
J . DIFFERENTIAL GEOMETRY
5 (1971) 211-227

QUARTIC STRUCTURES ON SPHERES

SAMUEL I. GOLDBERG

1. Introduction

A C°° tensor field / of type (1,1) on a connected C°° manifold P is said to
define a polynomial structure of degree d if d is the smallest integer for which
the powers /, /, , fa are dependent, and / has constant rank on P, where /
is the identity transformation field. An almost complex manifold is a polynomial
structure of degree 2. In the odd dimensional case, the almost contact mani-
folds provide examples of polynomial structures of degree 3. More generally,
a globally framed /-manifold is a polynomial structure of degree 3. These are
almost product spaces. In addition, almost product spaces are a source of fur-
ther examples of polynomial structures [8].

The affine spaces R2n and R271-1 may be endowed with almost complex and
almost contact structures, respectively, so these give the simplest examples of
the manifolds considered the former having rank 2n and the latter rank In — 2.
On the other hand, an odd dimensional sphere S271'1 carries an almost contact
structure, so it is a polynomial manifold which is globally framed. However,
the even dimensional spheres are not almost complex except in dimensions 2
and 6, and whereas the contact structure on S2n~ι is "integrable", it is not even
known whether S6 can be given an almost complex structure which comes from
a complex structure.

In a previous work [6], polynomial structures / of degree 4 were introduced
and examples of them provided. These were of two types, namely,

f + f = o, (f + iy = o ,

the first one having rank In — 1 and the second maximal rank In. Moreover,
the former is globally framed and the latter is not. We show below that, except
for a set of measure zero, the even dimensional spheres may be endowed with
a quartic structure /, depending on a parameter λ, that is,

(f + ?W2 + /) = 0 , 0 < \λ\ < 1

and
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f + / = o

on the set of points for which λ — 0. On the other hand, each of the connected
components S2n\{p e S2n | λ{p) = 0} may be characterized as a complete totally
umbilical noninvariant hypersurface of a cosymplectic manifold of constant
curvature.

It is these structures which we are preoccupied with below, that is, with even
or odd dimensional manifolds carrying a quartic structure of arbitrary rank.

2. Noninvariant hypersurfaces

We motivate our continuing study of polynomial structures by considering a
2/i-dimensional manifold P imbedded as a hypersurface in an almost contact
manifold M(φ, E,η), i: P -+ M being the imbedding, φ the fundamental affine
collineation of M, E its fundamental vector field and η the contact form. It is
assumed that E is nowhere tangent to the hypersurface ί(P). Denoting by i^
the induced tangent map of /, we therefore have

(2.1) φί*X = yX + a(X)E , φE = 0 ,

where / is an almost complex structure on P and a(JX) = η(i^X). Thus P
admits an almost complex structure / and a 1-form a whose vanishing at p e P
means that the tangent hyperplane at p of the hypersurface is invariant by φp.
If a Φ 0, the submanifold i(P) is called a noninvariant hypersurface [3].

It is well-known that a metric G may be introduced on M with the properties

G(φx,y) = —G(x,φy) ,

where x and y are vector fields on M, that is, φ is skew symmetric with respect
to G, and

(2.2) η

Let N be the unit normal to i(P) with respect to G. Then we may write

(2.3) tpi+X = iJX + a'(X)N

for some (1,1) tensor field / and 1-form a! on P. Moreover, since φN is orthog-
onal to N with respect to G, it is tangent to i(P) and so can be expressed as

(2.4) φN = -i*U

for some vector field U on P. There is clearly a relation between /, /, a and a'.
Indeed, since E is nowhere tangent to F,

(2.5) E = LV + λN , λ Φ 0 ,
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for some vector field V and scalar field λ on P. Clearly, \λ\ < 1.
From (2.2) and (2.5), η(N) = λ. Comparing (2.1) with (2.3) yields, by virtue

of (2.5),

f = J + a®V, a' = λa .

If we put β = i*η and (Ca)(X) = a(JX), then β = Ca. Summarizing, we
have proved (cf. [1])

Theorem 1. Let P(J, a) be a nonίnvariant hypersurface of the almost con-
tact metric manifold M(φ, η, G). Then there exist tensor fields f, U, V, a, a'', β
and λ, 0 < \λ\ < 1, on P defined by

(i) φi^X = iJX + a'(X)N, a' = λa,
(ii) φN= -i*U,

(iii) E = i*V + λN,
(iv) β = Ca = i*η,
(v) λ = V(N).

