REDUCTION OF THE CODIMENSION OF AN ISOMETRIC IMMERSION

JOSEPH ERBACHER

0. Introduction

Let $\psi: M^{n} \rightarrow \bar{M}^{n+p}(\tilde{c})$ be an isometric immersion of a connected n-dimensional Riemannian manifold M^{n} into an ($n+p$)-dimensional Riemannian manifold $\overline{\boldsymbol{M}}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c}. When can we reduce the codimension of the immersion, i.e., when does there exist a proper totally geodesic submanifold N of $\bar{M}^{n+p}(\tilde{c})$ such that $\psi\left(M^{n}\right) \subset N$? We prove the following:

Theorem. If the first normal space $N_{1}(x)$ is invariant under parallel translation with respect to the connection in the normal bundle and l is the constant dimension of N_{1}, then there exists a totally geodesic submanifold N^{n+l} of $\bar{M}^{n+p}(\tilde{c})$ of dimension $n+l$ such that $\psi\left(M^{n}\right) \subset N^{n+l}$.

This theorem extends some results of Allendoerfer [2].

1. Notation and some formulas of Riemannian geometry

Let $\psi: M^{n} \rightarrow \bar{M}^{n+p}(\tilde{c})$ be as in the introduction. For all local formulas we may consider ψ as an imbedding and thus identify $x \in M^{n}$ with $\psi(x) \in \bar{M}^{n+p}$. The tangent space $T_{x}\left(M^{n}\right)$ is identified with a subspace of the tangent space $T_{x}\left(\bar{M}^{n+p}\right)$. The normal space T_{x}^{\perp} is the subspace of $T_{x}\left(\bar{M}^{n+p}\right)$ consisting of all $X \in T_{x}\left(\bar{M}^{n+p}\right)$ which are orthogonal to $T_{x}\left(M^{n}\right)$ with respect to the Riemannian metric g. Let ∇ (respectively $\tilde{\nabla}$) denote the covariant differentiation in M^{n} (respectively \bar{M}^{n+p}), and D the covariant differentiation in the normal bundle. We will refer to V as the tangential connection and D as the normal connection.

With each $\xi \in T_{x}^{\perp}$ is associated a linear transformation of $T_{x}\left(M^{n}\right)$ in the following way. Extend ξ to a normal vector field defined in a neighborhood of x and define $-A_{\xi} X$ to be the tangential component of $\tilde{V}_{x} \xi$ for $X \in T_{x}\left(M^{n}\right)$. $A_{\xi} X$ depends only on ξ at x and X. Given an orthonormal basis ξ_{1}, \cdots, ξ_{p} of $T_{\frac{1}{x}}^{\perp}$ we write $A_{\alpha}=A_{\xi_{\alpha}}$ and call the A_{α} 's the second fundamental forms associated with ξ_{1}, \cdots, ξ_{p}. If ξ_{1}, \cdots, ξ_{p} are now orthonormal normal vector fields in a neighborhood U of x, they determine normal connection forms $s_{\alpha \beta}$ in U by

$$
D_{X} \xi_{\alpha}=\sum_{\beta} s_{\alpha \beta}(X) \xi_{\beta}
$$

[^0]for $X \in T_{x}\left(M^{n}\right)$. We let R^{N} denote the curvature tensor of the normal connection, i.e.,
$$
R^{N}(X, Y)=D_{X} D_{Y}-D_{Y} D_{X}-D_{[X, Y]} .
$$

We then have the following relationships (in this paper Greek indices run from 1 to p):

$$
\begin{align*}
R^{N}(X, Y) \xi_{\alpha} & =\sum_{\beta} g\left(\left[A_{\alpha}, A_{\beta}\right] X, Y\right) \xi_{\beta} \tag{7}\\
& =\sum_{\beta}\left\{2\left(d s_{\alpha \beta}\right)(X, Y)+\sum_{\gamma}\left\{s_{\alpha \gamma}(Y) s_{\gamma \beta}(X)-s_{\alpha \gamma}(X) s_{\gamma \beta}(Y)\right\}\right\} \xi_{\beta}
\end{align*}
$$

where X and Y are tangent to M^{n}.
The first normal space $N_{1}(x)$ is defined to be the orthogonal complement of $\left\{\xi \in T_{x}^{\perp} \mid A_{\xi}=0\right\}$ in T_{x}^{\perp}. R^{k} will denote the k-dimensional Euclidean space, $S^{k}(1)$ the k-dimensional unit sphere in R^{k+1}, and $H^{k}(-1)$ the k-dimensional simply connected space form of constant sectional curvature -1 . All immersions, vector fields, etc., are assumed to be of C^{∞}.

