THE DIAMETER OF δ-PINCHED MANIFOLDS

KATSUHIRO SHIOHAMA

0. Introduction

It is interesting to investigate the manifold structures of a complete riemannian manifold whose sectional curvature is bounded below by a positive constant. As is well known such a riemannian manifold is compact and we may suppose that its sectional curvature K_{σ} satisfies $0<\delta \leq K_{\sigma} \leq 1$ for every plane section σ. Berger proved in [2] and [3] that a complete, simply connected and even dimensional riemannian manifold with $\delta=1 / 4$ is homeomorphic to a sphere, or otherwise M is isometric to one of the compact symmetric spaces of rank one. For arbitrary dimensional riemannian manifolds, Klingenberg proved in [8] that a complete and simply connected riemannian manifold with $\delta>$ $1 / 4$ is homeomorphic to a sphere. Moreover, Berger claimed in [4] that M is a homology sphere if the diameter $d(M)$ of M satisfies $d(M)>\pi /(2 \sqrt{\delta})$ for $0<\delta \leq 1$.

Since the diameter $d(M)$ of a δ-pinched manifold M plays an important role in the proofs of these interesting results mentioned above, it might be significant to investigate the relationship between the manifold structure of M and its diameter $d(M)$ of a δ-pinched riemannian manifold.

One of our main results obtained in the present paper is:
A connected and complete riemannian manifold with $\delta=1 / 4$ is homeomorphic to a sphere if the diameter $d(M)$ of M satisfies $d(M)>\pi$.

For a simply connected riemannian manifold with $\delta=1 / 4$, Klingenberg claimed in [9] that the distance $d(p, C(p))$ between any point $p \in M$ and its cut locus $C(p)$ is no less than π, and M is either homeomorphic to a sphere or M is isometric to one of the compact symmetric spaces of rank one. However the proof stated in [9] seems to us to be incomplete ${ }^{1}$.

As the main theorem, it will be proved that a three dimensional, connected, complete and orientable riemannian manifold with $\delta>1 / 4$ is isometric to the lens space $L(1, k)$ of constant curvature 1 , if M has a closed geodesic segment Γ with the length $\mathscr{L}(\Gamma)=2 \pi / k$ and the fundamental group $\pi_{1}(M)$ of M satisfies $\pi_{1}(M)=Z_{k}$, where k is an odd prime.

Definitions and notations are given in $\S 1$. In $\S 2$, we shall give an estimate

[^0]of the distance between some point p on a δ-pinched riemannian manifold and its cut locus $C(p)$, which plays an important role in a proof of a sphere theorem stated above, and the sphere theorem will be proved in this section. In $\S 3$, we shall study some estimates of cut loci of δ-pinched riemannian manifolds which are not simply connected. In § 4, we shall investigate some topological structure of a δ-pinched riemannian manifold with $\delta>1 / 4$ whose fundamental group satisfies $\pi_{1}(M)=Z_{2}$. In the last section, we shall prove our main theorem stated above.

1. Definitions and notations

Throughout this paper let M be a connected, complete and differentiable riemannian manifold of dimension $n(n \geq 2)$, whose sectional curvature K_{σ} satisfies $0<\delta \leq K_{\sigma} \leq 1$ for every plane section σ. Geodesics in M are parametrized by arc-length, and the tangent space at a point $x \in M$ is denoted by M_{x}. Let u and v be tangent vectors at x, and denote by $\langle u, v\rangle$ the inner product of u and v with respect to the riemann metric tensor of M and by d the distance function of M. For a geodesic segment $\Gamma=\{\gamma(t)\}(0 \leq t \leq l)$, the length of Γ is denoted by $\mathscr{L}(\Gamma)$ which is equal to l. A geodesic triangle (Γ, Λ, Φ) in M is a triple of shortest geodesic segments each of which is not a constant geodesic. For a geodesic triangle (Γ, Λ, Φ) let $\left(\Gamma^{*}, \Lambda^{*}, \Phi^{*}\right)$ be the geodesic triangle in $S_{1 / \sqrt{\delta}}^{2}$ satisfying $\mathscr{L}\left(\Gamma^{*}\right)=\mathscr{L}(\Gamma), \mathscr{L}\left(\Lambda^{*}\right)=\mathscr{L}(\Lambda)$ and $\mathscr{L}\left(\Phi^{*}\right)=\mathscr{L}(\Phi)$, where S_{r}^{k} denotes the k-sphere with radius r in a euclidean space R^{k+1}. We shall call ($\Gamma^{*}, \Lambda^{*}, \Phi^{*}$) the corresponding triangle of (Γ, Λ, Φ) in $S_{1 / \sqrt{\delta}}^{2}$. The universal covering manifold of M is denoted by \bar{M} and the projection map by π. The diameter $d(M)$ of M is defined by $d(M)=\sup \{d(x, y) \mid x, y \in M\}$.

Let G be the cyclic group of order k whose generator g is given by $g=$ $\left[\begin{array}{c}R(1 / k) \\ R(1 / k)\end{array}\right]$, where k is an odd prime and $R(\theta)$ means the rotation of R^{2} which is defined by $R(\theta)=\left[\begin{array}{rr}\cos 2 \pi \theta & \sin 2 \pi \theta \\ -\sin 2 \pi \theta & \cos 2 \pi \theta\end{array}\right]$. The lens space $L(1, k)$ of constant curvature 1 is defined by $L(1, k)=S_{1}^{3} / G$ where k is an odd prime.

2. An estimate of cut locus of certain $\boldsymbol{8}$-pinched manifold

In this section, we shall give an estimate of the distance between some point $x \in M$ and its cut locus $C(x)$ where the diameter $d(M)$ of M satisfies $d(M)>$ $\pi /(2 \sqrt{\delta})$. Our technique does not hold for all points of M but for some pair of points $x, y \in M$ satisfying $d(x, y)>\pi /(2 \sqrt{\delta})$ for any $0<\delta \leq 1$.