The vector fields U and V vanish at those points on P for which Λ = ± 1,
and at these points / coincides with J.

Noting that φ2 = —I + η(g)E, Theorem 1 yields
Proposition 2. The structure tensors on the nonίnvariant hypersurface P

satisfy

(i) f = - / + α

/(8)t/ + i8®K,
(i i ) a Ό f = λβ, j 8 o / = - λ a ' ,

(iii) /C/ = - ^ F , fV = ^t/,

(iv) α ' ί ϋ ) = 1 - Λ2, ^ ( F ) = 0,

(v) jSCϋ) = 0, β(V) = l - λ 2 .

Corollary 1. P(f, U, V, a, β, X) is a quartic structure of maximal rank.
In fact,

f + (1 + λ*)f + λΠ = 0 ,

that is,

(f + λ2l)(f + I) = 0 .

If / * = 0, then X = a\X)U + /3OTF. Hence 0 = a'(X)fϋ + β(X)fΨ =
— λ\a\X)U + β(X)V), so λ being nowhere zero, X must vanish.

In the sequel, unless explicitly mentioned to the contrary, we assume that
λ Φ ± 1 and, in this case, we denote by Pf the manifold defined by
{p e P10 < λ(p) < 1}. Geometrically this means that E and N are distinct vector
fields in the sense that EUp) Φ Nί(p) for all p e P r . This means that the Euler-
Poincare characteristic χ(P7) of P' is zero since U (and F) are nonsingular
vector fields on P'. Topologically, this is the case for the odd dimensional
spheres, but χ(S2n) Φ 0. Note however that there are points on S2n — {pe S2n \ λ(p)
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= 0}, considered as a noninvariant hypersurface, for which λ = ± 1.
If we put a = (1 - λ2)~W and β = (1 - λ2)~ιβ, then P' is pseudo-glob ally

framed, that is, α(t/) = l,ά(V) = 0, β(U) = 0, β(V) = 1 and

f=-I + p(ά®U + β®V), p = 1 - Λ2 .

Corollary 2. 77ιe noninvariant hypersurface Pf is pseudo-globally framed.
Moreover,

άof = λβ, βof= -to ,

and

fU = -λV , fV = λU .

If we put

and compute its square, we get f\X = — X + &{X)Ό + β(X)V. Moreover,
fλυ = -λV and fxV = 0. Hence f\X = -fxX - λά(X)V, from which f\X =
-flX. If fλX = 0, then X = ά(X)U + β(X)V. Applying fγ again gives 0 =
— λά(X)V, so ά(X) = 0 since λ and V are nowhere zero. Thus, rank fx — In — 1.

An even dimensional C°° manifold P is said to be globally framed if there
exist a linear transformation field /, global vector fields Ea and 1-forms ηa,a —
1, , 2v, satis fying

ηa(Eb) = δa

b ,

f= -I + V

a®Ea ,

the summation convention being employed here and in the sequel.
Theorem 3. The noninvariant hypersurface Pf carries a globally framed

quarticstructure (f19 U, V, ά, β) of rank In — 1, where f1 = f — λβ®U, that is,
(i) fl= -I + &®U + β®V9

( ϋ ) α o / 1 = 0 , βof,= - λ ά ,
(iϋ) fλϋ = -λV, UV = 0,
(iv) ά(U) = 1, a(V) = 0,
(v) β(U) = 0, /3(F) = 1,

« + fl = o .

Corollary. The noninvariant hypersurface P'(J, a,g) of the almost contact
metric manifold M(φ, η, G) may be endowed with a quartic structure of maxi-
mal rank 2n given by the (1,1) tensor field
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J - λ(a ® JU + ~Ca <g> U

where U is the vector field on P' (of length 1) given by φN = —i^U and the
function λ is defined by E — λ(N — i^.JU),r] = G(E, •)•

If we put f2 = U + λa ® V, then f2U = 0 and f2V = 0. Moreover, f\X =
-X + ά(X)U + β(X)V. Applying f2 again gives f\X = - / 2 Z .

