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SOME HOMOLOGICAL PROPERTIES OF SPENCER'S
COHOMOLOGY THEORY

JOSEPH JOHNSON

Introduction

It has been observed by Malgrange in [4] that the theory of overdetermined
systems of linear partial differential equations can be considered as a subject
within the theory of differential modules. Put a little more specifically, it is
clear from the results of [4] that the Spencer cohomology groups are equal to
Extp (M, N) for appropriately chosen differential modules M and N. This state-
ment is made precise in § 3.

What is given here is an exposition and amplification of this point of view
without the restrictive hypotheses of [4]. What is accomplished by this is:

i) Greater clarity in the ideas involved.
ii) A more canonical and natural development of the theory.

These accomplishments are made possible by the introduction of differential
module structures on jet bundles which is exploited for the first time in a
systematic way here. This is the main innovation of this paper and is the
missing link needed to give a fully homological account of the theory.

Concerning the greater generality of the theory presented here, an impor-
tant qualification needs to be added, namely, for the differentiable case the
greater generality is probably an illusion since the objects arising in the non-
regular situation are apparently too little understood for us to treat them
effectively.

The only contribution of the more general point of view in the differenti-
able case which one presently expects is the greater clarity it provides. How-
ever for the analytic, complex analytic and algebraic cases there is reason to
believe that the greater generality will be quite meaningful. In this paper it is
primarily the differentiable case which is treated. At appropriate points in the
exposition, the minor adaptations of the theory which must be made to handle
the other cases of interest are noted.

The manner in which this paper was written has been influenced by several
conversations the author has had with Donald Spencer and Gerald Kovacic.
The author wishes to thank them for their help and encouragement.

Communicated by D. C. Spencer, June 22, 1970.
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0. Notational conventions and preliminary definitions

(e Miscellaneous notation. R = field of real numbers. C = field of com-
plex numbers. N = the natural numbers 0 , 1 , . Z = ring of integers.

b) Notational conventions concerning sheaves. The notation of [2] will be
used throughout when we work with sheaves. All sheaves considered will be
sheaves of vector spaces over R or C and in the algebraic case over some fixed
field of characteristic zero. This fact will be consistently ignored in the discus-
sion, it being left to the reader to interpret the abelian groups which arise as
vector spaces over his favored field when he feels inclined to do so. Every
sheaf will be a sheaf of abelian groups, and morphisms of sheaves will always
be meant in this sense. If X is a topological space, A b x will denote the category
of sheaves of abelian groups on X.

Given X and an object F of Ab^, a section f of F will be any element of
F(U) for some (variable) open subset U of X. We will say that / is defined at
x if x€ U. Elements of F{X) will always be called global sections (of F). It
will be the practice here not to make any mention of the open set U over which
a section of a sheaf is defined except when it seems necessary in order to avoid
confusion.

If F is a sheaf and / is a section of F defined at x, we will let fx denote the
germ of / at x. If X is a manifold (differentiable, analytic, etc.) and G a vector
bundle on X, G will also be the letter used to denote the sheaf of germs of
(differentiable, analytic, etc.) sections of G. The stalk of a sheaf F at the point
x will be denoted by Fx.

c) Differential modules. In what follows X will denote a paracompact
differentiable (in the C°°-sense) manifold and © the sheaf of germs of differen-
tiable functions on X.

For each open subset U of X we will let 2)(£/) denote the set of all linear
differential operators of ©(£/) into itself, and let 2)r(£/) denote the elements of
2)(£/) which are of order < r. Composition of operators defines a multipli-
cation on £)(£/), and 2) is a sheaf of (non-commutative) rings on X.

The natural inclusion / O c ί δ (whereby every section of © acts as a linear
differential operator by multiplication) makes 2) into an ©-module in two dis-
tinct ways and it is crucial to distinguish between them. The left ©-module
structure on 2) is the one in which a section a of © sends a section D of 2)
into the section i(a)D, this product being defined by the ring structure on 2).
The right D-module structure is defined similarly.

All tensor products will be taken over the sheaf of rings O and never over
2). Symbolically ® = ® o . When 2) appears in a tensor product, its position
will indicate which of the ©-module structures on 2) is being considered. For
instance in F ® 2) ® £ * the first ® uses the left structure on 2) and the second
<8> uses the right. If H is an ©-module, we will let H* = Hom^ (H, ©).

A differential module (on X) will be any sheaf of left 2)-modules. By the
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definition of 2), Q is a differential module. Also if G is any β-module, 2) ® G
has a canonical differential module structure which we will frequently make use
of in the sequel. We will let Wl denote the category of differential modules
(i.e., of left ©-modules).