First of all, we shall prove the following proposition.
Proposition 2.1. If the diameter $d(M)$ of M satisfies $d(M)>\pi /(2 \sqrt{\delta})$ for any $0<\delta \leq 1$, then M is simply connected.

Proof. Suppose that M is not simply connected. Let p and q be the points
in M such that $d(p, q)=\mathrm{d}(M)$. There are at least two points \tilde{p}_{1} and \tilde{p}_{2} in \bar{M} satisfying $\pi\left(\tilde{p}_{1}\right)=\pi\left(\tilde{p}_{2}\right)=p$. By completeness of \bar{M}, there exists a shortest geodesic $\tilde{\Theta}=\{\tilde{\theta}(t)\}(0 \leq t \leq l)$ satisfying $\tilde{\theta}(0)=\tilde{p}_{1}, \tilde{\theta}(l)=\tilde{p}_{2}$ and $\mathscr{L}(\tilde{\Theta})=l=$ $d\left(\tilde{p}_{1}, \tilde{p}_{2}\right)$. Putting $\Theta=\pi \circ \tilde{\Theta}$, we have a geodesic $\Gamma=\{\gamma(t)\}(0 \leq t \leq d(M))$ such that $\gamma(0)=p, \gamma(d(M))=q$ which satisfies $\left\langle\gamma^{\prime}(0), \theta^{\prime}(0)\right\rangle \geq 0$, where $\gamma^{\prime}(t)$ denotes the tangent vector of Γ at $\gamma(t)$. Then, there is a geodesic $\tilde{\Gamma}$ in \tilde{M} which satisfies $\Gamma=\pi \circ \tilde{\Gamma}$ and $\tilde{\gamma}(0)=\tilde{p}_{1}, \tilde{\gamma}(d(M))=\tilde{q} \in \tilde{M}$. Consider a geodesic triangle $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ in \tilde{M} where $\tilde{\Lambda}$ is a shortest geodesic joining \tilde{q} to \tilde{p}_{2}. Assume that the perimeter of $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ is less than $2 \pi / \sqrt{\delta}$, and let $\left(\Gamma^{*}, \Theta^{*}, \Lambda^{*}\right)$ be the corresponding geodesic triangle of $(\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda})$ in $S_{1 / \sqrt{\bar{\delta}}}^{2}$. Then by virtue of the basic theorem on the triangles of Toponogov, every angle of ($\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda}$) is not less than the corresponding angle of $\left(\Gamma^{*}, \Theta^{*}, \Lambda^{*}\right)$. Hence we have $\Varangle\left(\gamma^{* \prime}(0), \theta^{* \prime}(0)\right) \leq$ $\Varangle\left(\tilde{\gamma}(0), \tilde{\theta}^{\prime}(0)\right) \leq \pi / 2$. On the other hand, the inequality $\mathscr{L}(\tilde{\Lambda}) \geq \mathscr{L}(\tilde{\Gamma})>$ $\pi /(2 \sqrt{\delta})$ implies that $\Varangle\left(\gamma^{* \prime}(0), \theta^{* \prime}(0)\right)>\pi / 2$, giving a contradiction. Therefore the perimeter of ($\tilde{\Gamma}, \tilde{\Theta}, \tilde{\Lambda}$) must be $2 \pi / \sqrt{\delta}$. Then Theorem 4 of [13] implies that M is isometric to the n-sphere $S_{1 / \sqrt{ } \bar{\delta}}^{n}$ of radius $1 / \sqrt{\delta}$. Making use of the inequality $\Varangle\left(\tilde{\gamma}^{\prime}(0), \tilde{\theta}^{\prime}(0)\right) \leq \pi / 2$, was see that $\mathscr{L}(\tilde{\Gamma})=\mathscr{L}(\tilde{\Lambda})+\mathscr{L}(\tilde{\Theta})=$ $\pi / \sqrt{\delta}$ or $\mathscr{L}(\tilde{\Theta})=\mathscr{L}(\tilde{\Gamma})+\mathscr{L}(\tilde{\Lambda})=\pi / \sqrt{\delta}$. If $\mathscr{L}(\tilde{\Gamma})=\pi / \sqrt{\delta}$, then $\mathscr{L}(\Gamma)=$ $d(M)=\pi / \sqrt{\delta}$ implies that M is isometric to $S_{1 / \sqrt{\delta}}^{n}$. If $\mathscr{L}(\widetilde{\Theta})=\mathscr{L}(\tilde{\Gamma})+\mathscr{L}(\tilde{\Lambda})$ $=\pi / \sqrt{\delta}$ holds, we have $\mathscr{L}(\Gamma) \leq \pi /(2 \sqrt{\delta})$ from $\mathscr{L}(\tilde{\Gamma}) \leq \mathscr{L}(\tilde{\Lambda})$, which is a contradiction.

Theorem 2.2. For any pair of points x, y in M satisfying $d(x, y)>\pi /(2 \sqrt{\bar{\delta}})$, we have $d(x, C(x)) \geq \pi$ and $d(y, C(y)) \geq \pi$ where $C(x)$ denotes the cut locus of x.