2. Reducing the codimension of an isometric immersion

Let $\psi: M_{n} \rightarrow \bar{M}^{n+p}(\tilde{c})$ be an isometric immersion of a connected n-dimensional Riemannian manifold M^{n} into an $(n+p)$-dimensional Riemannian manifold $\vec{M}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c}.

Lemma 1. Suppose the first normal space $N_{1}(x)$ is invariant under parallel translation with respect to the normal connection and l is the constant dimension of N_{1}. Let $N_{2}(x)=N_{1}^{\perp}(x)$, where the orthogonal complement is taken in
$T_{\frac{1}{x}}$, and for $x \in M^{n}$ let $\mathscr{S}(x)=T_{x}\left(M^{n}\right)+N_{1}(x)$. Then for any $x \in M^{n}$ there exists differentiable orthonormal normal vector fields ξ_{1}, \cdots, ξ_{p} defined in a neighborhood U of x such that:
(a) For any $y \in U, \xi_{1}(y), \cdots, \xi_{l}(y)$ span $N_{1}(y)$, and $\xi_{l+1}(y), \cdots, \xi_{p}(y)$ span $N_{2}(y)$,
(b) $\tilde{\nabla}_{x} \xi_{\alpha}=0$ in U for $\alpha \geq l+1$ and X tangent to M^{n},
(c) The family $\mathscr{S}(y), y \in U$, is invariant under parallel translation with respect to the connection in \bar{M}^{n+p} along any curve in U.

Proof. Since N_{1} is invariant under parallel translation with respect to the normal connection, so is N_{2}. Let $x \in M^{n}$ and choose orthonormal normal vectors $\xi_{1}(x), \cdots, \xi_{p}(x)$ at x such that $\xi_{1}(x), \cdots, \xi_{l}(x)$ span $N_{1}(x)$ and $\xi_{l+1}(x), \cdots, \xi_{p}(x)$ span $N_{2}(x)$. Extend ξ_{1}, \cdots, ξ_{p} to differentiable orthonormal normal vector fields defined in a normal neighborhood U of x by parallel translation with respect to the normal connection along geodesics in M^{n}. This proves (a).

Since N_{1} and N_{2} are invariant under parallel translation with respect to the normal connection, we have $D_{X} \xi \in N_{1}$ (respectively N_{2}) for $\xi \in N_{1}$ (respectively N_{2}). Let ξ_{1}, \cdots, ξ_{p} be chosen as in (a). Then $s_{\alpha \beta}=0$ in U for $1 \leq \alpha \leq l$, $l+1 \leq \beta \leq p$ and $1 \leq \beta \leq l, l+1 \leq \alpha \leq p$. Equations (6) and (7) imply that $R^{N}(X, Y) \xi=0$ for $\xi \in N_{2}$, and since N_{2} is also invariant under parallel translation with respect to the normal connection we conclude that for $\xi \in N_{2}(y), y \in U$, the parallel translation of ξ with respect to the normal connection is independent of path in U. Thus $D \xi_{\alpha}=0$ in U for $\alpha \geq l+1$, and $s_{\alpha \beta}=0$ in U for $l+1 \leq \alpha \leq p, l+1 \leq \beta \leq p$. Because of (3), we have $\tilde{\nabla}_{X} \xi_{\alpha}=0$ for $\alpha \geq l+1$ and X tangent to M^{n}, proving (b).

To prove (c) it suffices to show that $\tilde{\nabla}_{X} Z \in \mathscr{S}$ whenever $Z \in \mathscr{S}$ and X is tangent to M^{n}. This follows from (1) and (3) and (a) and (b) above.

We shall now prove our Theorem under the assumption that $\tilde{\boldsymbol{M}}^{n+p}$ is simply connected and complete. We consider the cases $\tilde{c}=0, \tilde{c}>0$ and $\tilde{c}<0$ separately.