Frequently it is helpful to have an alternate definition of differential modules.
For this purpose let T be the tangent bundle of X. We have a canonical inclu-
sion T C 2). If P is a differential module, the inclusions O C S and Γ C S
induce an O-module structure on P and an action of T on P satisfying the
following axioms whenever δ and δ' are sections of T, a a section £> and x a
section of P:

1) δ(ax) = δ(ά)x + aδ(x),

2) [ M 1 W = «(«'(*))-«'(«(*)),
3) (3 + 30(JC) = 3(*) + δ'(x),

4) (αί)(*) = a(δ(x)).
It will be left to the reader to satisfy himself that conversely such an action of
T on an O-module P is induced by a unique differential module structure on P.

If E and F are vector bundles on X we will denote by 2)(E, F) the sheaf of
linear differential operators from E to F. We have a well-known canonical
isomorphism

it is defined as follows. Let U be an open subset of X, e* ε £*(t/), D' € S)(C7),
feF(U). To the element f®D'®e* of (F(g) 2) <g) £*)(£/) we associate the
linear differential operator of E(U) into F(U) which sends eeE(U) into the
element /D'O*O)) of F(w).

In particular, if G is any vector bundle the canonical isomorphism S) (x) G*
= ®(G, O) induces a differential module structure on S)(G, ©). It is easy to
see that if D is a section of 2), this differential module structure is such that
2) acts on 2)(G,O) by composition, D ' - ^ D o D ' . We will always identify the
differential modules 2) ® G* and 2)(G, O).

1. Homological formulation of the problem of local solvability

Suppose that (differentiable) vector bundles E and F on our differentiate
manifold X are given and that D: E —> F is a linear differential operator. If /
is a global section of F, one would like to know when the equation D{e) = f
has a solution e which is a global section of E. Here we shall confine ourselves
to the local aspect of this question, namely, when does there exist for each
xeX an exeEx such that D(ex) = fx ? We limit ourselves to the local situation
because this is where the real difficulties seem to lie. We nonetheless keep the
sheaf language (rather than focusing our attension on a single x e X) in order
that we may at some future moment take advantage of theorems relating local
and global phenomena.
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There is an obvious necessary condition for the local solvability of the equa-
tion D(e) = /, namely, if G is another vector bundle on X and D' F - ^ G a
linear differential operator such that D'D = 0, we should certainly have D'f= 0.
Let us call / compatible (for D) and write / e Com D if D'f = 0 for every such
pair (G, £>')• This condition is a local one. Let Com D c F b e the subsheaf of
F consisting of all germs of compatible sections of F, and I m D c F the image
sheaf of D.

It is natural to ask what the quotient Com D/Im D is. In fact it is reasonable
to look for conditions under which this quotient is zero in the real analytic
theory, i.e., when X is an analytic manifold, this quotient is always 0 when one
poses reasonable "regularity" conditions on D (see [1]). These regularity con-
ditions are not sufficient in the differentiable case as is shown by an example
of Lewy [5, (1.6.16)].

The starting point for our investigation of ComD/ImD will be the lemma
below which is a global version of a local statement given by Malgrange [4,
p. 12]. It allows us to formulate our problem in the category M of differential
modules which has the advantage of being an abelian category.

We will define a morphism

, F) -> Hom^ (3) <g) F*, 3) <g> E*) .

If Dx is any section of S)(E, F) over the open subset U of X, let Df be the
section of Hoiii^ (®(F, O), S ( £ , ©)) over U define by Df (DO = DΌDλ when-
ever Df is a section of S)(F, D) defined over an open subset V of U. This gives
the desired morphism since by part c) of § 0, 2) <g> £ * ^ S)(E, £)) and 35 ® F *

Lemma. Lei £ and F &£ vector bundles on X. Then the morphism * :
—> Hom^ (2) (x) F*, S) <g> E*) is an isomorphism.

Let Dx be a section of ©(£, F), and .Di the section of Hom^ (S) ® F, S) ® £*)
obtained from Dλ by applying to Dλ the following sequence of canonical isomor-
phisms of sheaves:

We will be done if we can show Df = A .

Let C7 be the open set over which Dx is defined, All we say will be valid
over £7, but U will frequently be left out of the notation for the sake of simpli-
city. We need to show that the following diagram (defined over U) commutes:

',©)

F*
•}'
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where / and j are the canonical identifications mentioned in part c) of § 0.
Since both compositions Df o i and / o Dι are D-linear, it will suffice to show

that they are equal on elements of the form 1 ® /* with /* e F*(£/). Also one
can assume that D, = / ® Df <g) e* with / e F(L/), Df <= ®(t/) and e* e E*(t/).
Then A ( l ® /*) = f*(f)D' ® e* H * e £ ( # ) , then (D* o 0(1 ® /*) sends e
into f*(fD'(e*)(e)), and 0'° A ) ( l ® /*) d o e s t 0 0 τ h e y a r e hence the same and
this completes the proof of the Lemma.