Proof. It δ satisfies $\delta>1 / 4$, Proposition 2.1 and a theorem of Klingenberg [8] imply the statement. Suppose that $d(y, C(y))=\rho<\pi$ holds for some pair of points x, y satisfying $d(x, y)>\pi /(2 \sqrt{\delta})$. We shall derive a contradiction, and need only to consider δ satisfying $\delta \leq 1 / 4$. By the hypothesis $\rho<\pi$ and an elementary property of cut locus, there is a closed geodesic segment $\Sigma=$ $\{\sigma(t)\}(0 \leq t \leq 2 \rho)$ such that $\sigma(0)=\sigma(2 \rho)=y$. For any $t \in[0,2 \rho]$, we get $d(x, \sigma(t)) \geq d(x, y)-d(y, \sigma(t))>\pi /(2 \sqrt{\delta})-\pi \geq 0$ which shows that $x \notin \Sigma$. Then there exists a point z on Σ satisfying $d(x, z)=d(x, \Sigma)$. Suppose that $z \neq y$. Then by virtue of the second variation formula [1, Proposition 3], we have $d(x, \Sigma) \leq \pi /(2 \sqrt{\delta})$. The points y and z divide Σ into two subarcs. Let $\hat{\Sigma}$ be the shorter subarc, Φ and Λ be the shortest geodesics from x to y and x to z respectively, and ($\Phi^{*}, \hat{\Sigma}^{*}, \Lambda^{*}$) be the corresponding geodesic triangle of (Φ, $\hat{\Sigma}, \Lambda)$ in $S_{1 / \sqrt{\delta}}^{2}$. Then the inequalities $\mathscr{L}\left(\Phi^{*}\right)>\pi /(2 \sqrt{\delta}), \mathscr{L}\left(\hat{\Sigma}^{*}\right) \leq \rho<\pi /(2 \sqrt{\bar{\delta}})$ and $\mathscr{L}\left(\Lambda^{*}\right) \leq \pi /(2 \sqrt{\delta})$ imply that the angle between Σ^{*} and Λ^{*} is greater than $\pi / 2$, which contradicts the basic theorem on triangles.

Therefore we must have $y=z$, and we have immediately $d(x, \sigma(t))>d(x, y)$ for all $t \in(0,2 \rho)$. Putting $y_{1}=\sigma(\rho)$ and $d\left(y_{1}, C\left(y_{1}\right)\right)=\rho_{1}$, we get $\rho_{1} \leq \rho$ from $y \in C\left(y_{1}\right)$ and $d\left(x, y_{1}\right)>d(x, y)>\pi /(2 \sqrt{\delta})$. There is a closed geodesic segment
$\Sigma_{1}=\left\{\sigma_{1}(t)\right\}\left(0 \leq t \leq 2 \rho_{1}\right)$ such that $\sigma_{1}(0)=\sigma_{1}\left(2 \rho_{1}\right)=y_{1}$ and $x \notin \Sigma_{1}$ and therefore we have the same argument for Σ_{1} as for Σ. If Σ_{1} is a closed geodesic, the second variation formula stated above implies that the nearest point $z_{1} \in \Sigma_{1}$ to x is different from y_{1}, and the same discussion for the geodesic triangle with vertices $\left(x, y_{1}, z_{1}\right)$ leads a contradiction. Hence we only consider Σ_{1} being a closed geodesic segment and satisfying $d\left(x, \sigma_{1}(t)\right)>d\left(x, y_{1}\right)$ for all $t \in\left(0,2 \rho_{1}\right)$.

Putting again $y_{2}=\sigma_{1}\left(\rho_{1}\right)$ and $\rho_{2}=d\left(y_{2}, C\left(y_{2}\right)\right)$, there is a closed geodesic segment $\Sigma_{2}=\left\{\sigma_{2}(t)\right\}\left(0 \leq t \leq 2 \rho_{2}\right)$, where we have $\rho_{2} \leq \rho_{1} \leq \rho<\pi$ and $d\left(x, y_{2}\right)>d\left(x, y_{1}\right)>d(x, y)>\pi /(2 \sqrt{ } \bar{\delta})$. Repeating this argument, we have the sequences of points, closed geodesic segments and real numbers as follows:

$$
\begin{aligned}
& y, y_{1}, y_{2}, \cdots \\
& \Sigma, \Sigma_{1}, \Sigma_{2}, \cdots \\
& \rho \geq \rho_{1} \geq \rho_{2} \geq, \cdots \\
& d(x, y)<d\left(x, y_{1}\right)<d\left(x, y_{2}\right)<, \cdots
\end{aligned}
$$

Since M is compact, the last sequence satisfies $d\left(x, y_{k}\right) \leq d(M)$ for all k, from which $d\left(x, y_{k}\right)$ has a limit and we can choose a subsequence of $\left\{y_{k}\right\}$ converging to some point y^{*} in M by compactness. Because the function $p \rightarrow d(p, C(p))$ is lower semi-continuous, we have $\lim \rho_{k} \geq \rho^{*}$ where $\rho^{*}=d\left(y^{*}, C\left(y^{*}\right)\right)$.

On the other hand, there is a shortest geodesic Φ_{i-1} from x to y_{i-1}, and for any fixed Φ_{i} we have the subarc $\hat{\Sigma}_{i-1}$ of Σ_{i-1} which starts from y_{i-1} and ends at y_{i} with the property that the angle between Φ_{i} and $\hat{\Sigma}_{i-1}$ at y_{i} is no greater than $\pi / 2$. Let ($\Phi_{i-1}^{*}, \hat{\Sigma}_{i-1}^{*}, \Phi_{i}^{*}$) be the geodesic triangle corresponding to (Φ_{i-1}, $\left.\hat{\Sigma}_{i-1}, \Phi_{i}\right)$ in $S_{1 / \sqrt{\bar{\delta}}}^{2}$, where we denote $\Phi_{0}=\Phi$ and $\Sigma_{0}=\Sigma$, and let α_{i} be the angle between Φ_{i}^{*} and $\hat{\Sigma}_{i-1}^{*}$. Then we get $\alpha_{i} \leq \pi / 2$ for all i. By the spherical trigonometry, it follows that

$$
\begin{gathered}
\cos \left(d\left(x, y_{i-1}\right) \sqrt{\delta}\right)-\cos \left(d\left(x, y_{i}\right) \sqrt{\delta}\right) \cdot \cos \left(\rho_{i-1} \sqrt{\delta}\right) \\
=\sin \left(\rho_{i-1} \sqrt{\delta}\right) \cdot \sin \left(d\left(x, y_{i}\right) \sqrt{\delta}\right) \cdot \cos \alpha_{i} \geq 0
\end{gathered}
$$

