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PSEUDO-COMPACT SUBSETS OF INFINITE-
DIMENSIONAL MANIFOLDS

ULRICH KOSCHORKE

Introduction

In the last few years there has been considerable progress in the theory of
Hubert manifolds, and the answers to almost all questions turned out to be as
simple as they possibly could be. In particular, as Eells and Elworthy have
shown, every Hubert manifold is diffeomorphic to an open subset of Hubert
space a result of Kuiper and Burghelea then implies that two Hubert mani-
folds are diffeomorphic if they are homotopically equivalent. One of the main
reasons for this lack of complications is perhaps that there is nothing built into
the definition of a Hubert manifold which could play the role compact subsets
play in finite dimensions. This let Palais to suggest that one should add struc-
ture to infinite-dimensional manifolds by specifying what subsets one considers
a being "pseudo-compact". He also suggested a definition which is motivated
by K. Uhlenbeck's notion of intrinsically bounded subsets of Sobolevmanifolds
of sections.

The purpose of this paper is to investigate manifolds with pseudo-compact
structure. In particular, we introduce the notion of ^-boundaries (which corre-
spond to compactifying boundaries of finite-dimensional manifolds), derive a
strong invariant and use it to obtain the complete classification of a large class
of manifolds with pseudo-compact structure as well as criteria for the existence
of open embeddings. Finally, we compute our invariant for many concrete ex-
amples and end up with some deletion theorems for section manifolds which
might have some interest in the theory of non-linear elliptic operators.

The author would like to thank R. Palais for several very stimulating con-
versations.

1. Pseudo-compacta

Let M be a Banach manifold (i.e., a Hausdorf space locally homeomorphic
to open subsets of suitable Banach spaces), and fix a (not necessarily maximal)
atlas J / for M.

Definition (Palais). A subset K of M is pseudo-compact (with respect to s/)
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if it is the finite union of sets of the form φ'\A) where the chart φ: U = Θ (U
open in M, and Θ open in the Banach space E) belongs to srf and the subset
A of 0 is bounded and closed in E.

We denote the set of pseudo-compact a by φ(M9 stf). M together with the
structure given by ψ(M, stf) is called a φ-manijold.

Compact subsets of M are pseudo-compact, and they are the only closed
subsets which are pseudo-compact with respect to every atlas of M. Finite
unions and closed subsets of pseudo-compacta are again pseudo-compact. The
pseudo-compact neighborhoods of a pseudo-compactum K form a fundamental
system of neighborhoods of K; in particular, M is "locally pseudo-compact".
Also, if M is second countable, then it is the countable union of pseudo-com-
pacta.

If now U is an open subset of M, we make U into a </>-manifold by restrict-
ing s/ to U. Then φ(U, j/\U) = {Ke <p(M, stf) | K c £/}.

Definition. Let M19 M2 be ^-manifolds and f:M1 —> M2 a continuous map.
/ is called a φ-map if the image of each closed pseudo-compact subset of Mλ

under / is contained in a closed pseudo-compact subset of M2. / is called
pseudo-proper if the inverse image of each pseudo-compactum in M2 is pseudo-
compact in Mλ.

We now illustrate the concepts introduced so far by some examples.
a) Finite-dimensional manifolds.
Proposition 1.1. // M is finite-dimensional, then for every atlas s/ of M

φ(M, s/) = {compact subsets of M) .

b) Hubert manifolds. A Hubert manifold is a separable paracompact
C°°-manifold (without boundary unless explicitly mentioned) modelled on the
separable oo-dimensional Hubert space H. The idea of the following proposi-
tion is due to D. Henderson who proved the corresponding result for (contin-
uous) Frechet manifolds.

Proposition 1.2. For each Hilbert manifold M there exist two C^-charts
φ19 φ2 whose domains cover M such that M itself is pseudo-compact with re-
spect to <stf = {φ19 φ2}.

Proof. If xί9 x2 are antipodal points in the Hilbert sphere S, then M~MχS
is covered by M x (S — {JCJ) and M x (S — {x2}). Choose φt to be a suitable
difϊeomorphism between M X (S — {Xi}) and a tubular neighborhood of a closed
bounded infinite-codimensional imbedding of M into H.

Corollary. A subset K of a Hilbert manifold M is pseudo-compact with
respect to the maximal C00-atlas of M if and only if K is the finite union of
locally closed subsets of M {locally closed = intersection of an open subset with
a closed one).

Example. Choose an open halfspace H+ in H, and take s/ to be the atlas
for H consisting in the identity map^of H and all C°°-charts with domain in H+.