Theorem 4. 77ιe noninvaήant hypersurface P' carries a globally framed f-
structure (f2, U, V, a, β) of rank 2n — 2, that is,

(0 fi= _/ + &®u + β®v,
(ii) ά o f2 = 0, ^ o /, = 0,

(in) f2U = 0, UV = Q,
(iv) άW) = 1, ά(V) = 0,
(v) β(U) = 0, β(V) = 1,

where

f2 = f - χ(β (x) U - a (x) V) .

Corollary. 77ιe noninvariant hypersurface P'(J, a, g) of the almost contact
metric manifold M(φ, η, G) may be endowed with an f-structure of rank 2n — 2
defined by the (1,1) tensor field

J - — ^ ( C a (g)U + a®JU) ,
1 Λ

where U is the vector field on P (of length 1) given by φN — —i*U and the
scalar field λ is given by E = λ(N — i*JU), η = G(E, •)•

3. Symplectic quartic structures

Since the collineation ψ is skew symmetric with respect to the metric G, the
field / has this property with respect to the induced metric. For, g(fX, Y) =

= -g(X,fY). We put

F(X, Y) = g(fX, Y)

and call F the fundamental form of the noninvariant hypersurface P(f, U, V, g).
Clearly,

F = i*Φ ,

where Φ is the fundamental form of the ambient space.

From (2.3)-(2.5),
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) 9 β = g(V, ) .

Moreover, from formula (iv) of Proposition 2, U and V are orthogonal, that is,
g(U, V) = 0. If we put g = (1 — λ2)~ιg on P', then U and V form an orthonormal
pair with respect to the metric g. Setting F 2 = g(f2X, Y), we get

F2 = F + 2Λ(1 - λ2)ά A β .

Assume now that M is normal and Φ is closed for example, assume that M
is a cosymplectic manifold. Then, F is closed, so by Corollary 1 to Proposi-
tion 2, the 'quartic' structure on P is symplectic, that is, F is closed and of
maximal rank. (The ambient space cannot be a contact metric manifold since
P is a noninvariant hypersurface [3].) Observe that F(X, Y) = g(fX,Y) =
g(JX, Y) + a(X)β(Y), so F(X, Y) = \[g{JX, Y) - g(X, JY)] + (a A β)(X, Y).
Since a Φ 0, (/, g) is not an hermitian structure on P. However, (/, g*) is
hermitian where g* = g + a <g> α. Indeed, g*(/X, Y) = ^(/Z, Y) + β(X)a(Y)
= F(X, Y) - a{X)β{Y) + a(Y)β(X) = F(X, Y) - 2(α Λ /3)(X, Y). Putting

β*(Z, Y) = g*(JX, Y) ,

it is easily seen that

F = fl* + 2a A β .

Since / is of maximal rank and / is a regular map, the symmetric tensor

γ=g-β®β

defines a Riemannian metric, in fact, an hermitian metric with respect to /.
Since Φ is closed, γ is an almost Kaehler metric and F is the fundamental form
of the almost Kaehler manifold P(J, γ). M being normal, P(J, γ) is a Kaehler
manifold [3].

Denote by K the ring of real-valued functions on P. To each vector field X
on P, we assign the 1-form ξ defined by

f =

where t is the interior product operator given by

b(X)θ](X1, ,XP_J = pθ(X,X19

θ being a p-form, p > 1, and K^)^ = 0, ^ £ We therefore have an iso-
morphism μ of the ^-module of vector fields on P onto the ^-module of 1-
forms on P defined by μ(X) = ξ. This isomorphism may be naturally extended
to an isomorphism, again denoted by μ, of the £-module of skew symmetric
contravariant tensors of order p with the £-module of p-forms.
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Following P. Libermann (see [7]) an operator * analogous to the Hodge star
operator is defined as follows:

pn

nl

If θ is a p-iorm, then *θ is a (2n — /?)-form and

* 2 0 = θ .

We may also define the operator L = e (F), the exterior product by F, on the
symplectic manifold P(/, g). It clearly coincides with the corresponding operator
of Hodge-Weil on Kaehler manifolds. We shall see below that its "dual" A with
respect to * coincides with its dual with respect to *. In fact,

(3.1) A = * - 1 L* = *L* .