which implies $\cos \left(d\left(x, y_{i-1}\right) \sqrt{\delta}\right) \geq \cos \left(d\left(x, y_{i}\right) \sqrt{\delta}\right) \cdot \cos \left(\rho_{i-1} \sqrt{\delta}\right)$, for all i. Therefore it follows clearly that

$$
\begin{aligned}
& \cos (d(x, y) \sqrt{\delta}) \geq \cos \left(d\left(x, y_{1}\right) \sqrt{\delta}\right) \cdot \cos (\rho \sqrt{\delta}) \geq \cos \left(d\left(x, y_{k}\right) \sqrt{\delta}\right) \\
& \cdot \prod_{i=1}^{k} \cos \left(\rho_{i-1} \sqrt{\delta}\right) \geq \cos \left(d\left(x, y_{k}\right) \sqrt{\delta}\right) \cdot\left(\cos \left(\rho^{*} \sqrt{\delta}\right)\right)^{k}, \quad k=1,2, \cdots
\end{aligned}
$$

Hence we must have $\cos (d(x, y) \sqrt{\delta}) \geq 0$, so that $d(x, y) \leq \pi /(2 \sqrt{\delta})$, a contradiction. q.e.d.

In order to estimate the distance betweem a point $p \in M$ and its cut locus $C(p)$, the simply connectedness of M is the essential hypothesis for the arguments developed in [7], [8] and [9]. We note that the technique of a proof of

Sphere Theorem investigated by Klingenberg need not the estimate $d(x, C(x))$ $\geq \pi$ for all points of M.

Theorem 2.3. Let M be a connected and complete riemannian manifold. If the sectional curvature K_{σ} of M satisfies $1 / 4 \leq K_{\sigma} \leq 1$ for every plane section σ and the diameter $d(M)$ of M satisfies $d(M)>\pi$, then M is homeomorphic to S^{n}.

By virtue of Theorem 2.2, it suffices to show the following proposition for a proof of Theorem 2.3.

Proposition 2.4. Suppose that $\delta=1 / 4$ and $d(M)>\pi$ hold, and set $d(p, q)$ $=d(M)$. Then for any point $r \in M$, we have $d(p, r)<\pi$ or $d(q, r)<\pi$.

In the following we prepare Lemmas 2.5-2.8 for a proof of Proposition 2.4. The method is analogous to that of Berger [3].

Lemma 2.5 (Lemma 4 of Berger [3]). For any point $r \in M$, we have $d(p, r)$ $<\pi$ or $d(q, r)<\pi$ or otherwise $d(p, r)=d(q, r)=\pi$.
Lemma 2.6 (Lemma 5 of Berger [3]). Suppose that there is a point $r \in M$ satisfying $d(p, r)=d(q, r)=\pi$, where $d(p, q)=d(M)$. For any shortest geodesic $\Phi=\{\varphi(t)\}(0 \leq t \leq \pi), \varphi(0)=p, \varphi(\pi)=r$, let Γ be a geodesic such that Γ $=\{\gamma(t)\}(0 \leq t \leq d(M)), \gamma(0)=p, \gamma(d(M))=q$ and $\Varangle\left(\gamma^{\prime}(0), \varphi^{\prime}(0) \leq \pi / 2\right.$. Then we have $d(r, \gamma(t))=\pi$ for all $0 \leq t \leq d(M)$ and there is a piece of totally geodesic surface of constant curvature $1 / 4$ with boundaries Φ, Γ and Ψ, where Ψ is a geodesic such that $\Psi=\{\Psi(t)\}(0 \leq t \leq \pi), \psi(0)=q, \psi(\pi)=r$, and we also have $\Varangle\left(\varphi^{\prime}(0), \gamma^{\prime}(0)\right)=\pi / 2, \Varangle\left(\gamma^{\prime}(d(M)), \phi^{\prime}(0)\right)=\pi / 2$ and $\Varangle\left(\varphi^{\prime}(\pi)\right.$, $\left.\psi^{\prime}(\pi)\right)=d(M) / 2$.

We can prove Lemmas 2.5 and 2.6 in the same way as that stated in [3].
Lemma 2.7. Let N be defined by $N=\{x \in M \mid d(x, y)>\pi /(2 \sqrt{\delta})$ for some $y \in M\}$ where δ is any positive constant $0<\delta \leq 1$. For any fixed point $x \in N$, let Θ and Θ_{1} be shortest geodesics of length π satisfying $x=\theta(0)=\theta_{1}(0), \theta(\pi)$ $=\theta_{1}(\pi)=z$ and $\theta^{\prime}(0) \neq \pm \theta_{1}^{\prime}(0)$. Then there exists a lune of totally geodesic surface of constant curvature 1 with boundaries Θ and Θ_{1}.

Proof. $\quad \theta^{\prime}(0) \neq \pm \theta_{1}^{\prime}(0)$ implies clearly $\theta^{\prime}(\pi) \neq \pm \theta_{1}^{\prime}(\pi)$ from Theorem 2.2. Since N is open in M there is a point $w \in \Theta \cap N$. It follows that $d\left(w, \theta_{1}(t)\right)<\pi$ for every $t \in[0, \pi]$ and $\exp _{w} \mid U$ is a diffeomorphism, where U is an open ball in M_{w} with radius π and center at the origin.

Let $\Theta^{*}=\left\{\theta^{*}(t)\right\}(0 \leq t \leq \pi)$ be a great circle on S_{1}^{n}. Take a point $w^{*} \in \Theta^{*}$ satisfying $w^{*}=\theta^{*}\left(t_{0}\right)$, where t_{0} is defined by $w=\theta\left(t_{0}\right)$. Let ι be an isometric isomorphism of M_{w} onto $\left(S_{1}^{n}\right)_{w^{*}}$ such that $\iota \theta^{\prime}\left(t_{0}\right)=\theta^{* \prime}\left(t_{0}\right)$ and put $x^{*}=\theta^{*}(0)$, $z^{*}=\theta^{*}(\pi)$. Then the curve $\Theta_{1}^{*}=\left(\exp _{w^{*} \circ ८ \circ}\left(\exp _{w} \mid U\right)^{-1}\right) \circ \Theta_{1}$ is a regular curve which connects x^{*} to z^{*} and whose length is equal to π by Rauch's metric comparison theorem [11]. Since Θ_{1}^{*} becomes a great circle, we obtain a lune of totally geodesic surface of constant curvature 1 with boundaries Θ and Θ_{1}.

