J. DIFFERENTIAL GEOMETRY 5 (1971) 61-74

THE DIAMETER OF δ -PINCHED MANIFOLDS

KATSUHIRO SHIOHAMA

0. Introduction

It is interesting to investigate the manifold structures of a complete riemannian manifold whose sectional curvature is bounded below by a positive constant. As is well known such a riemannian manifold is compact and we may suppose that its sectional curvature K_{σ} satisfies $0 < \delta \leq K_{\sigma} \leq 1$ for every plane section σ . Berger proved in [2] and [3] that a complete, simply connected and even dimensional riemannian manifold with $\delta = 1/4$ is homeomorphic to a sphere, or otherwise M is isometric to one of the compact symmetric spaces of rank one. For arbitrary dimensional riemannian manifolds, Klingenberg proved in [8] that a complete and simply connected riemannian manifold with $\delta >$ 1/4 is homeomorphic to a sphere. Moreover, Berger claimed in [4] that M is a homology sphere if the diameter d(M) of M satisfies $d(M) > \pi/(2\sqrt{\delta})$ for $0 < \delta \leq 1$.

Since the diameter d(M) of a δ -pinched manifold M plays an important role in the proofs of these interesting results mentioned above, it might be significant to investigate the relationship between the manifold structure of M and its diameter d(M) of a δ -pinched riemannian manifold.

One of our main results obtained in the present paper is:

A connected and complete riemannian manifold with $\delta = 1/4$ is homeomorphic to a sphere if the diameter d(M) of M satisfies $d(M) > \pi$.

For a simply connected riemannian manifold with $\delta = 1/4$, Klingenberg claimed in [9] that the distance d(p, C(p)) between any point $p \in M$ and its cut locus C(p) is no less than π , and M is either homeomorphic to a sphere or M is isometric to one of the compact symmetric spaces of rank one. However the proof stated in [9] seems to us to be incomplete¹.

As the main theorem, it will be proved that a three dimensional, connected, complete and orientable riemannian manifold with $\delta > 1/4$ is isometric to the lens space L(1, k) of constant curvature 1, if M has a closed geodesic segment Γ with the length $\mathcal{L}(\Gamma) = 2\pi/k$ and the fundamental group $\pi_1(M)$ of M satisfies $\pi_1(M) = \mathbb{Z}_k$, where k is an odd prime.

Definitions and notations are given in §1. In §2, we shall give an estimate

Communicated by W. P. A. Klingenberg, October 13, 1969.

¹ Added in Proof. Recently J. Cheeger proved this theorem completely.

KATSUHIRO SHIOHAMA

of the distance between some point p on a δ -pinched riemannian manifold and its cut locus C(p), which plays an important role in a proof of a sphere theorem stated above, and the sphere theorem will be proved in this section. In § 3, we shall study some estimates of cut loci of δ -pinched riemannian manifolds which are not simply connected. In § 4, we shall investigate some topological structure of a δ -pinched riemannian manifold with $\delta > 1/4$ whose fundamental group satisfies $\pi_1(M) = \mathbb{Z}_2$. In the last section, we shall prove our main theorem stated above.

1. Definitions and notations

Throughout this paper let M be a connected, complete and differentiable riemannian manifold of dimension $n(n \ge 2)$, whose sectional curvature K_{σ} satisfies $0 < \delta \le K_{\sigma} \le 1$ for every plane section σ . Geodesics in M are parametrized by arc-length, and the tangent space at a point $x \in M$ is denoted by M_x . Let uand v be tangent vectors at x, and denote by $\langle u, v \rangle$ the inner product of u and v with respect to the riemann metric tensor of M and by d the distance function of M. For a geodesic segment $\Gamma = \{\gamma(t)\}$ ($0 \le t \le l$), the length of Γ is denoted by $\mathscr{L}(\Gamma)$ which is equal to l. A geodesic triangle (Γ, Λ, Φ) in M is a triple of shortest geodesic segments each of which is not a constant geodesic. For a geodesic triangle (Γ, Λ, Φ) let $(\Gamma^*, \Lambda^*, \Phi^*)$ be the geodesic triangle in $S^{2}_{1/\sqrt{\delta}}$ satisfying $\mathscr{L}(\Gamma^*) = \mathscr{L}(\Gamma)$, $\mathscr{L}(\Lambda^*) = \mathscr{L}(\Lambda)$ and $\mathscr{L}(\Phi^*) = \mathscr{L}(\Phi)$, where S_{r}^{k} denotes the k-sphere with radius r in a euclidean space R^{k+1} . We shall call $(\Gamma^*, \Lambda^*, \Phi^*)$ the corresponding triangle of (Γ, Λ, Φ) in $S^{2}_{1/\sqrt{\delta}}$. The universal covering manifold of M is defined by $d(M) = \sup \{d(x, y) \mid x, y \in M\}$.

Let G be the cyclic group of order k whose generator g is given by $g = \begin{bmatrix} R(1/k) \\ R(1/k) \end{bmatrix}$, where k is an odd prime and $R(\theta)$ means the rotation of R^2 which is defined by $R(\theta) = \begin{bmatrix} \cos 2\pi\theta & \sin 2\pi\theta \\ -\sin 2\pi\theta & \cos 2\pi\theta \end{bmatrix}$. The lens space L(1, k) of constant curvature 1 is defined by $L(1, k) = S_1^3/G$ where k is an odd prime.

2. An estimate of cut locus of certain *d*-pinched manifold

In this section, we shall give an estimate of the distance between some point $x \in M$ and its cut locus C(x) where the diameter d(M) of M satisfies $d(M) > \pi/(2\sqrt{\delta})$. Our technique does not hold for all points of M but for some pair of points $x, y \in M$ satisfying $d(x, y) > \pi/(2\sqrt{\delta})$ for any $0 < \delta \le 1$.

First of all, we shall prove the following proposition.

Proposition 2.1. If the diameter d(M) of M satisfies $d(M) > \pi/(2\sqrt{\delta})$ for any $0 < \delta \le 1$, then M is simply connected.