Thus

Aθ = c(μ-ψ)θ , p > 2 .

Analogous to the codiίϊerential operator δ, the symplectic codifferential ope-
rator δ is defined by

(3.2) δ = *-1ί/* = ^̂ /* .

Clearly

^2 == 0 .

We relate the operators *, A and δ on the symplectic manifold P to the cor-
responding operators of Hodge-Weil on the underlying almost hermitian struc-
ture (/, γ). Since F(X, Y) = γ(JX, Y), we obtain

(3.3) A_ = (_l)»ci
n\

where *1 is the volume element of γ. Clearly,

on p-forms.
The operator C previously applied to a may be extended to a mapping, again

denoted by C, on p-forms θ as follows:
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It has the obvious property

C2Θ= (-l)pθ .

Moreover, it commutes with * and L. From the definition of *, we obtain

Hence

Aθ = *'ιL*θ = C*-ιL*C~ιθ = CΛC~ιθ = CC~ιΛΘ = Aθ ,

so the operators A and A coincide.
From (3.2), we get

(3.4) δ = CδC-1 .

For, δθ = C*~ιd*C~ιθ = CδC~ιθ. Hence, from the formula

dA- Ad= -CdC1

valid for almost hermitian manifolds, the purely symplectic relations

dA - Ad = -δ ,

and

δL- U = -d

are obtained.
Finally, from (3.3) and (3.4),

/
P

δθ*l = 0

if P is compact.
If P ; is compact, its topology can therefore be studied from the symplectic

point of view (/, g) in comparison with the symplectic point of view (/, γ) of
Hodge-Weil, the interesting thing being that F is the fundamental from of both
structures.

4. Hypersurfaces of cosymplectic spaces

Denote by V the Riemannian connection of M(φ, η, G) and by D the induced
connection on the hypersurf ace P. Then, the equations of Gauss and Weingarten
are
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(DziJY = h(X, Y)N

and

respectively, where h and H are the second fundamental tensors (of types (0,2)
and (1,1), respectively) of P with respect to the normal vector field N. The tensor
h is symmetric and h(X, Y) = g(HX, Y).

Covariant differentiation of (2.3) along P yields

(Fι*γφ)i*X - KX, Y)i*U + iJDyX + a\DγX)N

= h(fX, Y)N + i^DY1)X + iJDyX + {Dγa')(X)N

+ a'(DγX)N - a\X)i*HY .

Covariant differentiation of (2.4) along P gives

(Fi*zφ)N - φi*HX = -KX, U)N - i*DxU ,

from which follows

(Fi*x<p)N - iJHX - a'(HX)N = -h(X, U)N - i*DxU .

Differentiating (2.5) gives rise to

VUXE = h(X, V)N + i*DxV + (XX)N - λi*HX .

Similarly we have, from β = i*η,

(Dxβ)(Y) + β{DxY) = {Vuxη){i*X) + h(X, Y)V(N) + β(DxY) ,

and, from λ — η(N),

Xλ = {Vuxrj){N) - β(HX) .

If the ambient space is cosymplectic, then

Vψ = 0 , Fη = 0 , FE = 0

(see [3]). Thus

φxf)Y = a'(Y)HX - h(X, Y)U ,

ΦW)(Y) = -KX,fY) , Φxβ)(Y) = λh(X, Y) ,

(4.1) DxU = fHX, DxV = λHX,

h(X, U) = a\HX) , h(X, V) = β{HX) ,

Xλ = -β(HX) .
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Observe that β is closed.
The manifold P' is said to be totally flat if its structure tensors are parallel

fields with respect to the Riemannian connection.
P' is called normal if its induced globally framed /-structure is normal [4].
Proposition 5. // the ambient space of the symplectic quartίc manifold P

is cosymplectic and h — μa® a, then f is covariant constant and λ = const.
On the other hand, if P is totally umbilical, then V is a conformal vector field.
If H commutes with f, then U is a Killing vector field, and conversely.

Although / has vanishing covariant derivative, (/, g) is not normal (see § 6).
However, we do have

Corollary 1. // P is totally geodesic and the ambient space is cosymplectic,
then P is totally flat and normal.