INFINITE-DIMENSIONAL MANIFOLDS 129

Then H+ is pseudo-compact in H, but its closure is not.
The corollary above indicates that we will have to consider non-maximal

atlases if we want to obtain interesting 0-manifolds. In the following examples
we will define standard ^-structures for some important Banach manifolds by
using naturally arising atlases.

c) Banach spaces, spheres and Grassmannians. Let E be a (real or com-
plex) infinite-dimensional Banach space. We give E (and similarly each open
subset of E) its standard ^-structure by the atlas consisting in the identity map.

Also, if n is a natural number, we make the Grassmannian

^n(E) = {n-dimensional linear subspaces of E]

into a 0-manifold by the analytical atlas si — {φF,o IF a n d G are complemen-
tary subspaces in E F € Gn(E)}9 where the chart φp]G has domain L(F, G) and
associates to each operator uεL(F,G) its graph; cf. [3], [7]. Now fix
a β (0, π/2), a pair (S, T) of complementary subspaces of E with S of arbitrary
finite dimension, and denote the corresponding projections by Ps,Pτ> Then
KiS>τ>a) = {F' € #n(E) 11| pτ(x) || < (tga) \\ p8(x) \\ for all x e F'} is a closed tubu-
lar neighborhood of the compact manifold Ήn{S) in &n(E).

Proposition 1.3. A subset of &n(E) is pseudo-compact if and only if it is
closed and contained in K{StT>a) for some suitably chosen (S, T, a).

Recall that &n(E) is a classifying space for GL(n, K) where K is the (real or
complex) scalar field of E.

Corollary. An n-plane bundle ξ over a paracompact basespace X is a sub-
bundle of a finite-dimensional trivial vector bundle if and only if the classify-
ing map of ξ can be chosen to map X into a pseudo-compact subset of ^JJE).

The total space γn(E) of the universal π-plane bundle over &n(E) also can
be given a standard ^-structure by a similarly naturally arising atlas of triviali-
zations [7].

The sphere S(E) of E can be considered to be the set of all (real) halflines
in E starting at the origin. We make it into analytic 0-manifold by the atlas
consisting in all central projections onto affine hyperplanes of E. Pseudo-com-
pact subsets of S(E) are closed and allow a characterization similar to Proposi-
tion 1.3. In particular, the projection of S(E) onto the (real) projective space
of E is a pseudo-proper </>-map.

d) Manifolds of sections. We adopt the terminology of [12]. Let E be a
C°° fiber bundle over an ^-dimensional compact manifold X, and let Jί be a
Banach space valued section functor satisfying axioms (B § 2) and (B § 5), e.g.,
Jί = Ck for k > 0 or Jί = Lξ for pk > n. Then the manifold Jί(E) of all
^-sections in E has a natural ^-structure given by the C°°-atlas of all charts
arising from open vector subbundles.

Definition. A subset of Jί(E) is intrinsically bounded if it lies in a finite
union of sets each of which is contained and bounded in Jt(HΪ) for some
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suitable open vector subbundle ξt of E.
Proposition 1.4. A subset of Jί(E) is pseudo-compact if and only if it is

closed and intrinsically bounded.
In her work on the calculus of variations [15] K. Uhlenbeck introduced the

concept of intrinsically bounded sets for Jί — Lξ, gave various equivalent
characterizations, and used the related notion of pseudo-properness (which
coincides with ours) as a criterion for certain functions (e.g., energy function-
als) to satisfy condition (C). One can extend one of her results to prove the
following

Proposition 1.5. Let D:C°°(E) -> C°°(£0 be a (non-linear) diβerentίable
operator of order r between the fiber bundles E and Ef over X. If pk > n, then
D extends to a smooth ψ-map from Lξ+r(E) to Lξ(E').

2. Boundaries and ends of ^-manifolds

Let M be a Hubert manifold. We call two continuous maps j1:Nι —> M,
72 :N2 —> M (N19 N2 are other Hubert manifolds) equivalent if there is a homo-
topy equivalence h:N1-^ N2 such that j2>h ~ jx. The collection of such equiv-
alence classes of maps into M is denoted by B(M). For later use we notice that
each element in B(M) can be represented by the inclusion map of an open sub-
set of M (cf. [8]).

Also let φ19 φ2 be two ^-structures on M, i.e., φ% = ψ(M, s/i) for some atlas
s/t. We call φλ and φ2 equivalent if there is a ^-diffeomorphism f:(M,ψ^) ~
(M, 02)(i.e., both / and f~l are smooth 0-maps) homotopic to the identity.