Proof. Suppose that M is not simply connected. Let p and q be the points

in M such that d(p,q) = d(M). There are at least two points \tilde{p}_1 and \tilde{p}_2 in \tilde{M} satisfying $\pi(\tilde{p}_1) = \pi(\tilde{p}_2) = p$. By completeness of \tilde{M} , there exists a shortest geodesic $\tilde{\Theta} = \{\tilde{\theta}(t)\} \ (0 \le t \le l)$ satisfying $\tilde{\theta}(0) = \tilde{p}_1, \ \tilde{\theta}(l) = \tilde{p}_2$ and $\mathscr{L}(\tilde{\Theta}) = l = l$ $d(\tilde{p}_1, \tilde{p}_2)$. Putting $\Theta = \pi \circ \tilde{\Theta}$, we have a geodesic $\Gamma = \{\gamma(t)\} \ (0 \le t \le d(M))$ such that $\gamma(0) = p$, $\gamma(d(M)) = q$ which satisfies $\langle \gamma'(0), \theta'(0) \rangle \ge 0$, where $\gamma'(t)$ denotes the tangent vector of Γ at $\gamma(t)$. Then, there is a geodesic $\tilde{\Gamma}$ in \tilde{M} which satisfies $\Gamma = \pi \circ \tilde{\Gamma}$ and $\tilde{\gamma}(0) = \tilde{p}_1$, $\tilde{\gamma}(d(M)) = \tilde{q} \in \tilde{M}$. Consider a geodesic triangle $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ in \tilde{M} where $\tilde{\Lambda}$ is a shortest geodesic joining \tilde{q} to \tilde{p}_2 . Assume that the perimeter of $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ is less than $2\pi/\sqrt{\delta}$, and let $(\Gamma^*, \Theta^*, \Lambda^*)$ be the corresponding geodesic triangle of $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ in $S^2_{1/\sqrt{\delta}}$. Then by virtue of the basic theorem on the triangles of Toponogov, every angle of $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ is not less than the corresponding angle of $(\Gamma^*, \Theta^*, \Lambda^*)$. Hence we have $\langle (\gamma^{*\prime}(0), \theta^{*\prime}(0)) \leq$ $\langle \tilde{\gamma}(0), \tilde{\theta}'(0) \rangle \leq \pi/2$. On the other hand, the inequality $\mathscr{L}(\tilde{\Lambda}) \geq \mathscr{L}(\tilde{\Gamma}) > 1$ $\pi/(2\sqrt{\delta})$ implies that $\langle (\gamma^{*\prime}(0), \theta^{*\prime}(0)) > \pi/2$, giving a contradiction. Therefore the perimeter of $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ must be $2\pi/\sqrt{\delta}$. Then Theorem 4 of [13] implies that M is isometric to the n-sphere $S_{1/\sqrt{\delta}}^n$ of radius $1/\sqrt{\delta}$. Making use of the inequality $\langle \tilde{\gamma}'(0), \tilde{\theta}'(0) \rangle \leq \pi/2$, was see that $\mathscr{L}(\tilde{\Gamma}) = \mathscr{L}(\tilde{\Lambda}) + \mathscr{L}(\tilde{\Theta}) =$ $\pi/\sqrt{\delta}$ or $\mathscr{L}(\tilde{\Theta}) = \mathscr{L}(\tilde{\Gamma}) + \mathscr{L}(\tilde{\Lambda}) = \pi/\sqrt{\delta}$. If $\mathscr{L}(\tilde{\Gamma}) = \pi/\sqrt{\delta}$, then $\mathscr{L}(\Gamma) = \pi/\sqrt{\delta}$ $d(M) = \pi/\sqrt{\delta}$ implies that M is isometric to $S_{1/\sqrt{\delta}}^n$. If $\mathscr{L}(\tilde{\Theta}) = \mathscr{L}(\tilde{\Gamma}) + \mathscr{L}(\tilde{\Lambda})$ $=\pi/\sqrt{\delta}$ holds, we have $\mathscr{L}(\Gamma) \leq \pi/(2\sqrt{\delta})$ from $\mathscr{L}(\tilde{\Gamma}) \leq \mathscr{L}(\tilde{\Lambda})$, which is a contradiction.

Theorem 2.2. For any pair of points x, y in M satisfying $d(x, y) > \pi/(2\sqrt{\delta})$, we have $d(x, C(x)) \ge \pi$ and $d(y, C(y)) \ge \pi$ where C(x) denotes the cut locus of x.

Proof. It δ satisfies $\delta > 1/4$, Proposition 2.1 and a theorem of Klingenberg [8] imply the statement. Suppose that $d(y, C(y)) = \rho < \pi$ holds for some pair of points x, y satisfying $d(x, y) > \pi/(2\sqrt{\delta})$. We shall derive a contradiction, and need only to consider δ satisfying $\delta \le 1/4$. By the hypothesis $\rho < \pi$ and an elementary property of cut locus, there is a closed geodesic segment $\Sigma = \{\sigma(t)\}$ ($0 \le t \le 2\rho$) such that $\sigma(0) = \sigma(2\rho) = y$. For any $t \in [0, 2\rho]$, we get $d(x, \sigma(t)) \ge d(x, y) - d(y, \sigma(t)) > \pi/(2\sqrt{\delta}) - \pi \ge 0$ which shows that $x \notin \Sigma$. Then there exists a point z on Σ satisfying $d(x, z) = d(x, \Sigma)$. Suppose that $z \neq y$. Then by virtue of the second variation formula [1, Proposition 3], we have $d(x, \Sigma) \le \pi/(2\sqrt{\delta})$. The points y and z divide Σ into two subarcs. Let $\hat{\Sigma}$ be the shorter subarc, Φ and Λ be the shortest geodesics from x to y and x to z respectively, and $(\Phi^*, \hat{\Sigma}^*, \Lambda^*)$ be the corresponding geodesic triangle of $(\Phi, \hat{\Sigma}, \Lambda)$ in $S_{1/\sqrt{\delta}}^2$. Then the inequalities $\mathscr{L}(\Phi^*) > \pi/(2\sqrt{\delta})$, $\mathscr{L}(\hat{\Sigma}^*) \le \rho < \pi/(2\sqrt{\delta})$ and $\mathscr{L}(\Lambda^*) \le \pi/(2\sqrt{\delta})$ imply that the angle between Σ^* and Λ^* is greater than $\pi/2$, which contradicts the basic theorem on triangles.

Therefore we must have y = z, and we have immediately $d(x, \sigma(t)) > d(x, y)$ for all $t \in (0, 2\rho)$. Putting $y_1 = \sigma(\rho)$ and $d(y_1, C(y_1)) = \rho_1$, we get $\rho_1 \le \rho$ from $y \in C(y_1)$ and $d(x, y_1) > d(x, y) > \pi/(2\sqrt{\delta})$. There is a closed geodesic segment

KATSUHIRO SHIOHAMA

 $\Sigma_1 = \{\sigma_1(t)\}\ (0 \le t \le 2\rho_1)$ such that $\sigma_1(0) = \sigma_1(2\rho_1) = y_1$ and $x \notin \Sigma_1$ and therefore we have the same argument for Σ_1 as for Σ . If Σ_1 is a closed geodesic, the second variation formula stated above implies that the nearest point $z_1 \in \Sigma_1$ to x is different from y_1 , and the same discussion for the geodesic triangle with vertices (x, y_1, z_1) leads a contradiction. Hence we only consider Σ_1 being a closed geodesic segment and satisfying $d(x, \sigma_1(t)) > d(x, y_1)$ for all $t \in (0, 2\rho_1)$.

Putting again $y_2 = \sigma_1(\rho_1)$ and $\rho_2 = d(y_2, C(y_2))$, there is a closed geodesic segment $\Sigma_2 = \{\sigma_2(t)\}$ $(0 \le t \le 2\rho_2)$, where we have $\rho_2 \le \rho_1 \le \rho < \pi$ and $d(x, y_2) > d(x, y_1) > d(x, y) > \pi/(2\sqrt{\delta})$. Repeating this argument, we have the sequences of points, closed geodesic segments and real numbers as follows:

$$egin{aligned} y, y_1, y_2, \cdots, \ & & \Sigma, & \Sigma_1, & \Sigma_2, \cdots, \ & &
ho \geq &
ho_1 \geq &
ho_2 \geq & , \cdots, \ & & d(x,y) < d(x,y_1) < & d(x,y_2) < , \cdots. \end{aligned}$$

Since *M* is compact, the last sequence satisfies $d(x, y_k) \le d(M)$ for all *k*, from which $d(x, y_k)$ has a limit and we can choose a subsequence of $\{y_k\}$ converging to some point y^* in *M* by compactness. Because the function $p \to d(p, C(p))$ is lower semi-continuous, we have $\lim \rho_k \ge \rho^*$ where $\rho^* = d(y^*, C(y^*))$.