It is evident that if E, F and G are vector bundles on X, D: E —> F and
D': F^>G linear differential operators, then (D'D)* = Z ) * ^ * . Themorphism
D* is called the adjoint morphism of Z), its kernel K the adjoint kernel and its
cokernel M the adjoint cokernel. We therefore have an exact sequence of dif-
ferential modules

( f ) 0 • K — U S) ® F* - ^ > S) ® £ * - U M . • 0 .

It will be shown shortly (parts ii) and iv) of the next proposition) that the
adjoint cokernel M contains all the information which is of interest to us.

If a: A —• B is a morphism of differential modules on X, let α*: Hom^ίB, O)
—> Hoin^ 0 4 , 0 ) be the morphism induced by a. We then have the following
proposition. Note that in part i) of it we use implicitly the canonical identifi-
cation Hom§ (® ® G*, O) « G valid for vector bundles G.

Proposition. Lei E and F be vector bundles on X, and D: Zs —> F a linear
differential operator. Then:

i) D * * : E-->F is equal to D.
ii) /* identifies Hom^ (M, O) with the kernel of D.
iii) Kerz* = ComD.
iv) Com D/Im D = Ext^ (M, O).
To establish i) we need to show that the following diagram commutes, where

a and β are canonical identifications:

D " , D), O)

Let e be a section of E, and let ^ = D**(a(e))9 B = β(D(e)). Let Df be a
section of ®(F, O). We want to show that Aφ') = B(Df). This is clear because
A = α(e)oD* and so A{D') = ^(e)(D7D) = D\D{e)) = B(D'). This proves i)
and also ii) which is an immediate consequence of i).

To prove iii), we first show that a section / of F which is also a section
of Ker i* must be a section of ComD. Indeed let Df\ F —> G be a linear dif-
ferential operator such that D O = 0. Then D*/)7* = 0 so there exists
p β Hom$ (S) ® G*, X) such that D'* = z>. Thus
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DΊ = (DT*f = p*(i*(f)) = p*ao) = o ,

and / is a section of Com D.
Conversely suppose that / is a section of Com D. Let ^ e Z b e a point where

/ is defined and s an element of Kx. We want to show that f(ί(s)) = 0. There
exists a morphism of differential modules φ: 2) —> £ such that if 1 is the identity
of ®, ^ ( l j = s. By the lemma there exists a linear differential operator D'': F
-> O such that D'* = i o p. Plainly D'D = 0, so / o D'* = 0 since by i) this is
just D'j. Hence

KKs)) = /(%>(U)) = /(D'*(U) = 0 .

This completes the proof of iii).
To prove iv) break-up the exact sequence (t) into the exact sequences

0 > K > 2) (x) F * > P > 0

0 > P > 2) (x) £ * • M • 0 .

We obtain exact sequences

0 • Hom^ (P, O) - ^ U Hom^ (S) ® F* ? O) = F • Hom^ (K, G) ,

Hom^ (® (g) £ * , £)) = E - ^ Hom^ (P, O) • Ext^ (M, O) • 0 ,

and flo b = D. As a identifies Hom^ (P,O) with ComD, iv) results immediately.

2. A spectral sequence for the Ext of differential modules

By the proposition of the preceding paragraph determining C o m D / I m D
for a linear differential operator D is a special case of determining the functors
Ext^ (M, N) for differential modules M and N on X. The next lemma motivates
the approach to this problem which is followed here.

Let P be a differential module on X and U an open subset of X. An element
/ of P(ϋ) will be called a constant if for every 5 e T(U), δf = 0. Let (C((P))(ϋ)
denote the set of constants of P(£/). Then C(P) is a subsheaf of abelian groups
of P called the constant sheaf (of P).

Lemma. Let M and N be differential modules on X. Then Hom^ (M, N)
has a canonical structure of differential module and C(Hom c (M, ΛO) =

Let U be an open subset of X and δeT(U). Then δ induces sections of
Hom z (M, M) and Hom z (TV, TV) over U both of which will again be denoted
by the same letter δ. If / is a section of Hom c (M, N) over U, let

δ(f) = 3 o / - / o δ .
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It is immediate that δ(f) is again a section of Hom^ (M, N) over U. This de-
fines an action of T on Homβ(M, N) which satisfies l)-4) of part c) of § 0. Thus
HoniQ (M, N) is a differential module. The equality of the lemma is immediate.