Lemma 2.8 (Lemma 6 of Berger [3]). Let M be a riemannian manifold whose sectional curvature K_{σ} satisfies $\delta \leq K_{\sigma} \leq 1$ for every plane section σ,
and let X, Y and Z be tanget vectors at $x \in M$ such that $Y \neq Z, K(X, Y)=$ $K(X, Z)=\delta$ and $\langle Y, X\rangle=\langle Z, X\rangle>0$. Then we have $K(Y, Z)<1$.

Proof of Theorem 2.3. Let Γ, Φ, Θ be the shortest geodesic segments joining p to q, p to r and q to r respectively which are defined in such a way that there is a piece of totally geodesic surface \mathscr{F} of constant curvature $1 / 4$ with boundaries Γ, Φ and Θ. Developing the same discussion as Berger [3], there is a shortest geodesic $\Gamma_{1}=\left\{\gamma_{1}(t)\right\}(0 \leq t \leq d(M)), \gamma_{1}(0)=p, \gamma_{1}(d(M))=q$ which satisfies $\Gamma_{1} \neq \Gamma$ and $\left\langle\gamma_{1}^{\prime}(0), \varphi^{\prime}(0)\right\rangle=0$. Therefore we have another totally geodesic surface \mathscr{F}_{1} of constant curvature $1 / 4$ with boundaries Γ_{1}, Φ and Θ_{1}, where Θ_{1} is a shortest geodesic from q to r. Suppose that $\Varangle\left(\theta^{\prime}(0), \theta_{1}^{\prime}(0)\right)=\pi$. We have $\Varangle\left(\theta^{\prime}(\pi), \theta_{1}^{\prime}(\pi)\right)=\pi$ and moreover \mathscr{F} and \mathscr{F}_{1} have the same tangent plane at r. Hence we get $\Varangle\left(\varphi^{\prime}(\pi), \theta^{\prime}(\pi)\right)=\Varangle\left(\varphi^{\prime}(\pi), \theta_{1}^{\prime}(\pi)\right)=\pi / 2$, which imply $\mathrm{d}(M)=\pi$. Therefore we must have $\Varangle\left(\theta^{\prime}(0), \theta_{1}^{\prime}(0)\right)<\pi$. Suppose that $\Varangle\left(\theta^{\prime}(0), \theta_{1}^{\prime}(0)\right)=0$. Then \mathscr{F} and \mathscr{F}_{1} have a common tangent plane at q from which we get $\Gamma=\Gamma_{1}$. Hence we have $\Varangle\left(\theta^{\prime}(0), \theta_{1}^{\prime}(0)\right) \in(0, \pi)$, and Lemma 2.8 implies a contradiction.

3. Estimates of cut locus of δ-pinched manifold which is not simply connected

In this section we shall investigate some estimates of cut locus of δ-pinched riemannian manifold which is not simply connected.

Proposition 3.1. If M is not simply connected and $0<\delta \leq 1$, then $d(p, C(p)) \leq d(M) \leq \pi /(2 \sqrt{\delta})$ for every point $p \in M$. Suppose that there is a point $p \in M$ at which $d(p, C(p))=\pi /(2 \sqrt{\delta})$ holds. Then M is isometric to the real projective space $P R^{n}(\delta)$ of constant curvature δ.

Proof. Let \bar{M} be the universal covering manifold of M and π be the projection map. There and at least two distinct points $\tilde{p}_{1}, \tilde{p}_{2}$ of \bar{M} such that $\pi\left(\tilde{p}_{1}\right)$ $=\pi\left(\tilde{p}_{2}\right)=p$. Let $\tilde{\Gamma}$ be a shortest geodesic joining \tilde{p}_{1} to \tilde{p}_{2}, and Γ be a closed geodesic segment at p defined by $\pi \circ \tilde{\Gamma}=\Gamma$. Then $\mathscr{L}(\Gamma)$ is not less than $2 d(p, C(p))=\pi / \sqrt{\delta}$, from which we have $d\left(\tilde{p}_{1}, \tilde{p}_{2}\right) \geq \pi / \sqrt{\delta}$. Thus \dot{M} is isometric to $S_{1 / \sqrt{\bar{\delta}}}^{n}$ by the maximal diameter theorem of Toponogov [13]. Suppose that there is a point $\tilde{p}_{3} \in \bar{M}$ satisfying $\tilde{p}_{1} \neq \tilde{p}_{3} \neq \tilde{p}_{2}$ and $\pi\left(\tilde{p}_{3}\right)=p$. Then the perimeter of a geodesic triangle in M with vertices $\tilde{p}_{1}, \tilde{p}_{2}$ and \tilde{p}_{3} is not less than $3 \pi / \sqrt{\delta}$, which is a contradiction. Therefore \bar{M} must be a double covering of M, and hence we get $M=P R^{n}(\delta)$.

Proposition 3.2. Let M be a δ-pinched riemannian manifold which is not simply connected, and suppose that there is a point $p \in M$ at which $d(p, C(p))$ $\geq \pi /(3 \sqrt{\delta})$ holds. Then the fundamental group of M is $\pi_{1}(M)=Z_{2}$ or otherwise, M is odd dimensional riemannian manifold of constant curvature δ.