On the other hand, there is a shortest geodesic Φ_{i-1} from x to y_{i-1} , and for any fixed Φ_i we have the subarc $\hat{\Sigma}_{i-1}$ of Σ_{i-1} which starts from y_{i-1} and ends at y_i with the property that the angle between Φ_i and $\hat{\Sigma}_{i-1}$ at y_i is no greater than $\pi/2$. Let $(\Phi_{i-1}^*, \hat{\Sigma}_{i-1}^*, \Phi_i^*)$ be the geodesic triangle corresponding to $(\Phi_{i-1}, \hat{\Sigma}_{i-1}, \Phi_i)$ in $S_{1/\sqrt{3}}^2$, where we denote $\Phi_0 = \Phi$ and $\Sigma_0 = \Sigma$, and let α_i be the angle between Φ_i^* and $\hat{\Sigma}_{i-1}^*$. Then we get $\alpha_i \leq \pi/2$ for all *i*. By the spherical trigonometry, it follows that

$$\cos \left(d(x, y_{i-1}) \sqrt{\overline{\delta}} \right) - \cos \left(d(x, y_i) \sqrt{\overline{\delta}} \right) \cdot \cos \left(\rho_{i-1} \sqrt{\overline{\delta}} \right) \\ = \sin \left(\rho_{i-1} \sqrt{\overline{\delta}} \right) \cdot \sin \left(d(x, y_i) \sqrt{\overline{\delta}} \right) \cdot \cos \alpha_i \ge 0 ,$$

which implies $\cos(d(x, y_{i-1})\sqrt{\delta}) \ge \cos(d(x, y_i)\sqrt{\delta}) \cdot \cos(\rho_{i-1}\sqrt{\delta})$, for all *i*. Therefore it follows clearly that

$$\cos \left(d(x, y)\sqrt{\overline{\delta}} \right) \ge \cos \left(d(x, y_1)\sqrt{\overline{\delta}} \right) \cdot \cos \left(\rho\sqrt{\overline{\delta}} \right) \ge \cos \left(d(x, y_k)\sqrt{\overline{\delta}} \right)$$
$$\cdot \prod_{i=1}^k \cos \left(\rho_{i-1}\sqrt{\overline{\delta}} \right) \ge \cos \left(d(x, y_k)\sqrt{\overline{\delta}} \right) \cdot \left(\cos \left(\rho^*\sqrt{\overline{\delta}} \right) \right)^k, \quad k = 1, 2, \cdots.$$

Hence we must have $\cos(d(x, y)\sqrt{\delta}) \ge 0$, so that $d(x, y) \le \pi/(2\sqrt{\delta})$, a contradiction. q.e.d.

In order to estimate the distance betweem a point $p \in M$ and its cut locus C(p), the simply connectedness of M is the essential hypothesis for the arguments developed in [7], [8] and [9]. We note that the technique of a proof of

Sphere Theorem investigated by Klingenberg need not the estimate $d(x, C(x)) \ge \pi$ for all points of M.

Theorem 2.3. Let M be a connected and complete riemannian manifold. If the sectional curvature K_{σ} of M satisfies $1/4 \le K_{\sigma} \le 1$ for every plane section σ and the diameter d(M) of M satisfies $d(M) > \pi$, then M is homeomorphic to S^n .

By virtue of Theorem 2.2, it suffices to show the following proposition for a proof of Theorem 2.3.

Proposition 2.4. Suppose that $\delta = 1/4$ and $d(M) > \pi$ hold, and set d(p,q) = d(M). Then for any point $r \in M$, we have $d(p,r) < \pi$ or $d(q,r) < \pi$.

In the following we prepare Lemmas 2.5–2.8 for a proof of Proposition 2.4. The method is analogous to that of Berger [3].

Lemma 2.5 (Lemma 4 of Berger [3]). For any point $r \in M$, we have $d(p, r) < \pi$ or $d(q, r) < \pi$ or otherwise $d(p, r) = d(q, r) = \pi$.

Lemma 2.6 (Lemma 5 of Berger [3]). Suppose that there is a point $r \in M$ satisfying $d(p, r) = d(q, r) = \pi$, where d(p, q) = d(M). For any shortest geodesic $\Phi = \{\varphi(t)\}$ ($0 \le t \le \pi$), $\varphi(0) = p$, $\varphi(\pi) = r$, let Γ be a geodesic such that Γ $= \{\gamma(t)\}$ ($0 \le t \le d(M)$), $\gamma(0) = p$, $\gamma(d(M)) = q$ and $\gtrless (\gamma'(0), \varphi'(0) \le \pi/2$. Then we have $d(r, \gamma(t)) = \pi$ for all $0 \le t \le d(M)$ and there is a piece of totally geodesic surface of constant curvature 1/4 with boundaries Φ , Γ and Ψ , where Ψ is a geodesic such that $\Psi = \{\Psi(t)\}$ ($0 \le t \le \pi$), $\varphi(0) = q$, $\varphi(\pi) = r$, and we also have $\gtrless (\varphi'(0), \gamma'(0)) = \pi/2$, $\gtrless (\gamma'(d(M)), \varphi'(0)) = \pi/2$ and $\gtrless (\varphi'(\pi), \varphi'(\pi)) = d(M)/2$.

We can prove Lemmas 2.5 and 2.6 in the same way as that stated in [3].

Lemma 2.7. Let N be defined by $N = \{x \in M | d(x, y) > \pi/(2\sqrt{\delta}) \text{ for some } y \in M\}$ where δ is any positive constant $0 < \delta \leq 1$. For any fixed point $x \in N$, let Θ and Θ_1 be shortest geodesics of length π satisfying $x = \theta(0) = \theta_1(0), \theta(\pi) = \theta_1(\pi) = z$ and $\theta'(0) \neq \pm \theta'_1(0)$. Then there exists a lune of totally geodesic surface of constant curvature 1 with boundaries Θ and Θ_1 .

Proof. $\theta'(0) \neq \pm \theta'_1(0)$ implies clearly $\theta'(\pi) \neq \pm \theta'_1(\pi)$ from Theorem 2.2. Since N is open in M there is a point $w \in \Theta \cap N$. It follows that $d(w, \theta_1(t)) < \pi$ for every $t \in [0, \pi]$ and $\exp_w | U$ is a diffeomorphism, where U is an open ball in M_w with radius π and center at the origin.

Let $\Theta^* = \{\theta^*(t)\}$ $(0 \le t \le \pi)$ be a great circle on S_1^n . Take a point $w^* \in \Theta^*$ satisfying $w^* = \theta^*(t_0)$, where t_0 is defined by $w = \theta(t_0)$. Let ι be an isometric isomorphism of M_w onto $(S_1^n)_{w^*}$ such that $\iota \circ \theta'(t_0) = \theta^{*\prime}(t_0)$ and put $x^* = \theta^*(0)$, $z^* = \theta^*(\pi)$. Then the curve $\Theta_1^* = (\exp_{w^*} \circ \iota \circ (\exp_w | U)^{-1}) \circ \Theta_1$ is a regular curve which connects x^* to z^* and whose length is equal to π by Rauch's metric comparison theorem [11]. Since Θ_1^* becomes a great circle, we obtain a *lune* of totally geodesic surface of constant curvature 1 with boundaries Θ and Θ_1 .

Lemma 2.8 (Lemma 6 of Berger [3]). Let M be a riemannian manifold whose sectional curvature K_{σ} satisfies $\delta \leq K_{\sigma} \leq 1$ for every plane section σ ,

and let X, Y and Z be tanget vectors at $x \in M$ such that $Y \neq Z$, $K(X, Y) = K(X, Z) = \delta$ and $\langle Y, X \rangle = \langle Z, X \rangle > 0$. Then we have K(Y, Z) < 1.

Proof of Theorem 2.3. Let Γ , Φ , Θ be the shortest geodesic segments joining p to q, p to r and q to r respectively which are defined in such a way that there is a piece of totally geodesic surface \mathscr{F} of constant curvature 1/4 with boundaries Γ , Φ and Θ . Developing the same discussion as Berger [3], there is a shortest geodesic $\Gamma_1 = \{\gamma_1(t)\}$ ($0 \le t \le d(M)$), $\gamma_1(0) = p$, $\gamma_1(d(M)) = q$ which satisfies $\Gamma_1 \ne \Gamma$ and $\langle \gamma'_1(0), \varphi'(0) \rangle = 0$. Therefore we have another totally geodesic surface \mathscr{F}_1 of constant curvature 1/4 with boundaries Γ_1 , Φ and Θ_1 , where Θ_1 is a shortest geodesic from q to r. Suppose that $\langle (\theta'(0), \theta'_1(0)) = \pi$. We have $\langle (\theta'(\pi), \theta'_1(\pi)) = \pi$ and moreover \mathscr{F} and \mathscr{F}_1 have the same tangent plane at r. Hence we get $\langle (\varphi'(\pi), \theta'(\pi)) = \langle (\varphi'(\pi), \theta'_1(\pi)) = \pi/2$, which imply $d(M) = \pi$. Therefore we must have $\langle (\theta'(0), \theta'_1(0)) < \pi$. Suppose that $\langle (\theta'(0), \theta'_1(0)) = 0$. Then \mathscr{F} and \mathscr{F}_1 have a common tangent plane at q from which we get $\Gamma = \Gamma_1$. Hence we have $\langle (\theta'(0), \theta'_1(0)) \in (0, \pi)$, and Lemma 2.8 implies a contradiction.