Definition. Let M be a Hubert manifold with a ^-structure φ. We say M
has a φ-boundary (or φ admits a ^-boundary) if there exists a Hubert manifold
M with interior M and boundary dM such that the complements of the open
neighborhoods of dM in M are just the closed pseudo-compact subsets of M.

If φ admits a 0-boundary as above we can, using an (one-sided) collar of
dM, homotop the inclusion /': dM C M in an obvious way into a map /: 3M-+M.
The corresponding equivalence class [/'] e B(M) depends only on the equivalence
class of the ^-structure φ on M and is denoted by b(φ).

Classification theorem. For each Hilbert manifold M the invariant b(ψ)
determines a bijective correspondence between equivalence classes of φ-struc-
tures on M which admit ψ-boundaries, and B(M).

Proof. We construct an inverse for b. Each element of B(M) can be rep-
resented by a closed infinite-codimensional imbedding /: N —> M, [8], By fiber-
wise deletion within a closed tubular neighborhood £(1) of N we obtain a dif-
f eomorphism between M and the complement of a smaller tubular neighborhood
£(1/2). Use this diffeomorphism to add the boundary of £(1/2) as boundary
dM to M. The atlas consisting in all charts whose domain is the complement
of a closed neighborhood of dM in M = M U dM gives M a ^-structure φj.
By various ambient isotopy theorems, [6], [8], the equivalence class of φj
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depends only on [/]. Also clearly b(ψj) = [/]. On the other hand, let ψ be a
^-structure on M which admits a ^-boundary. Fix M, dM as in the definition
above, and choose a collar C ~ dM x [0,1) around dM in M. Furthermore
observe that by [2] M is Palais stable, i.e., M ~ M x H. Now we represent
b(ψ) by / : 9 M ^ a M χ { l / 2 } χ { 0 } c M χ H, and, in the construction of ψj9

we choose the tubular neighborhood E(l) of /(dM) to be a suitable subfibration
oi C X H over j(dM). Using the techniques of [8, Theorem 2.5] fiberwise it is
then possible to find a difϊeomorphism from M x H onto itself, homotopic to
the identity map and taking ψ over into ψό (since it extends to the respective
0-boundaries). Hence the original ^-structure ψ is equivalent to the ^-structure
ψj induced by b(ψ). q.e.d.

It follows from this proof that in the above definition M is unique up to a
diffeomorphism which, when restricted to M, is homotopic to the identity.

Corollary. Let M1 ? M2 be two Hίlbert manifolds with ψ-structures ψ19 ψ2

which admit ψ-boundaries. Then the following conditions are equivalent:
( i ) Mx and M2 are ψ-diffeomorphic.
(ii) // biψi) is represented by j t : Nt —> Mt (i = 1,2), then there are homo-

topy equivalences Nx — N2 and M1 — M2 which make the diagram

Λf2—!ί-> M 2

homotopy commutative.
(iii) Mj αnί/ M 2 ίϊr^ diffeomorphic.

Definition. An open ψ-imbedding of a Hubert ^-manifold M into // is a
0-difϊeomorphism from M onto an open subset of H (with its standard 0-struc-
ture).

Suppose that M has a ^-boundary and 3M Φ φ. Then such an open φ-im-
bedding exists if and only if there is a diffeomorphism from M onto a closed
submanifold (with boundary) of H which maps M onto an open subset of H.
The techniques in [1] then imply

Proposition 2.1. Lei M be a Hilbert manifold with a ψ-structure which
admits a ψ-boundary such that dM Φ φ. Then there is an open φ-imbedding
of M into H if and only if there exist a pair of countable CW-complexes {A, B)
and a homotopy equivalence h: dM — B such that dM U h A is contractible.

In particular, one can use a construction of Burghelea to show that a Hilbert
manifold admits an open ^-imbedding into H with respect to infinitely many,
but not all of its ^-structures.

Proposition 2.2. Let M be a Hilbert ψ-manifold which is not pseudo-com-
pact itself but has a countable family of closed pseudo-compacta K19 K2,
such that each closed pseudo-compact subset of M is contained in some Kt.
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Then M has no ψ-boundary.
Corollary. Hubert space H, its unit sphere, its Grassmannians Gn(H) and

the universal vector bundles γn(H)(n = 1,2, •) do not have ψ-boundaries.
In particular, H and its open unit ball are not ψ-diβeomorphic.

Definition. Let M be an arbitrary ^-manifold. An open subset U of M is
called an ideal ψ-boundary for M if each closed pseudo-compactum in M is
contained in another closed pseudo-compactum K such that M — K C U and
the inclusion is a homotopy equivalence. The connected components of U rep-
resent the ends of M.

