}, from (5.2) follows immediately (2.8), which together with (3.2), (3.21), (3.20) reduces condition (5.1) for any 1 -form η to

$$
\begin{equation*}
\left(\nabla_{s} F_{i_{1}}{ }^{j}+\nabla_{i_{1}} F_{s}{ }^{j}\right) \nabla_{j} \eta^{s}-\left(\nabla^{s} \nabla_{i_{1}} F_{s}{ }^{j}-\nabla^{s} \nabla_{s} F_{i_{1}}{ }^{j}\right) \eta_{j}=0 . \tag{5.3}
\end{equation*}
$$

Choosing η to satisfy (4.7) first and then (4.10) with respect to the local coordinates x^{1}, \cdots, x^{n} defined by (4.9) we therefore obtain (4.11), (4.13), and hence the structure is Kählerian for the same reasoning given in the proof (iii) of Theorem 4.2.
(ii) $\quad i=4$. As in part (i), from (3.5), (3.28), (3.1) and condition (5.1) for any 0 -form ξ, we obtain (2.8), which together with (3.21), (3.32) reduces condition (5.1) for any 1 -form η to

$$
\begin{equation*}
\left(\nabla_{j} F_{i_{1}}{ }^{k}-\nabla^{k} F_{i_{1} j}\right) \nabla_{k} \eta^{j}=0 . \tag{5.4}
\end{equation*}
$$

By choosing η to satisfy (4.10) with respect to the local coordinates x^{1}, \cdots, x^{n} defined by (4.9), we have

$$
\begin{equation*}
\nabla_{l} F_{h i_{1}}-\nabla_{h} F_{l i_{1}}=0 \tag{5.5}
\end{equation*}
$$

Thus by Lemma 2.1 the structure is Kählerian.
Theorem 5.2. If for an almost-Hermitian structure either the relation

$$
\begin{equation*}
\operatorname{Im} \square_{2}=\operatorname{Im} \square_{4} \tag{5.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Re} \square_{2}=\operatorname{Re} \square_{4} \tag{5.7}
\end{equation*}
$$

holds for all 1 -forms, where Re denotes the real part, then the structure is Kählerian.

Proof. From (3.1), (3.32), by the same argument as in the proof of Theorem 5.1 for $i=4$ it is easily seen that conditions (5.6), (5.7) imply

$$
\begin{gather*}
\nabla_{h} F_{i_{1}}{ }^{l}=\nabla_{i_{1}} F_{h}{ }^{l}=0, \tag{5.8}\\
F_{h}{ }^{j} \nabla_{i_{1}} F_{j}{ }^{l}-F_{h}{ }^{j} \nabla_{j} F_{i_{1}}{ }^{l}=0, \tag{5.9}
\end{gather*}
$$

respectively. By multiplying (5.9) by $F_{k}{ }^{h}$, we can reduce (5.9) to (5.8). Hence by Lemma 2.1, the structure is Kählerian under either (5.6) or (5.7).

Theorem 5.3. If for an almost-Hermitian structure the relation

$$
\begin{equation*}
\operatorname{Im} \square_{2}=\operatorname{Im} \square_{5} \tag{5.10}
\end{equation*}
$$

holds for all 0- and 1-forms, then the structure is Kählerian.
Proof. From (3.33), (3.5), (3.1) and condition (5.10) for any 0 -form ξ we obtain (2.8). Then by the same argument as in the proof of Therem 5.1 for $i=2$, (2.8), (3.2), (3.40) reduce condition (5.10) for any 1 -form η to

$$
\begin{gather*}
F_{i_{1}}{ }^{r} \nabla^{s} F_{r}{ }^{k}\left(\nabla_{k} F_{s}{ }^{h}-\nabla_{s} F_{k}{ }^{h}\right)+3 F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l}\left(\nabla_{l} F_{k}{ }^{h}-\nabla_{k} F_{l}{ }^{h}\right) \tag{5.11}\\
+4 F_{i_{1}}{ }^{k} F_{s}{ }^{l} \nabla^{s}\left(\nabla_{k} F_{l}{ }^{h}-\nabla_{l} F_{k}{ }^{h}\right)=0, \\
F_{i_{1}}{ }^{r} F^{s l}\left(\nabla_{r} F_{s}{ }^{h}+\nabla_{s} F_{r}{ }^{h}\right)=0 . \tag{5.12}
\end{gather*}
$$