3. Estimates of cut locus of δ -pinched manifold which is not simply connected

In this section we shall investigate some estimates of cut locus of δ -pinched riemannian manifold which is not simply connected.

Proposition 3.1. If *M* is not simply connected and $0 < \delta \leq 1$, then $d(p, C(p)) \leq d(M) \leq \pi/(2\sqrt{\delta})$ for every point $p \in M$. Suppose that there is a point $p \in M$ at which $d(p, C(p)) = \pi/(2\sqrt{\delta})$ holds. Then *M* is isometric to the real projective space $PR^n(\delta)$ of constant curvature δ .

Proof. Let \tilde{M} be the universal covering manifold of M and π be the projection map. There and at least two distinct points \tilde{p}_1, \tilde{p}_2 of \tilde{M} such that $\pi(\tilde{p}_1) = \pi(\tilde{p}_2) = p$. Let $\tilde{\Gamma}$ be a shortest geodesic joining \tilde{p}_1 to \tilde{p}_2 , and Γ be a closed geodesic segment at p defined by $\pi \circ \tilde{\Gamma} = \Gamma$. Then $\mathscr{L}(\Gamma)$ is not less than $2d(p, C(p)) = \pi/\sqrt{\delta}$, from which we have $d(\tilde{p}_1, \tilde{p}_2) \geq \pi/\sqrt{\delta}$. Thus \tilde{M} is isometric to $S_{1/\sqrt{\delta}}^n$ by the maximal diameter theorem of Toponogov [13]. Suppose that there is a point $\tilde{p}_3 \in \tilde{M}$ satisfying $\tilde{p}_1 \neq \tilde{p}_3 \neq \tilde{p}_2$ and $\pi(\tilde{p}_3) = p$. Then the perimeter of a geodesic triangle in M with vertices \tilde{p}_1, \tilde{p}_2 and \tilde{p}_3 is not less than $3\pi/\sqrt{\delta}$, which is a contradiction. Therefore \tilde{M} must be a double covering of M, and hence we get $M = PR^n(\delta)$.

Proposition 3.2. Let M be a δ -pinched riemannian manifold which is not simply connected, and suppose that there is a point $p \in M$ at which $d(p, C(p)) \geq \pi/(3\sqrt{\delta})$ holds. Then the fundamental group of M is $\pi_1(M) = Z_2$ or otherwise, M is odd dimensional riemannian manifold of constant curvature δ .

Proof. If there are three different points \tilde{p}_1, \tilde{p}_2 and \tilde{p}_3 in \overline{M} such that $\pi(\tilde{p}_1) = \pi(\tilde{p}_2) = \pi(\tilde{p}_3) = p \in M$, then we have $d(\tilde{p}_i, \tilde{p}_j) \ge 2d(p, C(p)) \ge 2\pi/(3\sqrt{\delta})$ for every $i, j = 1, 2, 3, i \ne j$, and the perimeter of a geodesic triangle with vertices

 \tilde{p}_1, \tilde{p}_2 and \tilde{p}_3 is not less than $2\pi/\sqrt{\delta}$, from which *M* is of constant curvature δ . As is well known, an even dimensional complete riemannian manifold of constant positive curvature is isometric to either a sphere or a real projective space. Hence dim *M* must be odd.

Corollary to Proposition 3.2. Let M be a δ -pinched riemannian manifold which is not simply connected, and suppose that $\pi_1(M) \neq Z_2$. Then we have $d(x, C(x)) \leq \pi/(3\sqrt{\delta})$ for any $x \in M$. Furthermore if there is a point $x \in M$ at which $d(x, C(x)) = \pi/(3\sqrt{\delta})$, then M is an odd dimensional riemannian manifold of constant curvature δ .

We shall give some estimates of cut loci under the assumption $\delta > 1/4$ and certain assumptions for the fundamental groups of pinched manifolds.

Theorem 3.3. Suppose that δ satisfies $\delta > 1/4$ and M is not simply connected. Then there does not exist any δ -pinched riemannian manifold M whose diameter satisfies $\pi/(2\sqrt{\delta}) < d(M) < \pi$. In particular if the fundamental group $\pi_1(M)$ of such M satisfies $\pi_1(M) = Z_k$, where k is an integer not less than 2, then we have $d(x, C(x)) \ge \pi/k$ for every point $x \in M$. Moreover if there is a point $x \in M$ where $d(x, C(x)) = \pi/k$ is satisfied, then M is of constant curvature 1.

Proof. The first statement is evident from Proposition 2.1 and the Theorem of Klingenberg [8]. Suppose that the fundamental group $\pi_1(M)$ of M satisfies $\pi_1(M) = Z_k$, where k is an integer such that $k \ge 2$. Since the function $p \to d(p, C(p))$ is lower semi-continuous, there is a point $p_0 \in M$ at which the function takes infimum ρ . We have a closed geodesic $\Sigma = \{\sigma(t)\}$ ($0 \le t \le 2\rho$) such that $\sigma(0) = \sigma(2\rho) = p_0$ and $\rho = d(p_0, C(p_0))$. Then there exists a closed geodesic $\tilde{\Sigma}$ in \tilde{M} satisfying $\pi \circ \tilde{\Sigma} = \Sigma$. By virtue of $\pi_1(M) = Z_k$, we have $\mathscr{L}(\tilde{\Sigma}) = 2\rho k$. On the other hand, every closed geodesic segment in \tilde{M} has length no less than 2π . Hence we have $\rho \ge \pi/k$.

If there is a point $x \in M$ at which $d(x, C(x)) = \pi/k$ holds. Then we have $\rho = \pi/k$ and $\mathscr{L}(\tilde{\Sigma}) = 2\pi$. We shall prove that $C(\tilde{p}_0)$ consists of only one point $\{\tilde{\sigma}(\pi)\}$. In fact, if there is a point \tilde{q} in $C(\tilde{p}_0)$ such that $\tilde{q} \neq \tilde{\sigma}(\pi)$, then let $\tilde{\Psi}$ be a shortest geodesic from $\tilde{\sigma}(\pi)$ to \tilde{q} . Without loss of generality we can assume that $\langle \tilde{\sigma}'(\pi), \tilde{\phi}'(0) \rangle \geq 0$. For a geodesic triangle $(\tilde{\Sigma} | [\pi, 2\pi], \tilde{\Psi}, \tilde{\Phi})$ with vertices $\tilde{p}_0, \tilde{\sigma}(\pi)$ and \tilde{q} , we have a contradiction to the basic theorem on triangles, because $\pi > \pi(2\sqrt{\tilde{\sigma}})$ holds.

Remark. If the diameter d(M) of M with $\delta > 1/4$ satisfies $d(M) = \pi$, then M is isometric to S_1^n . Furthermore, if there is a closed geodesic segment of length 2π in such a simply connected M, then M is isometric to S_1^n .

4. Topological structures of M satisfying $\delta > 1/4$ and $\pi_1(M) = Z_2$

Throughout this section we only consider M satisfying $\delta > 1/4$ and $\pi_1(M) = Z_2$ First of all we shall prove the following lemma.