Proposition 1. The Theorem is true if $\bar{M}^{n+p}=\boldsymbol{R}^{n+p}$.
Proof. Let $x \in M^{n}$ and let ξ_{1}, \cdots, ξ_{p}, and U be as in Lemma 1. Define functions f_{α} on U by $f_{\alpha}=g\left(\vec{x}, \xi_{\alpha}\right)$ where \vec{x} is the position vector. Then

$$
X \cdot f_{\alpha}=\tilde{V}_{X} f_{\alpha}=g\left(X, \xi_{\alpha}\right)+g\left(\vec{x}, \tilde{V}_{X} \xi_{\alpha}\right)=0
$$

for $\alpha \geq l+1$ and X tangent to U. Thus U lies in the intersection of $p-l$ hyperplanes, whose normal vectors are linearly independent, and the desired result is true locally; i.e., if $x \in M^{n}$ there exist a neighborhood U of x and a Euclidean subspace \boldsymbol{R}^{n+l} such that $\psi(U) \subset \boldsymbol{R}^{n+l}$. To get the global result we use the connectedness of M^{n}. Let $x, y \in M^{n}$ with neighborhoods U and V respectively such that $U \cap V \neq \phi$ and $\psi(U) \subset \boldsymbol{R}_{1}^{n+l}, \phi(V) \subset \boldsymbol{R}_{2}^{n+l}$. Then

$$
\phi(U \cap V) \subset \boldsymbol{R}_{1}^{n+l} \cap \boldsymbol{R}_{2}^{n+l}
$$

If $\boldsymbol{R}_{1}^{n+l} \neq \boldsymbol{R}_{2}^{n+l}$ then $\boldsymbol{R}_{2}^{n+l} \cap \boldsymbol{R}_{2}^{n+l}=\boldsymbol{R}^{n+k}, k<l$, and this implies that $\operatorname{dim} N_{1}(z)<l$ for $z \in U \cap V$. Since $\operatorname{dim} N_{1}=$ constant $=l$, we must have $\boldsymbol{R}_{1}^{n+l}=\boldsymbol{R}_{2}^{n+l}$. This proves the global result.

Proposition 2. The Theorem is true if $\bar{M}^{n+p}=S^{n+p}(1)$.
Proof. Consider $S^{n+p}(1)$ as the unit sphere in \boldsymbol{R}^{n+p+1} with center at the origin of \boldsymbol{R}^{n+p+1}. Let ξ be the inward pointing unit normal of $S^{n+p}, \bar{N}_{1}(x)$ be the first normal space for M^{n} considered as immersed in $\boldsymbol{R}^{n+p+1}, \bar{V}$ be the Euclidean connection in \boldsymbol{R}^{n+p+1}, and ξ_{1}, \cdots, ξ_{p} be chosen as in Lemma 1. Then $\bar{\nabla}_{X} \xi=-X$ and $\bar{\nabla}_{X} \xi_{\alpha}=\tilde{\nabla}_{X} \xi_{\alpha}$ for X tangent to M^{n}. It readily follows that $\bar{N}_{1}(x)=N_{1}(x)+\operatorname{span}\{\xi(x)\}$ and that \bar{N}_{1} is invariant under parallel translation with respect to the normal connection for M^{n} considered as immersed in \boldsymbol{R}^{n+p+1}. Thus, by Proposition 1, there exists an \boldsymbol{R}^{n+l+1} such that $\psi\left(\boldsymbol{M}^{n}\right)$ $\subset \boldsymbol{R}^{n+l+1}$, namely,

$$
\boldsymbol{R}^{n+l+1}=T_{x}\left(M^{n}\right)+N_{1}(x)+\operatorname{span}\{\xi(x)\}
$$

for any $x \in M^{n}$. Hence \boldsymbol{R}^{n+l+1} contains ξ and therefore passes through the origin of \boldsymbol{R}^{n+p+1}. Thus

$$
\psi\left(M^{n}\right) \subset \boldsymbol{R}^{n+l+1} \cap S^{n+p}(1)=S^{n+l}(1)
$$

Proposition 3. Our theorem is true if $\bar{M}^{n+p}=H^{n+p}(-1)$.
Proof. It is convenient to consider H^{n+p} as being in a Minskowski space E^{n+p+1}. Let E^{n+p+1} be a Minskowski space with global coordinates x^{0}, \cdots, x^{n+p} and pseudo-Riemannian metric g determined by the quadratic form

$$
g(x, y)=-x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n+p} y_{n+p}
$$