If P satisfies the conditions in Corollary 1, then DJ = 0 since / = / — a (x) V.
Hence (/, g*), as well as (/, γ), is a Kaehler structure on P.

Corollary 2. The hermitian structure (7, g*) on the totally geodesic hyper-
surface P of the cosymplectic manifold M is Kaehlerian.

Corollary 3. // the hypersurface (P, g) is totally umbilical, that is, if h — σg
{with respect to N) and (M, G) is of constant curvature, then for n > 1, (P, g)
is of constant nonnegative curvature σ2.

Proof. Indeed, Vuxi*Y = i*DxY + σg(X, Y)N, so

V^zVi^Y = i*DzDxY + σ{g(Z,DxY) + g(DzX,Y) + g(X,DzY)

+ Zσ.g(X, Y)}N - σ2g(X, Y)i*Z .

Denoting by R and R the curvature tensors of the metrics G and g, respectively,
we get

, X)Y - a\g{X, Y)Z - g(Z, Y)X]}

+ {Zσ-g{X, Y) - Xσ g(Z, Y)}N .

Thus, R being zero,

R(Z,X)Y = σ2{g(X, Y)Z - g(Z, Y)X)

and Za-g(X, Y) — Xσ g(Z, Y), each of these relations implying σ is constant

on M.
Under the conditions of Corollary 3, equations (4.1) become

φxf)Y = aW(J)X - g(X, Y)U] ,

= λσg(X, Y) ,
2 )

DXU = σfX , DXV = σλX ,
χχ= -σβ(X) .
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Observe that F = — Da!, so F is an exact 2-form, that is, F does not give
rise to a nontrivial cohomology class. Moreover, the second and third state-
ments of Proposition 5 clearly hold. It may also be checked that da is of bi-
degree (1,1) with respect to / = / — a ® V.

In [3] it was shown that a noninvariant hypersurf ace of a cosymplectic mani-
fold is a complex manifold. Thus P(J,g), as well as P\J,g), is endowed with
the integrable almost complex structure of formula (2.1).

The even dimensional sphere: We regard E2n+1 as a cosymplectic space and
let S2n be the unit sphere in E2n+1 minus the set of points (the equator) on which
χ = 0 (see also [1]). Then, since S2n is a totally umbilical hypersurf ace of E2n+ι

with σ — — 1, equations (4.2) become

(Dxf)Y = g(X, Y)U - a\Y)X ,

ΦW)(Y) = -F(X, Y) , (Dxβ)(Y) = -λg(X, Y) ,

DXU= -fX, DXV = -λX ,

Xλ = β(X) .

Thus, for every n, S2n (as well as (S2nY = S2n\{p εS2n\λ(p) = 0, + 1 , -1})
carries the integrable almost complex structure of formula (2.1). (Observe that
none of the points on S2n for which λ = 0 can be a zero of the closed conformal
vector field V; see [10, p. 170].)

Corollary 4. // the hypersurface (P, g) is totally geodesic and its ambient
space (M, G) is of constant curvature, then (P, g) and (P, γ) (as well as (M, G))
are locally flat.

Proof. Let D denote the Riemannian connection of γ. Then, by the defini-
tion of the Riemannian connection and the formulas DJ = 0 and (DΣa)(Y) =
-λ(Z,/Y)(see[3]) ,weget

γ(DxY,Z) = γ(DxY,Z) + h(X, Y)β(Z)

= γ(DxY,Z) - h(X, Y)γ(JU,Z)

so that

(4.3) DXY = DXY - h(X, Y)JU = DXY ,

since (P, γ) is a totally geodesic hypersurface [6].

Again, since h — 0, the Gauss equation (with respect to N) is

Thus, denoting the Riemannian curvature tensor of (P, γ) by JR,

R , Y)Z ,
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from which γ is a locally flat metric since Ά = 0 and i is a regular map.
Corollary 5. Under the conditions of Corollary 3, // P(J, g) is an invariant

hypersurface or λ = ± 1 , then P is loocally flat (n > 1).
The is an immediate consequence of the formula

R(X, Y)Z

= R(X, Y)Z + σ2 \g(Y, Z)[λβ®V + ήx- g(Z, X)

obtained from (4.3) by putting h = σg.
Remark. Since in the totally flat case, λ is constant, we may consider the

one parameter family of hypersurfaces Pλ, 0 < \λ\ < 1. For each value of λ, Pλ

is a noninvariant hypersurface carrying a globally framed quartic structure fλ

of rank 2n — 1, that is,

fλϋ = -λV , fλV = 0 ,

ά(U) = 1 , £(F) = 0 ,

β(U) = 0 , β(V) = 1 .