Fix the differential module M, and consider the functor hM: N—^Hom^ (M, ΛO
of 3K into Ab x . We are looking for the derived functors RphM of hM, and the
lemma tells us that hM is the composite of the functor Hom o (M, ) of 2JI
into itself with C: W —> Ab x . It is therefore natural to apply the theorem
[3, p. 148] which relates the derived functors RmH of a composite functor
H = GoF with the composites (Λ^G) o (RqF). We first take note of a corollary
to the lemma just proven.

Corollary. // P is a differential module on X, then

Consequently C is left exact, and its right derived functors are given by the
formula

Indeed

C(P) = C(Hom o (©, P)) = Hom^ (©, P) .

We will prove the following theorem.
Theorem. Let M and N be differential modules on X. Then there is a

spectral sequence converging to Έxt^q (M,N) with initial term

To prove this theorem one needs to show that if the differential module N
is injective and p is an integer > 0, then RpC(Άomo (M, ΛO) = 0. The proof
of this will be postponed so that applications of this theorem can be presented
at the earliest possible moment.

3. Derivation of Spencer's theory

We first note the following corollary to the theorem of § 2.
Corollary. Let M and N be differential modules on X. If Ext^ (M, N) = 0

when q > 0, then for all non-negative integers P we have

E x t | (M, ΛO = RpC (Hom o (M, ΛO) .

The manner in which the infinite Spencer theory results from the this corol-
lary will now be explained. Let E and F be vector bundles on X, D: E —> F
a linear differential operator, and M the adjoint cokernel of D. We will suppose
that D is quasi-regular which will mean by definition that M is locally free as
an ©-module.
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Let R^ = Hom€ (M, £>). By applying Hom^ ( , D) to the exact sequence
(t) of § 1 we get an exact sequence (using the notation of [5])

( t )* 0 -> ΛM -> /„,(£) -> / . ( £ ) -> Hom o (£ , ©) -> 0 .

Indeed it is evident for instance that JSE) = HomD (3) (x) £ * , £)) since when
r is finite we have / r (£) = £)* ® £ (their duals are the same) and

JJJE) = lim / r (£) = lim ©* (g) £ = lim Hom o (S)r ® £ * , O)

r r r

= HomD (2) (g) £*,£)) .

From this it follows that if we choose a linear differential operator D which
is formally integrable (a stronger hypothesis than quasi-regularity) our R^ is
canonically isomorphic to the R^ of [5]. We have in addition placed a differ-
ential module structure on R^. We have1 RPC(RJ = Ext^ (M, β ) . It will be
shown that RPC(RJ is the p-ίft Spencer cohomology of D. For this we will use
the following proposition concerning an arbitrary differential module P in it
the sections of ΛPT* (g) P are identified in the usual way with alternating p-
forms on T having values in P.

Proposition. Let P be a differential module on X. Then for p > 0 there
exists a morphism (of sheaves of abelian groups) dp: ΛPT* (x) P —> ΛP+1T* ® P
satisfying the formula

*Σ ( - Ό'-Έ/ωfo, ...,!,.,..., f p + ι))

, ςj9..., ξp+1)

whenever U is an open subset of X,ξ19 , fp € T(U) and ω 6 W^Γ* ® P)(t/).
morphisms Λ'T* (g) P is a complex of sheaves of abelian groups and

Hp(Λ'T*®P) = (HpC)(P) .

Let D p : S) <8> ^ P + 1 Γ —> ® ® ̂ P Γ be the unique morphism of differential
modules such that if ξ 19 , ξp+ι are sections of T, then

P Σ ( - l V " 1 f j ® f i Λ ••• Λ f . Λ . . . Λf p + 1

Λ f( Λ Λ ξ, A • • • A ξp+1 .

It is not too difficult to show that Ext^ (M, £>) = 0 when q > 0.
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(This is actually a special case of the formula in [4, p. 23].) We get in this way
a resolution

(ft) o • S > ® Λ » r ^ ^ > S >£) >0

of O by locally free ©-modules. The desired complex is

Horns (2) ® Λ'T, P) = Λ T* ® P . "

By Corollary 1 in [3, p. 189],

and this is RPC(P) by the corollary to the lemma of § 2. The proof of the
proposition is now complete since the formula for dp is a trivial consequence of
the formula for Dp.