Consider the submanifold H^{n+p} defined by

$$
-x_{0}^{2}+x_{1}^{2}+\cdots+x_{n+p}^{2}=-1, x_{0}>0
$$

The pseudo-Riemannian metric $g\left(\right.$,) on E^{n+p+1} induces a Riemannian metric on H^{n+p} such that H^{n+p} becomes a simply connected Riemannian manifold of constant sectional curvature -1 (cf. [4, p. 66]). Let $\xi=\vec{x}$, the position vector. Then for $x \in H^{n+p}, \xi(x)$ is normal to H^{n+p} and $g(\xi(x), \xi(x))=-1$. Let $\bar{\nabla}$ be the Euclidean connection on E^{n+p+1}, i.e., the connection arising from g; and define A by $\bar{\nabla}_{x} \xi=-A X$ for X tangent to H^{n+p}. Then $A=-I$ and

$$
\bar{V}_{X} Y=\tilde{V}_{X} Y-g(A X, Y) \xi
$$

for X, Y tangent to H^{n+p}. The minus sign, rather than a plus sign as in (1), occurs in the last equation because g is indefinite. Let ξ_{1}, \cdots, ξ_{p} be as in Lemma 1 and consider M^{n} as isometrically immersed in E^{n+p+1}. Then $\tilde{V}_{x} \xi_{\alpha}$
$\bar{\nabla}_{x} \xi_{\alpha}$ for X tangent to M^{n}. In a way similar to the argument in Proposition 2 we can show that

$$
W(x)=\mathscr{S}(x)+\operatorname{span}\{\xi(x)\}=T_{x}\left(M^{n}\right)+N_{1}(x)+\operatorname{span}\{\xi(x)\}
$$

is invariant under parallel translation with respect to the Euclidean connection in E^{n+p+1}. Thus, in a way similar to the argument in Proposition 1, there exists an $(n+l+1)$-dimensional plane $E^{n+l+1}\left(=W(x)\right.$ for any $\left.x \in M^{n}\right)$ such that $\psi\left(M^{n}\right) \subset E^{n+l+1}$. We may assume that the point $x_{0}=1, x_{k}=0$ for $k \geq 1$ is in $\psi\left(M^{n}\right)$. Then, since E^{n+l+1} contains ξ and passes through the point $x_{0}=1$, $x_{k}=0$ for $k \geq 1$, we conclude that E^{n+l+1} is perpendicular to the $x_{0}=0$ plane and passes through the origin of E^{n+p+1}. Thus $H^{n+p} \cap E^{n+l+1}$ is totally geodesic in H^{n+p}, and

$$
\psi\left(M^{n}\right) \subset H^{n+l}(-1)=H^{n+p}(-1) \cap E^{n+l+1} .
$$

Clearly completeness is not essential in Propositions 1, 2, and 3 in the sense that if $\overline{\boldsymbol{M}}^{n+p}$ is a connected open set of $\boldsymbol{R}^{n+p}, S^{n+p}$, or \boldsymbol{H}^{n+p} then Propositions 1,2 , and 3 remain true. Thus when $\bar{M}^{n+p}(\tilde{c})$ is neither simply connected nor complete we obtain the local result: if $x \in M^{n}$, then there exists a neighborhood U of x such that $\psi(U)$ is contained in a totally geodesic submanifold N_{U}^{n+l} of \bar{M}^{n+p}. We obtain the global result (the Theorem) by a connectedness argument similar to the connectedness argument in Proposition 1.

Remarks. It is an easy consequence of Codazzi's equation that if the type number of ψ (see [3, vol. II, p. 349]) is greater than or equal to two and N_{1} has constant dimension, then N_{1} is invariant under parallel translation with respect to the normal connection. To prove this last remark, let l be the dimension of N_{1} and choose orthonormal normal vectors ξ_{1}, \cdots, ξ_{p} in a neighborhood U of x such that ξ_{1}, \cdots, ξ_{l} span $N_{1}(y)$ for $y \in U$ (cf. § 3). Since the type number of the immersion is greater than or equal to two, there exist X and Y tangent to M^{n} such that $A_{j} X$ and $A_{j} Y, 1 \leq j \leq l$, are linearly independent. Codazzi's equation then implies that