We call two open subsets U1 and U2 of a Banach manifold M equivalent if

there is a homotopy equivalence h: Uί — ^ U2 which makes the diagram

M

homotopy commutative. The set of such equivalence classes of open subsets of
M is denoted by B(M). If now M has an ideal ^-boundary U with respect to
some ^-structure ψ, then the equivalence class of U is a well defined invariant
b(φ) 6 B(M). In case M is a Hubert 0-manifold which has a ^-boundary then
it also has an ideal 0-boundary, e.g., take the interior of a collar of dM. The
above definition of B(M) and ψ(b) coincides with the previous one after an ob-
vious identification.

Ideal ^-boundaries generalize the notion of ^-boundaries considerably. We
will see in the next section that in most concrete cases naturally arising standard
^-structures admit ideal ^-boundaries (in contrast to the corollary of Proposi-
tion 2.2). On the other hand, it also follows from the corollary that the gen-
eralized invariant b(ψ) does no longer completely determine ψ.

3. Deleting pseudo-compact subsets

Definition. Let M be a 0-manifold. M has the pseudo-compacta deletion
property (PDP) if each closed pseudo-compactum in M is contained in another
one K such that the inclusion M — K C M is a homotopy equivalence. In other
words, M has PDP if and only if it is an ideal ^-boundary of itself.

Proposition 3.1. No finite-dimensional non-empty manifold satisfies PDP.
This follows from a standard argument using homology theory. In contrast,

PDP seems to hold for many infinite-dimensional 0-manifolds, especially for
those with natural standard structures.

The next two propositions follow from known deletion theorems for infinite
codimensional submanifolds and from the considerations in lb) (proof of Prop-
osition 1.2.) and lc).

Proposition 3.2. Each Hubert manifold is diffeomorphic to an open subset
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of H, which with respect to its standard ψ-structure has PDP (and even has a
φ-boundary).

Proposition 3.3. // E is an infinite-dimensional Banach space, then E, S(E),
Gn(E) and ϊn(E), n=l,2,..., (see lc)) have PDP.

Theorem. Let E be a C°° fiber bundle over a compact n-dimensional mani-
fold X. Then the section manifolds Ck(E), k = 0 ,1 , , and Lξ(E), pk > n,
have PDP.

Idea of proof. For simplicity let us consider only C°(E). Each pseudo-
r

compactum of C°(E) is contained in one of the form K = (j C°(Bi), where Bt
ΐ = l

is a closed ball subbundle of E. It suffices to show that the inclusion of C°(E) ~ K
into C°(E) induces an isomorphism of homotopy groups [13, Theorem 15].
Choose s0 € C\E),x19 •• , x r ζ l , disjoint neighborhoods JJi of xt and trivi-
alizations Tt of E\Ui9 such that sQ\Ui is constant with respect to Tt and
so(Ui) C E — Bt (i = 1, r). Now let an arbitrary element of πq(C°(E), s0) be
represented by a map a: Sq —> C°(E) which maps a neighborhood of the base-
point of Sq into s0. For y € Sq the section a(y) can be deformed first into a sec-
tion which is constant with respect to Tt in a neighborhood of x ί 5 and then into
a section which maps xt into sQ(x^) or at least some point of Ut into E — .Bi?

and this in a uniform way. (For the latter deformation we use the map a,
evaluated at xt.) Hence the homotopy homomorphism πq(C°(E) — K, sQ) —•
πq(C0(E),s0) is onto, and a similar deformation argument also gives injectivity.

Corollary. Let E, E/ be Cx-fiber bundles over the compact n-dimensional
manifold without boundary X, and let Dk+r: L2

k+r(E) —> L\(Ef) extend an elliptic
nonlinear differential operator D of order r from EtoE'. Then for each pseudo-
compactum K in L\+r(E) the analytic index of D (see [12, p. 94]) is independent
ofDk+r\K.

While Propositions 3.2 and 3.3 are consequences of known deletion theorems,
it seems to be hard to reduce the above theorem to standard deletion methods
for compacta. One step in that direction however may be the following obser-
vation. The coordinate changes in the standard atlas for a Banach space, its
sphere, Grassmannians etc. are weakly continuous, and therefore these mani-
folds have in a natural way a weak topology. Recently J. Dowling [4] showed
that also the coordinate transformations between charts of L%(E), which arise
from open vector subbundles of a fiber bundle E, are sequentially weakly con-
tinuous. Thus there is a natural (sequentially) weak topology on Lξ(E). In a
forthcoming paper we will study the relationship between pseudo-compacta and
weak topologies and also give a full proof of the last theorem.
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