Multiplying (5.12) by $F_{j}{ }^{i_{1}} F_{l}{ }^{k}$ and use of (2.1) give

$$
\begin{equation*}
\nabla_{j} F_{k}^{h}+\nabla_{k} F_{j}^{h}=0 . \tag{5.13}
\end{equation*}
$$

Substituting (5.13) in (5.11) we can easily obtain

$$
\begin{equation*}
2 F_{i_{1}}{ }^{k} F_{s}{ }^{l} \nabla^{s} \nabla_{k} F_{l}{ }^{h}-F_{s}{ }^{k} \nabla^{s} F_{i_{1}}{ }^{l} \nabla_{k} F_{l}^{h}=0 . \tag{5.14}
\end{equation*}
$$

Multiplying (5.14) by $F_{h}{ }^{i{ }_{1}}$ and using (2.1), (2.8), (5.13) we therefore have

$$
\begin{equation*}
\nabla_{s} F_{i_{1} l} \nabla^{s} F^{i_{1} l}=0, \tag{5.15}
\end{equation*}
$$

which implies that $\nabla_{s} F_{i_{1} l}=0$. Hence the structure is Kählerian. q.e.d.
Finally, it should be remarked that there are no theorems involving the Laplacian \square_{3} similar to Theorems $4.2,5.1,5.2,5.3$. However, we have the following two theorems, the proofs of which are omitted.

Theorem 5.4. If for an almost-Hermitian structure the relation

$$
\begin{equation*}
\operatorname{Im} \square_{3}=\operatorname{Im} \square_{1}+\frac{1}{2} \operatorname{Im}\left(\bar{\vartheta}_{1} \partial_{2}\right) \tag{5.16}
\end{equation*}
$$

holds for all 1-forms, then the structure is Kählerian.
Theorem 5.5. If for an almost-semi-Kählerian structure the relation

$$
\begin{equation*}
\operatorname{Im} \square_{3}=\operatorname{Im} \square_{i}+\frac{1}{2} \operatorname{Im}\left(\bar{\vartheta}_{1} \partial_{2}\right) \quad(i=2 \text { or } 4) \tag{5.17}
\end{equation*}
$$

holds for all 1-forms, then the structure is Kählerian.

References

[1] A. W. Adler, Classifying spaces for Kähler metrics IV: The relation $\Delta=2 \cdot \square$, Math. Ann. 160 (1965) 41-58.
[2] C. C. Hsiung, Structures and operators on almost-Hermitian manifolds, Trans. Amer. Math. Soc. 122 (1966) 136-152.
[3] K. Kodaira \& D. C. Spencer, On the variation of almost-complex structure, Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz, Princeton University Press, Princeton, 1957, 139-150.
[4] S. Kotô, Some theorems on almost Kählerian spaces, J. Math. Soc. Japan 12 (1960) 422-433.
[5] Y. Ogawa, Operators on almost Hermitian manifolds, J. Differential Geometry 4 (1970) 105-119.
[6] G. de Rham \& K. Kodaira, Harmonic integrals, Mimeographed notes, Institute for Advanced Study, Princeton, 1950.
[7] M. Schiffer \& D. C. Spencer, Functionals of finite Riemann surfaces, Princeton University Press, Princeton, 1954.

Lehigh University

[^0]: Communicated July 29, 1970. Research partially supported by the National Science Foundation grant GP-11965.

[^1]: ${ }^{1}$ Throughout this paper a bar over a letter or symbol denotes the conjugate of the complex number or operator defined by the letter or symbol.

[^2]: ${ }^{2}$ By mistake, (2.28) was printed as $F_{i}{ }^{h} R^{i}{ }_{j k l}=F_{j}{ }^{i} R^{h}{ }_{i k l}$ in [2, p. 148].0