Lemma 4.1. Take a pair of points $p, q \in M$ such that d(p, q) = d(M). Then

there is a closed geodesic $\Gamma = \{\gamma(t)\} \ (0 \le t \le 2d(M)) \text{ such that } \gamma(0) = \gamma(2d(M)) = p \text{ and } \gamma(d(M)) = q.$

Proof. From the assumptions $\delta > 1/4$ and $\pi_1(M) = Z_2$, we have $d(M) \le \pi/(2\sqrt{\delta}) < \pi$. Let $\Gamma = \{\gamma(t)\}$ $(0 \le t \le d(M))$ be a shortest geodesic from p to q. Since d(p,q) = d(M), there is a shortest geodesic Γ_1 , $\Gamma_1 = \{\gamma_1(t)\}$ $(0 \le t \le d(M))$ from p to q satisfying $\langle \gamma'(d(M)), -\gamma'_1(d(M)) \rangle \ge 0$. Suppose that $\langle (\gamma'(d(M), \gamma'_1(d(M))) \neq \pi$. Then there is a shortest geodesic Γ_2 from p to q satisfying $\langle \gamma'(d(M)), -\gamma'_2(d(M)) \rangle \ge 0$. Take a fixed point $\tilde{p}_1 \in M$ such that $\pi(\tilde{p}_1) = p$, and let $\tilde{\Gamma}, \tilde{\Gamma}_1$ and $\tilde{\Gamma}_2$ be geodesics in \tilde{M} which satisfy $\pi \circ \tilde{\Gamma} = \Gamma$, $\pi \circ \tilde{\Gamma}_1 = \Gamma_1$ and $\pi \circ \tilde{\Gamma}_2 = \Gamma_2$, and start from \tilde{p}_1 . Since there are just two points in \tilde{M} , whose images under π are q, we may consider that $\tilde{\Gamma}_1$ and $\tilde{\Gamma}_2$ have same extremals. But we have $d(p_1, C(p_1)) \ge \pi$ by the theorem of Klingenberg [8]; this is a contradiction. Therefore we must have $\langle (\gamma'(d(M), \gamma'_1(d(M))) = \pi$ and $\langle (\gamma'(0), \gamma'_1(0)) = \pi$.

Making use of Lemma 4.1, we have the following:

Theorem 4.2. For any point $x \in M$, $\pi/2 \leq d(x, C(x)) \leq \pi/(2\sqrt{\delta})$ and $\pi/2 \leq d(M) \leq \pi/(2\sqrt{\delta})$, where the left hand side equalities hold if and only if M is isometric to the real projective space $PR^n(1)$ of constant curvature 1, and the right hand side equalities hold if and only if M is isometric to $PR^n(\delta)$ of constant curvature δ .

Proof. It suffices to prove that M is isometric to $PR^n(\delta)$ if $d(M) = \pi/(2\sqrt{\delta})$. Putting $d(p,q) = d(M) = \pi/(2\sqrt{\delta})$, there is a closed geodesic $\Gamma = \{\gamma(t)\}$ $(0 \le t \le \pi/\sqrt{\delta})$ satisfying $\gamma(0) = \gamma(\pi/\sqrt{\delta}) = p$ and $\gamma(\pi/(2\sqrt{\delta})) = q$. Let $\tilde{\Gamma}$ be the closed geodesic in \tilde{M} defined by $\pi \circ \tilde{\Gamma} = \Gamma$. Then $\tilde{\Gamma}$ becomes a closed geodesic with length $2\pi/\sqrt{\delta}$, and we can decompose $\tilde{\Gamma}$ into four shortest geodesic segments whose lengths are not equal at the same time. A theorem investigated by Sugimoto in [12] thus shows that \tilde{M} is isometric to $S_{1/\sqrt{\delta}}^n$, and hence M is isometric to $PR^n(\delta)$. q.e.d.

Now we shall investigate the topology of M satisfying $\pi/2 < d(M) < \pi/(2\sqrt{\delta})$. According to the homology theory, M has the same homology group as that of PR^n under our assumptions $\pi_1(M) = Z_2$ and \tilde{M} is homeomorphic to S^n .

There is an interesting problem which is not yet solved completely.

Problem. Let j be a homeomorphism of S^n onto itself satisfying:

- (1) j is fixed point free,
- (2) j is involutive.

Then, is S^n/j homeomorphic to PR^n ?

Livesay proved this problem affirmatively in [10] under the assumption $n \leq 3$. When *j* is a diffeomorphism or a piecewise linearly diffeomorphism, Hirsch and Milnor showed in [6] that S^n/j is not diffeomorphic or piecewise linearly diffeomorphic to PR^n in general.

Turning to our situation that $\delta > 1/4$ and $\pi_1(M) = Z_2$, we shall prove that M is homeomorphic to S^n/j , where j is a homeomorphism of S^n onto itself with

the properties (1) and (2) stated above. For the construction of j, we prepare Lemmas 4.3-4.6 below. We set d(p,q) = d(M) = l. and the closed geodesic $\Gamma = \{\gamma(t)\} \ (0 \le t \le 2l), \ \gamma(0) = \gamma(2l) = p$, and $\gamma(l) = q$ as stated in Lemma 4.1. Then there exists a closed geodesic $\tilde{\Gamma}$ in \tilde{M} satisfying $\pi \circ \tilde{\Gamma} = \Gamma$, and therefore we have $\mathscr{L}(\tilde{\Gamma}) = 4l$.

Lemma 4.3. Putting $\tilde{p}_1 = \tilde{\gamma}(0)$, $\tilde{q}_1 = \tilde{\gamma}(l)$, $\tilde{p}_2 = \tilde{\gamma}(2l)$ and $\tilde{q}_2 = \tilde{\gamma}(3l)$, for any point $\tilde{x} \in \tilde{M}$ we have $d(\tilde{x}, \tilde{p}_1) \leq \pi/(2\sqrt{\delta})$ or $d(\tilde{x}, \tilde{p}_2) \leq \pi/(2\sqrt{\delta})$.

Proof. We may suppose that $\tilde{x} \notin \tilde{\Gamma}$. Take a point \tilde{z} on $\tilde{\Gamma}$ satisfying $d(\tilde{x}, \tilde{\Gamma}) = d(\tilde{x}, \tilde{z})$. It follows $d(\tilde{x}, \tilde{z}) \leq \pi/(2\sqrt{\delta})$ by use of the second variation formula (Proposition 3 of [1]). Without loss of generality we may also suppose that $d(\tilde{p}_1, \tilde{z}) \leq l < \pi/(2\sqrt{\delta})$. Making use of the basic theorem on triangles for a geodesic triangle with vertices $(\tilde{p}_1, \tilde{z}, \tilde{x})$, we thus have $d(\tilde{p}_1, \tilde{x}) \leq \pi/(2\sqrt{\delta})$.

q.e.d.

Now, let U_1 and U_2 be open balls with radius π centered at the origin in $\tilde{M}_{\tilde{p}_1}$ and $\tilde{M}_{\tilde{p}_2}$ respectively. Then $\exp_{\tilde{p}_i} | U_i$ is a diffeomorphism. Let D be the standard n-cell with boundary $D = S^{n-1} \subset \mathbb{R}^n$, and let V_1 and V_2 be given as follows:

$$V_1 = \{ \tilde{x} \in \tilde{M} \, | \, d(\tilde{x}, \tilde{p}_1) \le d(\tilde{x}, \tilde{p}_2) \} , \qquad V_2 = \{ \tilde{x} \in \tilde{M} \, | \, d(\tilde{x}, \tilde{p}_1) \ge d(\tilde{x}, \tilde{p}_2) \}$$

We have a construction of a homeomorphism h of S^n onto \overline{M} investigated by Klingenberg in [7] as follows.

Lemma 4.4. There are homeomorphisms h_1 and h_2 such that $h_i: D \to V_i$ satisfying $h_i(D) = V_i$, $h_1(D) \cup h_2(D) = M$ and $h_1(D) \cap h_2(D) = h_1(S^{n-1}) = h_2(S^{n-1})$. Making use of h_1 and h_2 , we have a homeomorphism $h: S^n \to \tilde{M}$.