To show that RPC(R<J is the p-th Spencer cohomology for D choose an
arbitrary point x e X and an open neighborhood U of x. Suppose that U has
a coordinate system u19 , um and that the £>(U) module E(ϋ) has a free
basis el9- -9em. Now JJJE) is the differential module (2) ® £*)* = 2)* ® £".
Let Dα for each multi-index a = (a19 , an) e Nn be the section D?1- D^W

of 2) where D19 - ,Dn denote the partial derivations with respect to ul9 - , un.
A section s of (D ® £*)* over t/ is determined by giving its values on the

Dα ® ef, say »s(Dα ® ef) = saΛ. Now

® ef) = DMD ® e*)) - ^(D,D« ® e?) = Dt(sΛJ - sβ+Uti ,

i.e., the difference between "honest" differentiation and "formal" differentia-
tion.

For any section ω of ΛPT* ® JJJE) over ί/ let a)h...ip = ω(Dίl5 . ,D<p)
where as before we consider ω as an alternating form on T(U) with values in
/«,(£)(£/). The formula of the proposition tells us that

(d'ω)tl...ip+1 = ΣJ ( - l V - Ό i / ω ^ . ^ . ^ J .

By substituting the above formula for D t's we get Spencer's formula for dif-
ferentiation in the complex Λ-T* ® /«,(£).

4. Proof of the theorem 1

As has been observed we only need to show that if M and N are differential
modules on X and iV is injective, then RpC(ΆomD (M, ΛO) = 0 for all p > 0.
For this the corollary to the following lemma is used. In the lemma P ® M is
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considered as a differential module by letting δ(x ® y) = δ(x) ® y + x ® δ(y)
when δ is a section of T.

Lemma. Let M, N and P be differential modules on X. Then the canonical
isomorphism of G-modules

H o m o (P <g> Λf, Λ0 = H o m o (P, H o m o (M, ΛO)

z'51 flw isomorphism of differential £>-modules.
Let Φ be the canonical map of Hom€(P®M, N) into H o m ^ P , H o m ^ M , ΛO)

defined by g = Φ(/) where ^(x)}; = /O ® j ) when Λ: and y are sections of P
and M respectively. If δ is a section of T, then

- g(δx))y =

) 30) -

so δg — Φ(δf) which was to be proven.
Corollary. Under the assumptions of the preceding lemma,

Horns (P <g> AT, Λ0 = Hom^ (P, H o m o (M, Λ0) .

The proof follows immediately by applying C to both sides of the isomor-
phism of the lemma.

Let us now prove that if p > 0, then RpC(UomD (M, N)) = 0 when N is
injective. The corollary shows that if in addition we assume that M is flat
as an O-module, H o m s ( , H o m o (M, ΛO) is an exact functor, i.e., that
Honi£) (M, N) is an injective differential module.

In any case it can easily be shown that M has a flat resolution2

>Fλ >F0 >M >0 .

(For instance take the Ft to be locally free, or even direct sums of copies of S).)
Since Hom^ ( , N) — Hom^ (2) (g) , N), N is injective as an O-module. It
follows that

0 • H o m o (M, ΛO • H o m o (F., ΛO

is an injective resolution of the differential module Hom^ (M, N). Applying C
to this resolution, we get

(M, ΛO) = # p ( C ( H o m o (F., ΛO)) = ^ ^ H o m ^ (F., ΛO) = 0 ,

if p > 0. This proves the theorem.

2 Our proof for the analytic and algebraic cases proceedes identically once this fact is
established in those cases.
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5. The analytic and algebraic cases of the theorem

The following is the fact needed to extend the theorem to these other cases.
Lemma. Let X be an analytic manifold, a complex analytic manifold or

an algebraic variety without singularities. If M is any differential module on X
{analytic, complex analytic or algebraic respectively) there is a surjective mor-
phism of differential modules F —> M where F is flat as an £)-module.

Here of course © and S) are to be defined in the appropriate way in analogy
to the definitions previously employed.

If U is an open subset of X, define S)^(F) for every connected open subset
V of X by

ί ( , if V C U ,
10, if V ςt U .

This defines a sheaf S ^ on the family of connected open subsets of X. Denote
also by %v its canonical extension to a sheaf on X. Then 2)^ is canonically a
sheaf of ©-modules and clearly flat as an ©-module.

If / € M(U) with U a connected open subset of X, there exists a unique
morphism of S-modules φ(U,f): ^ u —* M such that the element 1 of S)^(t/)
is mapped onto /. Let F = 2 ®^ where the sum is taken over all the pairs

(U,f) just mentioned. There is a unique morphism of F to M which on the
summand 3)^ corresponding to (U,f) is φ{Uιf). It is clearly surjective and the
proof is complete.
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