$$
\sum_{\beta=1}^{l} s_{\alpha \beta}(X) A_{\beta} Y=\sum_{\beta=1}^{l} s_{\alpha \beta}(Y) A_{\beta} X,
$$

for $\alpha \geq l+1$, since $A_{\beta}=0$ for $\beta>l$. Since $A_{\beta} Y$ and $A_{\beta} X, 1 \leq \beta \leq l$, are linearly independent we conclude that $s_{\alpha \beta}(X)=s_{\alpha \beta}(Y)=0$ for $\alpha>l \geq \beta$. But, for any Z tangent to M^{n}, we have

$$
\sum_{\beta=1}^{l} s_{\alpha \beta}(X) A_{\beta} Z=\sum_{\beta=1}^{l} s_{\alpha \beta}(Z) A_{\beta} X .
$$

Thus $s_{\alpha \beta}(Z)=0$ for $\alpha>l \geq \beta$. We conclude that $D_{Z} \xi \in N_{1}$ if Z is tangent to M^{n} and $\xi \in N_{1}$. Thus N_{1} is invariant under parallel translation with respect to the normal connection.

3. The higher normal spaces

Let $\psi: M^{n} \rightarrow \bar{M}^{n+p}(\tilde{c})$ be as in $\S 1$, and h the second fundamental form of the immersion, i.e., for X, Y tangent to $M^{n}, h(X, Y)$ is the normal component of $\tilde{V}_{X} Y$. Equation (1) of $\S 1$ may be written as

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)
$$

Following Allendoerfer [1] we define the normal spaces as follows. The first normal space $N_{1}(x)$ is defined to be the

$$
\operatorname{span}\left\{h(X, Y) \mid X, Y \in T_{x}\left(M^{n}\right)\right\} .
$$

Choosing orthonormal normal vectors ξ_{1}, \cdots, ξ_{p} at x such that ξ_{1}, \cdots, ξ_{l} span $N_{1}(x)$, where l is the dimension of $N_{1}(x)$, and using (1) one easily sees that this agrees with our previous definition for $N_{1}(x)$ given in $\S 1$. Suppose N_{1}, \cdots, N_{k} have been defined such that $N_{i} \perp N_{j}$ for $i \neq j$. If

$$
N_{1}(x)+\cdots+N_{k}(x) \neq T_{x}^{\perp}
$$

define $N_{k+1}(x)$ as follows: Let

$$
L(x)=\operatorname{span}\left\{\left(D_{Z_{1}}\left(D_{Z_{2}}\left(\cdots\left(D_{Z_{k}}\left(h\left(Z_{k+1}, Z_{k+2}\right)\right)\right) \cdots\right)\right)\right)_{x}\right\},
$$

where Z_{1}, \cdots, Z_{k+2} are vector fields tangent to M^{n}. If

$$
L(x) \cap\left(N_{1}(x)+\cdots+N_{k}(x)\right)^{\perp}
$$

is not equal to $\{0\}$, where the orthogonal complement is in T_{x}^{\perp}, define $N_{k+1}(x)$ to be

$$
L(x) \cap\left(N_{1}(x)+\cdots+N_{k}(x)\right)^{\perp}
$$

Otherwise define $N_{k+1}(x)$ to be

$$
\left(N_{1}(x)+\cdots+N_{k}(x)\right)^{\perp}
$$

It is clear that we may speak of the last normal space.
Note the following lemma.
Lemma. If each $N_{k}(x)$ has constant dimension n_{k}, then there exist orthonormal normal vector fields ξ_{1}, \cdots, ξ_{p} in a neighborhood U of x such that $\xi_{n_{1}+\cdots+n_{k-1+1}}, \cdots, \xi_{n_{k}}$ span $N_{k}(y)$ for $y \in U$.