On the other hand, by virtue of the hypothesis $\pi_1(M) = Z_2$ we have a map f of \vec{M} onto itself defined by $f(\tilde{x}_1) = \tilde{x}_2$ for any $\tilde{x}_1 \in \vec{M}$, where $\pi(\tilde{x}_1) = \pi(\tilde{x}_2)$, $\tilde{x}_1 \neq \tilde{x}_2$. Then clearly we have the following:

Lemma 4.5. *f satisfies the following*:

- (a) f is an isometry.
- (b) f is involutive.
- (c) f has no fixed point.

(d) $f \circ \tilde{\Gamma} = \tilde{\Gamma}$, where $\tilde{\Gamma}$ is stated in Lemma 4.3.

Combining Lemmas 4.4 and 4.5, we get

Lemma 4.6. We have $f(V_1) = V_2$ and $f(V_2) = V_1$. In particular $f(\tilde{p}_1) = \tilde{p}_2$. *Proof.* $f \circ \tilde{\Gamma} = \tilde{\Gamma}$ implies $f(\tilde{p}_1) = \tilde{p}_2$. Take a point $\tilde{x} \in V_1 \cap V_2$. Then there exist uniquely determined shortest geodesics $\tilde{\Lambda}$ and $\tilde{\Phi}$ joining \tilde{p}_1 to \tilde{x} and \tilde{p}_2 to \tilde{x} respectively. Thus $\tilde{\Lambda}$ and $\tilde{\Phi}$ have the same length which is not greater than $\pi/(2\sqrt{\delta})$, and the intersection of $f \circ \tilde{\Lambda}$ and $f \circ \tilde{\Phi}$ must coincide with $f(\tilde{x})$. Hence we get $f(\tilde{x}) \in V_1 \cap V_2$, from which the statements follow. q.e.d.

Combining Lemmas 4.3–4.6, we find the following:

Theorem 4.7. Let j be defined by $j = h^{-1} \circ f \circ h$. Then M is homeomorphic to S^n/j , and j satisfies (1) and (2) in the problem stated above.

Remark. According to [10], Livesay proved that S^n/j is homeomorphic

to PR^n if $n \le 3$. But in our case, we shall be able to prove that M is homeomorphic to PR^n if $n \le 4$. Since $V_1 \cap V_2$ is homeomorphic to PR^3 (in case n = 4), (c) in Lemma 4.5 implies the statement.

Putting $p_i^* = h^{-1}(\tilde{p}_i)$, p_i^* is the antipodal point of p_2^* on S_1^n . Hence the image of every great circle from p_1^* to p_2^* under *j* is also a great circle from p_2^* to p_1^* .

5. Proof of the main theorem

Throughout this section, let k be an odd prime. Let M be a δ -pinched $(\delta > 1/4)$ riemannian manifold whose fundamental group $\pi_1(M)$ satisfies $\pi_1(M) = Z_k$. Then we shall prove the following:

Theorem 5.1. Let M be a connected, complete and orientable riemannian manifold of dimension 3 satisfying $\delta > 1/4$ and $\pi_1(M) = Z_k$, and suppose that there is a closed geodesic segment Γ of length $2\pi/k$. Then M is isometric to the lens space L(1, k) of constant curvature 1.

Our method of the proof is as follows:

Put $M^* = L(1, k)$ and take two arbitrarily fixed points $p^* \in M^*$ and $p \in M$ respectively. It is clear that M is of constant curvature 1. It is easily seen that for any tangent vector $X^* \in M_{p^*}^*$ satisfying $X^* \in C_{p^*}$, we have $X^* \notin Q_{p^*}^*$, where $Q_{p^*}^*$ is the first conjugate locus in $M_{p^*}^*$. Then there is at least one tangent vector $Y^* \in C_{p^*}^*$ which satisfies $\exp_{p^*} X^* = \exp_{p^*} Y^* \in C(p^*)$. We shall prove that there is an isometric isomorphism ι of M_p onto $M_{p^*}^*$ such that $\iota(C_p)$ concides with $C_{p^*}^* \subset M_{p^*}^*$ as a set in $M_{p^*}^*$, and moreover the identifying structures of C_p under \exp_p and $C_{p^*}^*$ under \exp_{p^*} are quite equivalent under ι . That is to say, let $X, Y \in C_p$ and $\exp_p X = \exp_p Y \in C(p)$. Then we have $\exp_{p^*} \iota \circ X =$ $\exp_{p^*} \iota \circ Y \in C^*(p^*)$. Hence $\exp_{p^*} \circ \iota \circ \exp_p^{-1}$ becomes a global isometry of Monto M^* .

As the first step, we study the tangent cut lous C_p of M. Theorem 3.3 and the hypothesis of M imply that M is of constant curvature 1. Then the universal covering manifold \tilde{M} is S_1^3 .

Lemma 5.2. Let M satisfy the assumptions of Theorem 5.1. Then $d(q, C(q)) = \pi/k$ for any point $q \in M$.

Putting l = d(q, C(q)), there is a closed geodesic segment Σ_q of length 2l such that $\sigma_q(0) = \sigma_q(2l) = q$. Then we have a great circle $\tilde{\Sigma}$ in $S_1^3 = M$ satisfying $\pi \circ \tilde{\Sigma} = \Sigma_q$, on which we get $\pi(\tilde{\sigma}_q(0)) = \pi(\tilde{\sigma}_q(2l)) = \cdots = \pi(\tilde{\sigma}_q(2kl)) = q$. Hence we have $2kl = 2\pi$. q.e.d.

We denote by Σ_q the closed geodesic at q with length $2\pi/k$.

Lemma 5.3. Max $\{d(q, x) | x \in M\} = \pi/2$ for any point $q \in M$. In particular, $d(M) = \pi/2$.

Proof. Putting $l = d(q, r) = \text{Max} \{ d(q, x) | x \in M \}$, there is a closed geodesic $\Sigma_r = \{\sigma_r(t)\} \ (0 \le t \le 2\pi/k)$ such that $\sigma_r(0) = \sigma_r(2\pi/k) = r$. By the assumption of d(q, r), there are at least two shortest geodesic segments joining q to r, say Γ_1 and Γ_2 . Suppose that $\not \subset (\gamma'_1(l), \gamma'_2(l)) = \pi$. Since $l \le d(M) \le \pi/(2\sqrt{\delta})$

 $= \pi/2$ and k is an odd prime, there exist at least k + 1 points on S_1^s whose images under π are all q. Then we must have $\langle (\gamma'_1(l), \gamma'_2(l)) \neq \pi$, from which there is another shortest geodesic Γ_3 from q to r such that $\langle \gamma'_1(l) + \gamma'_2(l), -\gamma'_3(l) \rangle \geq 0$. Let $\tilde{q} \in \tilde{M}$ be a fixed point such that $\pi(\tilde{q}) = q$, and $\tilde{\Gamma}_i$ be defined by $\pi \circ \tilde{\Gamma}_i = \Gamma_i$ and $\tilde{\gamma}_i(0) = \tilde{q}$ (i = 1, 2, 3). It is clear that the geodesic $\tilde{\Sigma}$ given by $\pi \circ \tilde{\Sigma} = \Sigma_r$ is a great circle on which lie the points $\tilde{\gamma}_1(l), \tilde{\gamma}_2(l)$ and $\tilde{\gamma}_3(l)$. Three geodesic triangles with vertices $(\tilde{q}, \tilde{\gamma}_1(l), \tilde{\gamma}_2(l)), (\tilde{q}, \tilde{\gamma}_2(l), \tilde{\gamma}_3(l))$ and $(\tilde{q}, \tilde{\gamma}_3(l), \tilde{\gamma}_1(l))$ respectively become isosceles triangles whose base angles are all equal to $\pi/2$. Therefore we must have $l = \pi/2$ by the cosine rule of spherical trigonometry.

Lemma 5.4. Let $q, p \in M$ be a fixed pair of points such that $d(p, q) = \pi/2$. Then there are shortest geodesics $\Gamma_1, \Gamma_2, \dots, \Gamma_k$ from p to q satisfying the following:

(1) $\langle (\gamma'_i(0), \gamma'_{i+1}(0)) \rangle = \langle (\gamma'_i(\pi/2), \gamma'_{i+1}(\pi/2)) \rangle = 2\pi/k$ for all $i = 1, 2, \dots, k$, (mod k).