Proof. If there are three different points $\tilde{p}_{1}, \tilde{p}_{2}$ and \tilde{p}_{3} in \bar{M} such that $\pi\left(\tilde{p}_{1}\right)$ $=\pi\left(\tilde{p}_{2}\right)=\pi\left(\tilde{p}_{3}\right)=p \in M$, then we have $d\left(\tilde{p}_{i}, \tilde{p}_{j}\right) \geq 2 d(p, C(p)) \geq 2 \pi /(3 \sqrt{\delta})$ for every $i, j=1,2,3, i \neq j$, and the perimeter of a geodesic triangle with vertices
$\tilde{p}_{1}, \tilde{p}_{2}$ and \tilde{p}_{3} is not less than $2 \pi / \sqrt{\delta}$, from which M is of constant curvature δ. As is well known, an even dimensional complete riemannian manifold of constant positive curvature is isometric to either a sphere or a real projective space. Hence $\operatorname{dim} M$ must be odd.

Corollary to Proposition 3.2. Let M be a δ-pinched riemannian manifold which is not simply connected, and suppose that $\pi_{1}(M) \neq Z_{2}$. Then we have $d(x, C(x)) \leq \pi /(3 \sqrt{\delta})$ for any $x \in M$. Furthermore if there is a point $x \in M$ at which $d(x, C(x))=\pi /(3 \sqrt{\delta})$, then M is an odd dimensional riemannian manifold of constant curvature δ.

We shall give some estimates of cut loci under the assumption $\delta>1 / 4$ and certain assumptions for the fundamental groups of pinched manifolds.

Theorem 3.3. Suppose that δ satisfies $\delta>1 / 4$ and M is not simply connected. Then there does not exist any δ-pinched riemannian manifold M whose diameter satisfies $\pi /(2 \sqrt{\delta})<d(M)<\pi$. In particular if the fundamental group $\pi_{1}(M)$ of such M satisfies $\pi_{1}(M)=Z_{k}$, where k is an integer not less than 2 , then we have $d(x, C(x)) \geq \pi / k$ for every point $x \in M$. Moreover if there is a point $x \in M$ where $d(x, C(x))=\pi / k$ is satisfied, then M is of constant curvature 1.

Proof. The first statement is evident from Proposition 2.1 and the Theorem of Klingenberg [8]. Suppose that the fundamental group $\pi_{1}(M)$ of M satisfies $\pi_{1}(M)=Z_{k}$, where k is an integer such that $k \geq 2$. Since the function $p \rightarrow$ $d(p, C(p))$ is lower semi-continuous, there is a point $p_{0} \in M$ at which the function takes infimum ρ. We have a closed geodesic $\Sigma=\{\sigma(t)\}(0 \leq t \leq 2 \rho)$ such that $\sigma(0)=\sigma(2 \rho)=p_{0}$ and $\rho=d\left(p_{0}, C\left(p_{0}\right)\right)$. Then there exists a closed geodesic $\tilde{\Sigma}$ in \bar{M} satisfying $\pi \circ \tilde{\Sigma}=\Sigma$. By virtue of $\pi_{1}(M)=Z_{k}$, we have $\mathscr{L}(\tilde{\Sigma})=2 \rho k$. On the other hand, every closed geodesic segment in \bar{M} has length no less than 2π. Hence we have $\rho \geq \pi / k$.

If there is a point $x \in M$ at which $d(x, C(x))=\pi / k$ holds. Then we have ρ $=\pi / k$ and $\mathscr{L}(\tilde{\Sigma})=2 \pi$. We shall prove that $C\left(\tilde{p}_{0}\right)$ consists of only one point $\{\tilde{\sigma}(\pi)\}$. In fact, if there is a point \tilde{q} in $C\left(\tilde{p}_{0}\right)$ such that $\tilde{q} \neq \tilde{\sigma}(\pi)$, then let $\tilde{\Psi}$ be a shortest geodesic from $\tilde{\sigma}(\pi)$ to \tilde{q}. Without loss of generality we can assume that $\left\langle\tilde{\sigma}^{\prime}(\pi), \tilde{\phi}^{\prime}(0)\right\rangle \geq 0$. For a geodesic triangle ($\left.\tilde{\Sigma} \mid[\pi, 2 \pi], \tilde{\Psi}, \tilde{\Phi}\right)$ with vertices $\tilde{p}_{0}, \tilde{\sigma}(\pi)$ and \tilde{q}, we have a contradiction to the basic theorem on triangles, because $\pi>\pi(2 \sqrt{\delta})$ holds.

Remark. If the diameter $d(M)$ of M with $\delta>1 / 4$ satisfies $d(M)=\pi$, then M is isometric to S_{1}^{n}. Furthermore, if there is a closed geodesic segment of length 2π in such a simply connected M, then M is isometric to S_{1}^{n}.

4. Topological structures of M satisfying $\delta>1 / 4$ and $\pi_{1}(M)=Z_{2}$

Throughout this section we only consider M satisfying $\delta>1 / 4$ and $\pi_{1}(M)$ $=Z_{2}$ First of all we shall prove the following lemma.
Lemma 4.1. Take a pair of points $p, q \in M$ such that $d(p, q)=d(M)$. Then
there is a closed geodesic $\Gamma=\{\gamma(t)\}(0 \leq t \leq 2 d(M))$ such that $\gamma(0)=\gamma(2 d(M))$ $=p$ and $\gamma(d(M))=q$.