Proof. Choose vector fields X_{i} and $Y_{i}, 1 \leq i \leq n_{1}$, in a neighborhood of x such that $\left(h\left(X_{k}, Y_{i}\right)\right)_{x}$ are linearly independent and span $N_{1}(x)$. Since $h\left(X_{i}, Y_{i}\right), 1 \leq i \leq n_{1}$, are differentiable normal vector fields in a neighborhood of x and linearly independent at x, they are linearly independent-in a neighborhood of x. But N_{1} has constant dimension and $h\left(X_{i}, Y_{i}\right) \in N_{1}$; using the Gram-

Schmidt orthogonalization process we obtain orthonormal normal vector fields $\xi_{1}, \cdots, \xi_{n_{1}}$ in a neighborhood U of x such that $\xi_{1}, \cdots, \xi_{n_{1}}$ span $N_{1}(y)$ for $y \in U$. Now suppose $\xi_{1}, \cdots, \xi_{n_{1}+\cdots+n_{k}}$ have been found with the desired property. If N_{k+1} is the last normal space, then

$$
N_{k+1}=\left(N_{1}+\cdots+N_{k}\right)^{\perp} .
$$

By using an orthonormal basis of the normal space in a neighborhood of x and $\xi_{1}, \cdots, \xi_{n_{1}+\cdots+n_{k}}$ above, it is clear that we may find an orthonomal basis of $N_{k_{+1}}$ in a neighborhood of x. If N_{k+1} is not the last normal space, then we may obtain $\bar{\xi}_{i}, n_{1}+\cdots+n_{k}+1 \leq i \leq n_{1}+\cdots+n_{k+1}$, in a neighborhood V of x, by various choices of the vector fields Z_{1}, \cdots, Z_{k+2} so that
(a) each $\bar{\xi}_{i}$ is of the form

$$
D_{Z_{1}}\left(D_{Z_{2}}\left(\cdots\left(D_{Z_{k}}\left(h\left(Z_{k+1}, Z_{k+2}\right)\right)\right) \cdots\right)\right),
$$

(b) $\bar{\xi}_{i}(y) \in N_{k+1}(y) \quad$ for $\quad y \in V$,
(c) $\bar{\xi}_{i}(x)$ are linearly independent and span $N_{k+1}(x)$.

By the differentiability of $\bar{\xi}_{i}$, they are linearly independent in a neighborhood of x. By (b) and the constant dimension of N_{k+1}, they span N_{k+1} in a neighborhood of x. Use the Gram-Schmidt orthogonalization process to obtain the desired result.

Thus, when each N_{k} has constant dimension, each N_{k} is a differentiable vector bundle. We also note that when each N_{k} has constant dimension we may replace $L(x)$ in the definition of $N_{k_{+1}}(x)$ by
span $\left\{\left(D_{X} \xi\right)_{x} \mid X \in T_{x}\left(M^{n}\right), \xi\right.$ a local cross section for N_{k} near $\left.x\right\}$.
If N_{1} is invariant under parallel translation with respect to the normal connection, then there are only two normal spaces N_{1} and $N_{2}=N_{1}^{\perp}$.

Let $N(x)$ be a subspace of $T_{\frac{\perp}{x}}^{\perp}$ such that $N(x) \supset N_{1}(x)$. If N is invariant under parallel translation with respect to the normal connection, then by replacing $\mathscr{S}(x)=T_{x}\left(M^{n}\right)+N_{1}(x)$ by $T_{x}\left(M^{n}\right)+N(x)$ in Lemma 1 we may prove the following:

Thorem. Let $\psi: M^{n} \rightarrow \bar{M}^{n+p}(\tilde{c})$ be as in § 1. If $N \supset N_{1}$ and N is invariant under parallel translation with respect to the normal connection and l is the dimension of N, then there exists a totally geodesic submanifold N^{n+l} of $\bar{M}^{n+p}(\tilde{c})$ such that $\psi\left(M^{n}\right) \subset N^{n+l}$.

For example, though N_{1} may not be invariant under parallel translation with respect to the normal connection, we may have $N_{1}+N_{2}$ invariant under parallel translation with respect to the normal connection.

Bibliography

[1] C. D. Allendoerfer, Imbeddings of Riemann spaces in the large, Duke Math. J. 3 (1937) 317-333.
[2] -, Rigidity for spaces of class greater than one, Amer. J. Math. 61 (1939) 633644.
[3] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vols. I \& II, Interscience, New York, 1963, 1969.
[4] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.
Brown University
University of Southern California

[^0]: Received May 20, 1970. This paper is a part of the author's doctoral dissertation written under the direction of Professor K. Nomizu at Brown University. The research was partially supported by the National Science Foundation.