(2) There is a piece of totally geodesic surface \mathscr{F}_i^+ of constant curvature 1 whose boundaries are Γ_i, Γ_{i+1} and Σ_p .

(3) It can be considered that \mathscr{F}_i^+ is generated by the family of shortest geodesics $\{\Lambda_t\}$ $(0 \le t \le 2\pi)$ where each Λ_t starts from $\sigma_p(t)$ and ends at q with length $\mathscr{L}(\Lambda_t) = \pi/2$. Moreover, we can consider that $\Lambda_0 = \Gamma_1$ and $\Lambda_{2\pi(k-1)/k} = \Gamma_k$, and the vector field $t \to \lambda'_t(0)$ is parallel along Σ_p .

(4) Putting $\pi \circ \tilde{\Gamma}_i = \Gamma_i$ such that $\tilde{\gamma}_i(\pi/2) = \tilde{q}$ where $\pi(\tilde{q}) = q$, each \mathscr{F}_i^+ is covered by the face of geodesic triangle $(\tilde{\Gamma}_i, \tilde{\Gamma}_{i+1}, \tilde{\Sigma}_{\tilde{p}} | [2\pi(i-1)/k, 2\pi i/k])$ under the covering map π , where $\pi \circ \tilde{\Sigma}_{\tilde{p}} = \Sigma_p \tilde{\sigma}_{\tilde{p}}(0) = \tilde{p}$. In particular, $\mathscr{F}_1^+ \cup \mathscr{F}_2^+ \cup \cdots \cup \mathscr{F}_k^+$ is the image of the two dimensional hemisphere with north pole \tilde{q} and equator $\tilde{\Sigma}_{\tilde{p}}$ under π .

Proof. Let $S^2(\tilde{q})$ be the totally geodesic hypersurface of S_1^3 , which contains \tilde{q} and $\tilde{\Sigma}_{\tilde{p}}$, and $S_+^2(q)$ be the hemisphere with north pole \tilde{q} . For a geodesic segment Λ_t in $S_+^2(q)$ joining $\tilde{\sigma}_{\tilde{p}}(t)$ to \tilde{q} and the corresponding geodesic $\Lambda_t = \pi \circ \tilde{\Lambda}_t$ in M joining $\sigma_p(t)$ to q, making use of Rauch's comparison theorem we get the statements (2), (3) and (4). Since we have $\leq (\tilde{\gamma}'_i(\pi/2), \tilde{\gamma}'_{i+1}(\pi/2)) = \leq (\gamma'_i(\pi/2), \gamma'_{i+1}(\pi/2)) = 2\pi/k$ for $i = 2, 3, \dots, k-1$, we get $\leq (\gamma'_i(0), \gamma'_{i+1}(0)) = 2\pi/k$ by exchanging the situation of p for the one of q. q.e.d.

Let us put $\mathscr{F}^+ = \mathscr{F}_1^+ \cup \mathscr{F}_2^+ \cup \cdots \cup \mathscr{F}_k^+$. Since $d(p, \sigma_q(\pi/k)) = \pi/2$ holds, $\sigma_q(\pi/k)$ is able to take place for q in the Lemma 5.2–5.4. Then we have a piece of totally geodesic hypersurface \mathscr{F}_i^- of constant curvature 1 with boundaries $\Gamma_i | [-\pi/2, 0], \Gamma_{i+1} | [-\pi/2, 0]$ and Σ_p which is a prolongation of \mathscr{F}_i^+ . Putting $\mathscr{F}^- = \mathscr{F}_1^- \cup \mathscr{F}_2^- \cup \cdots \cup \mathscr{F}_k^-$, we get a compact totally geodesic hypersurface $\mathscr{F}^{q,p} = \mathscr{F}^+ \cup \mathscr{F}^-$ which is the image $\pi(S^2(q))$ of $S^2(q) \subset S_1^3$ under the covering map π . It is clearly seen that $\mathscr{F}^{q,p}$ covers $\Sigma_p k$ times, and its tangent space $(\mathscr{F}^{q,p})_p$ at p consists of k-sheeted planes $(\mathscr{F}_1^+ \cup \mathscr{F}_1^-)_p, \cdots, (\mathscr{F}_k^+ \cup \mathscr{F}_k^-)_p$ each of which contains $\sigma'_p(0)$ and the angle between $(\mathscr{F}_i^+ \cup \mathscr{F}_i^-)_p$ and $(\mathscr{F}_{i+1}^+ \cup \mathscr{F}_{i+1}^-)_p$ is equal to $2\pi/k$. **Lemma 5.5.** The cut locus of the totally geodesic hypersurface $\pi(S^2(\tilde{q})) = \mathscr{F}^{q,p}$ with respect to p consists of $\Lambda_{\pi/k} | [-\pi/2, \pi/2], \Lambda_{3\pi/k} | [-\pi/2, \pi/2]$ and $\Lambda_{(2k-1)\pi/k} | [-\pi/2, \pi/2]$, which is contained entirely in the cut locus C(p) of M.

Proof. By the construction of $\mathscr{F}^{q,p}$, the first statement is evident. Suppose that there is a shortest geodesic of M from p to $\lambda_{\pi/k}(s) \in \mathscr{F}^{q,p}$ which is not contained in $\mathscr{F}^{q,p}$. Then there are at least k + 1 points in S_1^3 whose images under π are $\lambda_{\pi/k}(s)$. Hence p and $\lambda_{\pi/k}(s)$ can be joined by shortest geodesics of M which lie in $\mathscr{F}^{q,p}$. q.e.d.

By exchanging q (north pole) and Σ_p (equator) for p and Σ_q respectively, we get a compact totally geodesic surface $\mathscr{F}^{p,q}$ instead of $\mathscr{F}^{q,p}$ whose tangent space $(\mathscr{F}^{p,q})_p$ at p is the plane in M_p orthogonal to $\sigma'_p(0)$. Therefore we get the family of compact totally geodesic hypersurfaces $\{\mathscr{F}^{\sigma_q(t),p}\}\ (0 \le t \le 2\pi)$, and M can be considered to be constructed by this family of hypersurfaces.

Lemma 5.6. Let (e_1, e_2, e_3) be an orthonormal basis for M_p such that $e_1 = \sigma'_p(0)$ and $e_2 = \gamma'_1(0)$. Then for any $X \in C_p$ given by

$$\begin{aligned} X/\|X\| &= e_1 \cos \alpha + e_2 \sin \alpha \cos \beta + e_3 \sin \alpha \sin \beta \\ (0 \leq \alpha \leq 2\pi, 0 \ \beta \leq 2\pi) \end{aligned}$$

we have $||X|| = \cot^{-1}(\cos \alpha \cot \pi/k)$. Let $X_1 \in C_p$ be defined by $\exp_p X_1 = \exp_p X \in C(p)$, where X is given by the above equation and $\alpha \neq \pi/2$. Then we have

$$X_1 = \cot^{-1} (\cos \alpha \cot \pi/k) [e_1 \cos (\pi - \alpha) + e_2 \sin (\pi - \alpha) \cos (\beta + 2\pi/k) + e_2 \sin (\pi - \alpha) \cos (\beta + 2\pi/k)] .$$

Hence the identifying structure of C_p under \exp_p is completely known.