Pλ also carries a globally framed /-structure f of rank 2n — 2 where

There are no noninvariant hypersurfaces of a normal contact metric mani-
fold [3].

5. Metric polynomial manifolds

An m-dimensional C°° manifold P is said to be pseudo-globally framed (see
§ 2) if there exist a C°° tensor field / of type (1,1), global vector fields Ea and
1-forms ηa, a = 0 ,1 , -, 2v, with EQ = 0, η° = 0, satisfying

(5.1) v a ( E b ) = δ t ,

(5.2) f = - / + (1 - Λ V ® Ea , U| < 1 .

If Λ = 0, then (/, Ea9 rf) is globally framed (see [4]). If Λ = ± 1 , then / defines
an almost complex structure, so m is even. If, in addition, m = 2v, P is a
parallelizable almost complex manifold. (Observe that a compact complex
parallelizable manifold is Kaehlerian, if and only if, it is a multi-torus [9].)
Clearly, the only pseudo-globally framed polynomial structures defined by / are
those given by f + I = 0,f + / = 0 and f + (1 + λ2)f + λ2l =O,λΞ£ ± 1 ,
the second case arising by assuming fEa = 0,a = 1, ,2v, and the latter
including f + f = 0 as a special case. In the sequel, we study those structures
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for which λφO. The case λ = 0 was the subject of a previous paper [6].
F r o m (5.2), fEa = -λ2Ea, a = l , . ,2v.

If fX = 0, then X = (1 - λ2)ηa(X)Ea. Applying f to this relation yields
λ\\ - λ2)ηa(X)Ea = 0, so X = 0 at those points for which ^ ^ ± 1, since
λφO. At those p e P where Λ(/?) = ± 1, f\ = —Ip. (We shall presently see that
the dimension of P is even.) Hence the linear transformation field / has maxi-
mal rank everywhere on P.

We assume below that

(5.3) fE2i_x = -λE2i ,

(5.4) fE2i = λE2ί_λ , i = 1, , v .

The pseudo-globally framed manifold P(f, Ea, ηa) is called a pseudo-globally
framed metric manifold if it carries a Riemannian metric g such that

(i)
(ϋ)

We put F(X, Y) = g(fX, Y) and call F the fundamental form of P(f,ηa,g).
From (i) and (ii), we obtain

(5.5) 9 ? ί " 1 o/ = λf* ,

(5.6) ^ * o / = -ί^ 2 *- 1 .

If we put

(5.7) J = f - —ηu-ι®E2i ,
λ

then J is an almost complex structure, s o m = 2n.
Theorem 6. The manifold P with structure tensors (f19 ηa, g), a = 1, , 2v,

where fλ — f — hfι (x) E2i_19 i = 1, , v, is an even dimensional globally
framed quartic structure of rank m — v, that is,

(i) n= -I + V

a®Ea,

(iii) /i£2i-i = —XEzi, fiE2i = 0,
(iv) ηa{Eb) = 5ϊ,
( v) j\ -j- fj = 0.

Proo/. Employing (5.3)-(5.6),

nx = (/ -
= fX + frf'(X)Etj

- -x + (l _ py
= - z + T WE..
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Moreover, fxE2i^ = -λE2ί,fλE2ί = λE2i_1 - λE2i_1 = 0. Hence f\X = -fλX
- ληu-ι{X)E2U from which # Z = - f i Z .

If fγX = 0, then X = ηa(X)Ea. Applying f, again yields 0 = -λη2i'1(X)E2i9

that is, ηu-\X) = 0, so X = η2i(X)E2i.
Theorem 7. The manifold P with structure tensors (/2, η

a, g), a = 1, , 2v,
where f2 = f — λ(ηH ® E2i_λ — ηu~ι (x) E 2 ί), w an even dimensional globally
framed f-structure of rank m — 2v9 that is,

(i) f l = - I + t ® Ea,
(ii) 3«o/2 = 0, f2Ea = O,

(iii) ^ a (£ δ ) = 3«.