Proof. From the assumptions $\delta>1 / 4$ and $\pi_{1}(M)=Z_{2}$, we have $d(M) \leq$ $\pi /(2 \sqrt{\delta})<\pi$. Let $\Gamma=\{\gamma(t)\}(0 \leq t \leq d(M))$ be a shortest geodesic from p to q. Since $d(p, q)=d(M)$, there is a shortest geodesic $\Gamma_{1}, \Gamma_{1}=\left\{\gamma_{1}(t)\right\}(0 \leq t$ $\leq d(M)$) from p to q satisfying $\left\langle\gamma^{\prime}(d(M)),-\gamma_{1}^{\prime}(d(M))\right\rangle \geq 0$. Suppose that $\Varangle\left(\gamma^{\prime}\left(d(M), \gamma_{1}^{\prime}(d(M))\right) \neq \pi\right.$. Then there is a shortest geodesic Γ_{2} from p to q satisfying $\left\langle\gamma^{\prime}(d(M))+\gamma_{1}^{\prime}(d(M)),-\gamma_{2}^{\prime}(d(M))\right\rangle \geq 0$. Take a fixed point $\tilde{p}_{1} \in M$ such that $\pi\left(\tilde{p}_{1}\right)=p$, and let $\tilde{\Gamma}, \tilde{\Gamma}_{1}$ and $\tilde{\Gamma}_{2}$ be geodesics in \tilde{M} which satisfy $\pi \circ \tilde{\Gamma}$ $=\Gamma, \pi \circ \tilde{\Gamma}_{1}=\Gamma_{1}$ and $\pi \circ \tilde{\Gamma}_{2}=\Gamma_{2}$, and start from \tilde{p}_{1}. Since there are just two points in \vec{M}, whose images under π are q, we may consider that $\tilde{\Gamma}_{1}$ and $\tilde{\Gamma}_{2}$ have same extremals. But we have $d\left(p_{1}, C\left(p_{1}\right)\right) \geq \pi$ by the theorem of Klingenberg [8]; this is a contradiction. Therefore we must have $\Varangle\left(\gamma^{\prime}(d(M)\right.$, $\left.\gamma_{1}^{\prime}(d(M))\right)=\pi$ and $\Varangle\left(\gamma^{\prime}(0), \gamma_{1}^{\prime}(0)\right)=\pi$. q.e.d.

Making use of Lemma 4.1, we have the following:
Theorem 4.2. For any point $x \in M, \pi / 2 \leq d(x, C(x)) \leq \pi /(2 \sqrt{\delta})$ and $\pi / 2$ $\leq d(M) \leq \pi /(2 \sqrt{\delta})$, where the left hand side equalities hold if and only if M is isometric to the real projective space $P R^{n}(1)$ of constant curvature 1 , and the right hand side equalities hold if and only if M is isometric to $P R^{n}(\delta)$ of constant curvature δ.

Proof. It suffices to prove that M is isometric to $P R^{n}(\delta)$ if $d(M)=\pi /(2 \sqrt{\delta})$. Putting $d(p, q)=d(M)=\pi /(2 \sqrt{\delta})$, there is a closed geodesic $\Gamma=\{\gamma(t)\}(0 \leq t$ $\leq \pi / \sqrt{\delta})$ satisfying $\gamma(0)=\gamma(\pi / \sqrt{\delta})=p$ and $\gamma(\pi /(2 \sqrt{\delta}))=q$. Let $\tilde{\Gamma}$ be the closed geodesic in \bar{M} defined by $\pi \circ \tilde{\Gamma}=\Gamma$. Then $\tilde{\Gamma}$ becomes a closed geodesic with length $2 \pi / \sqrt{\delta}$, and we can decompose $\tilde{\Gamma}$ into four shortest geodesic segments whose lengths are not equal at the same time. A theorem investigated by Sugimoto in [12] thus shows that \bar{M} is isometric to $S_{1 / \sqrt{\bar{\delta}}}^{n}$, and hence M is isometric to $P R^{n}(\delta)$. q.e.d.

Now we shall investigate the topology of M satisfying $\pi / 2<d(M)<\pi /(2 \sqrt{\delta})$. According to the homology theory, M has the same homology group as that of $P R^{n}$ under our assumptions $\pi_{1}(M)=Z_{2}$ and \bar{M} is homeomorphic to S^{n}.

There is an interesting problem which is not yet solved completely.
Problem. Let j be a homeomorphism of S^{n} onto itself satisfying:
(1) j is fixed point free,
(2) j is involutive.

Then, is S^{n} / j homeomorphic to $P R^{n}$?
Livesay proved this problem affirmatively in [10] under the assumption $n \leq 3$. When j is a diffeomorphism or a piecewise linearly diffeomorphism, Hirsch and Milnor showed in [6] that S^{n} / j is not diffeomorphic or piecewise linearly diffeomorphic to $P R^{n}$ in general.

Turning to our situation that $\delta>1 / 4$ and $\pi_{1}(M)=Z_{2}$, we shall prove that M is homeomorphic to S^{n} / j, where j is a homeomorphism of S^{n} onto itself with
the properties (1) and (2) stated above. For the construction of j, we prepare Lemmas 4.3-4.6 below. We set $d(p, q)=d(M)=l$. and the closed geodesic $\Gamma=\{\gamma(t)\}(0 \leq t \leq 2 l), \gamma(0)=\gamma(2 l)=p$, and $\gamma(l)=q$ as stated in Lemma 4.1. Then there exists a closed geodesic $\tilde{\Gamma}$ in \bar{M} satisfying $\pi \circ \tilde{\Gamma}=\Gamma$, and therefore we have $\mathscr{L}(\tilde{\Gamma})=4 l$.

Lemma 4.3. Putting $\tilde{p}_{1}=\tilde{\gamma}(0), \tilde{q}_{1}=\tilde{\gamma}(l), \tilde{p}_{2}=\tilde{\gamma}(2 l)$ and $\tilde{q}_{2}=\tilde{\gamma}(3 l)$, for any point $\tilde{x} \in \bar{M}$ we have $d\left(\tilde{x}, \tilde{p}_{1}\right) \leq \pi /(2 \sqrt{\bar{\delta}})$ or $d\left(\tilde{x}, \tilde{p}_{2}\right) \leq \pi /(2 \sqrt{\delta})$.