Proof. Since $d(p, \sigma_q(t)) = \pi/2$ holds for all $t \in [0, 2\pi]$, there exist t_0 and the compact totally geodesic hypersurface $\mathscr{F}^{q(t_0), p}$ a sheet of whose tangent planes at p is spanned by e_1 and $e_2 \cos \beta + e_3 \sin \beta$. Then we find $t_0 = \beta$, and also see that $\mathscr{F}^{\sigma}(\beta), p$ is obtained by $\pi(S^2(\tilde{\sigma}(\beta)))$. There is a geodesic triangle on $S^2(\tilde{\sigma}_q(\beta))$ with vertices $\exp_{\tilde{p}} \tilde{X}, \tilde{p}$ and $\tilde{\sigma}_{\tilde{p}}(2\pi/k)$ satisfying $\swarrow (\exp_{\tilde{p}} \tilde{X}, \tilde{p}, \tilde{\sigma}_{\tilde{p}}(2\pi/k)) = \\ \gtrless (\exp_{\tilde{p}} \tilde{X}, \tilde{\sigma}_{\tilde{p}}(2\pi/k), \tilde{p}) = \alpha$, where we define $d\pi(\tilde{X}) = X, \tilde{X} \in \tilde{M}_{\tilde{p}}$. Then the cosine rule of spherical trigonometry implies that $||X|| = \cot^{-1}(\cos \alpha \cot \pi/k)$. It is easily seen that $\measuredangle (X_1, \sigma'_p(0)) = \pi - \measuredangle (\exp_{\tilde{p}} \tilde{X}, \tilde{\sigma}_{\tilde{p}}(2\pi/k), \tilde{p}) = \pi - \alpha$ because π is a local isometry.

Remark. As for a vector $X = (\pi/2)(e_2 \cos \beta + e_3 \sin \beta)$, putting $X_i = (\pi/2)\{e_2 \cos (\beta + 2\pi i/k) + e_3 \sin (\beta + 2\pi i/k)\}, i = 1, 2, \dots, k$ we have $\exp_p X_i = \exp_p X$.

As the final step, we shall study the tangent cut locus $C_{p^*}^*$ of the lens space $M^* = L(1, k)$. The universal covering manifold of M^* is S_1^3 . Let $g \in G$ be the generator of the cyclic group G of order k, where k is an odd prime.

For arbitrary point $\tilde{x} \in S_1^3$, we have $\sum_{i=1}^k g^i(\tilde{x}) = 0$, from which the points $g(\tilde{x})$,

 $\dots, g^k(\tilde{x}) = \tilde{x}$ lie on a great circle of S_1^3 and divide the great circle into equal parts of length $2\pi k$. Putting $x^* = \pi(\tilde{x})$, there is a closed geodesic in M^* with length $2\pi/k$ which starts at x^* and is obtained from the image of the great circle containing $g^i(x)$ under π . We also see that Max $\{d(x^*, y^*) | y^* \in M\} = \pi/2$.

Let (u, v, w) be a local coordinate system of S_1^3 defined by

$$\begin{aligned} x(u, v, w) &= \cos u \cos v \cdot E_1 + \sin u \cos v \cdot E_2 \\ &+ \cos w \sin v \cdot E_3 + \sin w \sin v \cdot E_4 \end{aligned}$$

where (E_1, E_2, E_3, E_4) is the orthonormal basis for \mathbb{R}^4 . A totally geodesic hypersurface $S^2(\tilde{q})$ is expressed locally by $w = w_0$ which is a two-sphere in S_1^3 with the north pole \tilde{q} given by $q = \cos w_0 \cdot E_3 + \sin w_0 \cdot E_4$ and the equator given by $u \to \cos u \cdot E_1 + \sin u \cdot E_2$. Since $S^2(\tilde{q})$ is of constant curvature 1 and π is a local isometry, $\pi(S^2(\tilde{q}))$ is also compact and of constant curvature 1 with self intersection in such a way that the image of equator is a closed geodesic of length $2\pi/k$ and is covered k times by the equator $u \to \cos u \cdot E_1 + \sin u \cdot E_2$. We see that any other point on $\pi(S^2(q))$ has no intersection.

Let $\tilde{\Sigma}_{\tilde{p}} = \{\tilde{\sigma}_{\tilde{p}}(u)\}\ (0 \le u \le 2\pi)$ be defined by $\tilde{\sigma}_{\tilde{p}}(u) = \cos u \cdot E_1 + \sin u \cdot E_2$ where we put $\tilde{p} = (1, 0, 0, 0)$ or $\tilde{p}(u, v, w) = (0, 0, 0)$, and $\pi(\tilde{p}) = p^*$. We see that the cut locus of $\pi(S^2(\tilde{q}))$ with respect to $p^* \in \pi(S^2(\tilde{q}))$ is contained entirely in the cut locus $C^*(p^*)$ of M^* . Putting $\tilde{\Lambda}_u = \{\tilde{\lambda}_u(v)\}\ (0 \le v \le \pi/2), \tilde{\lambda}_u(0) =$ $\tilde{\sigma}_{\tilde{p}}(u)$ and $\tilde{\lambda}_u(\pi/2) = \tilde{q}, \pi \circ \tilde{\Sigma}_{\tilde{p}} = \Sigma_{p^*}^*, \sigma_{p^*}^*(0) = p^*$ and $\pi \circ \tilde{\Lambda}_u = \Lambda_u^*, \lambda_u^*(0) =$ $\sigma_{p^*}(u)$, the cut locus of $\pi(S^2(\tilde{q}))$ with respect to $p^* = \sigma_{p^*}^*(0)$ is the set $\{\Lambda_u^* | [-\pi/2, \pi/2] | u = (2i - 1)\pi/k, i = 1, 2, \cdots, k\}$. Denoting by $\tilde{\Gamma}_i$ the geodesic in S_1^3 joining $\tilde{\sigma}_{\tilde{p}}(2\pi i/k)$ to \tilde{q} , i.e., $\tilde{\Gamma}_i = \tilde{\Lambda}_{2\pi i/k}$, we see the angle between $g^j \circ \tilde{\Gamma}_i$ and $g^{j+1} \circ \tilde{\Gamma}_{i-1}$ at \tilde{p} is equal to $2\pi/k$ for every $j, i = 1, 2, \cdots, k \pmod{k}$. This fact shows that the angle between Γ_i^* and Γ_{i+1}^* is equal to $2\pi/k$ for i = $1, \dots, k$. We also see that the angle between $\Sigma_{p^*}^*$ and Γ_i^* is equal to $\pi/2$.

Denoting $\mathscr{F}_{q^*,p^*} = \pi(S^2(\tilde{q}))$, where $q^* = \pi(\tilde{q})$, we have the same arguments for the tangent space $(\mathscr{F}_{q^*,p^*})_{p^*}$ at p^* as those of $\mathscr{F}_{q,p}$, and the family $\{\mathscr{F}_{\sigma^*q^{*(t)},p^*}\}$ $(0 \le t \le 2\pi)$ generates M^* . Then we have the same argument as that in Lemma 5.6 for $C_{p^*} \subset M_{p^*}^*$.

References

- [1] M. Berger, Les variétés riemanniennes à courbure positive, Bull. Soc. Math. Belgique 10 (1958) 89-104.
- [2] —, Sur les variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960) 57–71.
- [3] —, Les variétés riemanniennes (1/4)-pincées, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960) 161–170.
- [4] —, On the diameter of some Riemannian manifolds, Technical report, University of California at Berkeley, 1962.
- [5] —, Sur les variétés à courbure positive de diamètre minimum, Comment. Math. Helv. **35** (1961) 28-34.

KATSUHIRO SHIOHAMA

- [6] M. W. Hirsch & J. Milnor, On curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964) 372–377.
- [7] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. 69 (1959) 654–666.
- [8] —, Über Riemannsche Mannigfaltigkeit mit positive Krümmung, Comment. Math. Helv. 35 (1961) 47–54.
- [9] —, Über Riemannsche Mannigfaltigkeiten mit nach oben beschrankter Krümmung, Ann. Mat. Pura Appl. 60 (1963) 49–59.
- [10] G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960) 603-611.
- [11] H. Rauch, A contribution to differential geometry in the large, Ann. of Math. 54 (1951) 38-55.
- [12] M. Sugimoto, On riemannian manifolds with a certain closed geodesics, Tôhoku Math. J. 22 (1970) 56-64.
- [13] V. A. Toponogov, Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl. (2) 37 (1964) 291–336.
- [14] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

TOKYO INSTITUTE OF TECHNOLOGY