Froo/. Since/2 = /x + V 1 ® £2O /A<-i = - ^ 2 < + ^ 2 i = ° and f2E2i = 0.
Hence

= fix =-x +

Moreover, /*Z = - / 2 Z + η\X)f2Ea = - / 2 Z .
If / 2Z = 0, then Z = ηa(X)Ea, so rank f2 = m — 2v since / 2 £ α = 0, α =

1 , - . . , 2 P .

A pseudo-globally framed metric manifold is said to be totally flat if the
covariant derivatives (with respect to the Riemannian connection) of its structure
tensors are zero.

Theorem 8. Let Pλ(f, ηa, g) be a complete totally flat pseudo-globally framed
manifold. If Pλ is simply connected, then there is a Kaehlerian submanifold
whose dimension is rank f.

Proof. Clearly, f2 is also a parallel field, so DF2 also vanishes where
F2(X, Y) - g(f2X, Y). Thus Fip = {X e Pλp \ F2(X, P2p) = 0} defines a parallel
distribution, and therefore the orthogonal complement P"v (with respect to g)
also gives a parallel distribution. Observe that the Ea do not belong to P"p. By
the de Rham decomposition theorem Pλ = P'λ + P'/ where F2 vanishes on P[
and F2 has maximal rank on P" . Since Df2 vanishes so does the Nijenhuis tor-
sion [/2,/2] The almost complex structure on P'/ obtained by restricting f2 to
P" is therefore integrable. F" being closed, P" is symplectic. In fact, since F2

has vanishing covariant derivative, P" is a Kaehler manifold.
On a pseudo-globally framed quartic metric manifold, if we define

/ = / + (1 - λ)Vt (x) E2i_λ - rf*-1 (8) E2i]

and

x) E2i_x - v

2 i ' 1 ® E2i] ,

i — I, > . ,v, then / and / are almost complex structures other than /.
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Moreover, (/, g) is an almost hermitian structure on P. Setting F(X, Y) =
g(fX, Y), we obtain

F = F + 2(1 - X) Σ VH A ηu~ι .
i

If the fundamental form F and the ηa are closed forms, the almost hermitian
structure on P is almost Kaehlerian. It is Kaehlerian, if and only if / has
vanishing covariant derivative with respect to g, that is, if P(f, ψ, g) is totally
flat. In this case, the Ea are infinitesimal automorphisms of the Kaehlerian
structure. The same conclusion prevails if we consider / instead of / .

Theorem 9. // the pseudo-globally framed metric manifold P(f,ηa,g) is
totally flat, then it carries the Kaehler structures (f,g) and (/, g).

A corresponding theory may be developed for odd dimensional manifolds by
letting a € {1, , 2v + 1}, i e {1, , v} and by setting fE2v+1 = 0, in which
case from (5.7), J2 = — / + η2v+1 ® E2v+1. Hence / is the fundamental aίfine
collineation of the almost contact manifold P(J,E2v+1,η

2v+1). We give the
analogues of Theorems 8 and 9:

Theorem 10. A totally flat odd dimensional pseudo-globally framed metric
manifold P{f, ηa, g) may be endowed with the cosymplectic structures (/, η, g)
and (f,η,g).

Proof. That P is almost cosymplectic is a consequence of the fact that / and
the ηa are covariant constant, and λ = const. Thus φ and η also have vanishing
covariant derivatives. The normality of P follows from the vanishing of

(DφXφ)Y - (DφYφ)X + φ(PYφ)X - φ(Dxφ)Y + {(DxV)(Y) - (Dγη)(X)}E .

Corollary. Let Pλ(f,ηa,g) be a complete totally flat odd dimensional
pseudo-globally framed manifold. If Pλ is simply connected, then there is a
Kaehlerian submanίfold of dimension rank f.

The proof is similar to that of Theorem 8.

6. Normal symplectic structures

Recall that the framed structure (/, U, V, a, β9 λ) on Pf is normal if the under-
lying globally framed /-structure (/2, U, V, a, β) is normal. The condition for
this is given by the vanishing of the tensor field [f2, f2] + da ® U + dβ (g) V of
type (1,2).

The direct product of the pseudo-globally framed hypersurfaces P t(/(<), Ui9

Vi, ai9 βi9 λi), i = 1,2, also has the naturally induced almost complex structure
J on P[ X P'2 defined by

- &2{X2)Uλ ,

f{2)x2 - λ2β2(x2)u2 + λ2ά2(x2)v2 + βmv2 + &x{
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If the P't are normal, then J is integrable [4]. The converse is obtained by
employing [/, J](X^ x 0, Yx x 0) = 0, [J, /](0 x X2, 0 x Y2) = 0,[J, /](0 x X2,
Yx x 0) = 0 and [J, J](Xλ x 0,0 X Y2) = 0 in the expression for [J, J](X, X X2,
Yλ x y2) where X x Y = ( X Y). Define a metric on PJ x P'2 by ft + ft, where
gj = i*G, / = 1,2, is the metric induced on Fs by the almost contact metric G
of M(φ,η,G). Assuming that M is cosymplectic, the 2-form Ω on P[ X P£
defined by β = (F ( 1 ), 0) + (0,F ( 2 )) + (άv 0) Λ (0, ά2) + (β19 0) Λ (0, /32), where
F ( i ) = ifΦ,j = 1,2, is the fundamental form of Fj9 is the Kaehler form of
P[ x P2. For, since Φ is closed, F ( 1 ) and F{2) are closed. The 1-forms at and
βi9i = 1,2, will also be closed if the P< are totally geodesic. Although the
metrics gt of P< need not be Kaehlerian we do have the following result.

Theorem 11. The direct product of the symplectic quartic structures
P'iifd) >Ui9Vi9άi9βi),i= 1,2, has a naturally induced almost complex structure
given by J. If the quartic structures are normal, then J is integrable, and con-
versely. If the P[ are totally geodesic hyper surf aces and the ambient space is a
cosymplectic manifold, then P[ x P'2 is Kaehlerian.

Corollary. Let P be a totally geodesic hypersurface of a cosymplectic mani-
fold with the induced symplectic quartic structure. Then the direct product of
P with itself is Kaehlerian.

Remarks, (a) Let P(f, ηa, g), a — 1, , 2v, be a totally flat even dimen-
sional pseudo-globally framed manifold. We have seen that P(f, g) and P ( / , g)
are Kaehler manifolds. If P is compact, then its topology may be studied from
several points of view, first as a compact Kaehler manifold and secondly by
introducing a theory on P(J, ηa, g) analogous to Weil's generalization of Hodge's
theory of harmonic integrals on algebraic varieties. Whereas F and F are the
Kaehler 2-forms of P ( / , g) and P ( / , g) respectively, F plays that role in the
latter theory. Although / has maximal rank, (/, g) is not a Kaehler structure on
P. However, if v = n, then (/, g) is Kaehlerian. This therefore yields a general-
ization of Kaehler geometry (see § 3).

(b) Let P(/, Ea, ηa, X) and P ( / , Ea, ψ, λ) be pseudo-globally framed spaces
of the same dimension and rank. A diffeomorphism μoiP onto P is called an
isomorphism of P onto P if

and

= Ea .

If P = P and / = /, Ea = Ea,ψ = ηa for all a, then μ is an automorphism
of P. The set of all automorphisms of P clearly forms a group which we denote
by A(f,Ea,η

a). If μeA(f,Ea,η
a), then μ*ηa = ηa, hence 2 o μ = λ. More-

over, μ^of2 — f2o μ^, where f2 — f — λ(η2ί ® E2ί_x — η21'1 ® E2i). Thus

μ e A(f2, Ea9 ηa), from which we conclude that μ € A(f,Ea, ηa) Π A{ f, Ea, ηa).
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Conversely, if μeA(f,Ea,v

a) Π A(f,Ea,η
a), then μεA(f,Ea,v

a). If P is
compact and (/, Ea,η

a, X) is normal, we conclude just as in [5] that the group

of automorphisms of a pseudo-globally framed space is a Lie group.
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