Proof. We may suppose that $\tilde{x} \notin \tilde{\Gamma}$. Take a point \tilde{z} on $\tilde{\Gamma}$ satisfying $d(\tilde{x}, \tilde{\Gamma})$ $=d(\tilde{x}, \tilde{z})$. It follows $d(\tilde{x}, \tilde{z}) \leq \pi /(2 \sqrt{\bar{\delta}})$ by use of the second variation formula (Proposition 3 of [1]). Without loss of generality we may also suppose that $d\left(\tilde{p}_{1}, \tilde{z}\right) \leq l<\pi /(2 \sqrt{\delta})$. Making use of the basic theorem on triangles for a geodesic triangle with vertices $\left(\tilde{p}_{1}, \tilde{z}, \tilde{x}\right)$, we thus have $d\left(\tilde{p}_{1}, \tilde{x}\right) \leq \pi /(2 \sqrt{\delta})$.
q.e.d.

Now, let U_{1} and U_{2} be open balls with radius π centered at the origin in $\bar{M}_{\tilde{p}_{1}}$ and $\bar{M}_{\tilde{p}_{2}}$ respectively. Then $\exp _{\tilde{p}_{i}} \mid U_{i}$ is a diffeomorphism. Let D be the standard n-cell with boundary $D=S^{n-1} \subset R^{n}$, and let V_{1} and V_{2} be given as follows:

$$
V_{1}=\left\{\tilde{x} \in \tilde{M} \mid d\left(\tilde{x}, \tilde{p}_{1}\right) \leq d\left(\tilde{x}, \tilde{p}_{2}\right)\right\}, \quad V_{2}=\left\{\tilde{x} \in \tilde{M} \mid d\left(\tilde{x}, \tilde{p}_{1}\right) \geq d\left(\tilde{x}, \tilde{p}_{2}\right)\right\} .
$$

We have a construction of a homeomorphism h of S^{n} onto \hat{M} investigated by Klingenberg in [7] as follows.

Lemma 4.4. There are homeomorphisms h_{1} and h_{2} such that $h_{i}: D \rightarrow V_{i}$ satisfying $h_{i}(D)=V_{i}, h_{1}(D) \cup h_{2}(D)=M$ and $h_{1}(D) \cap h_{2}(D)=h_{1}\left(S^{n-1}\right)=$ $h_{2}\left(S^{n-1}\right)$. Making use of h_{1} and h_{2}, we have a homeomorphism $h: S^{n} \rightarrow \bar{M}$.

On the other hand, by virtue of the hypothesis $\pi_{1}(M)=Z_{2}$ we have a map f of \bar{M} onto itself defined by $f\left(\tilde{x}_{1}\right)=\tilde{x}_{2}$ for any $\tilde{x}_{1} \in \bar{M}$, where $\pi\left(\tilde{x}_{1}\right)=\pi\left(\tilde{x}_{2}\right)$, $\tilde{x}_{1} \neq \tilde{x}_{2}$. Then clearly we have the following:

Lemma 4.5. f satisfies the following:
(a) f is an isometry.
(b) f is involutive.
(c) f has no fixed point.
(d) $f \circ \tilde{\Gamma}=\tilde{\Gamma}$, where $\tilde{\Gamma}$ is stated in Lemma 4.3.

Combining Lemmas 4.4 and 4.5, we get
Lemma 4.6. We have $f\left(V_{1}\right)=V_{2}$ and $f\left(V_{2}\right)=V_{1}$. In particular $f\left(\tilde{p}_{1}\right)=\tilde{p}_{2}$.
Proof. $f \circ \tilde{\Gamma}=\tilde{\Gamma}$ implies $f\left(\tilde{p}_{1}\right)=\tilde{p}_{2}$. Take a point $\tilde{x} \in V_{1} \cap V_{2}$. Then there exist uniquely determined shortest geodesics $\tilde{\Lambda}$ and $\tilde{\Phi}$ joining \tilde{p}_{1} to \tilde{x} and \tilde{p}_{2} to \tilde{x} respectively. Thus $\tilde{\Lambda}$ and $\tilde{\Phi}$ have the same length which is not greater than $\pi /(2 \sqrt{\delta})$, an dthe intersection of $f \circ \tilde{\Lambda}$ and $f \circ \tilde{\Phi}$ must coincide with $f(\tilde{x})$. Hence we get $f(\tilde{x}) \in V_{1} \cap V_{2}$, from which the statements follow. q.e.d.

Combining Lemmas 4.3-4.6, we find the following:
Theorem 4.7. Let j be defined by $j=h^{-1} \circ f \circ h$. Then M is homeomorphic to S^{n} / j, and j satisfies (1) and (2) in the problem stated above.

Remark. According to [10], Livesay proved that S^{n} / j is homeomorphic
to $P R^{n}$ if $n \leq 3$. But in our case, we shall be able to prove that M is homeomorphic to $P R^{n}$ if $n \leq 4$. Since $V_{1} \cap V_{2}$ is homeomorphic to $P R^{3}$ (in case $n=4$), (c) in Lemma 4.5 implies the statement.

Putting $p_{i}^{*}=h^{-1}\left(\tilde{p}_{i}\right), p_{i}^{*}$ is the antipodal point of p_{2}^{*} on S_{1}^{n}. Hence the image of every great circle from p_{1}^{*} to p_{2}^{*} under j is also a great circle from p_{2}^{*} to p_{1}^{*}.

5. Proof of the main theorem

Throughout this section, let k be an odd prime. Let M be a δ-pinched ($\delta>1 / 4$) riemannian manifold whose fundamental group $\pi_{1}(M)$ satisfies $\pi_{1}(M)$ $=Z_{k}$. Then we shall prove the following:

Theorem 5.1. Let M be a connected, complete and orientable riemannian manifold of dimension 3 satisfying $\delta>1 / 4$ and $\pi_{1}(M)=Z_{k}$, and suppose that there is a closed geodesic segment Γ of length $2 \pi / k$. Then M is isometric to the lens space $L(1, k)$ of constant curvature 1 .

Our method of the proof is as follows:
Put $M^{*}=L(1, k)$ and take two arbitrarily fixed points $p^{*} \in M^{*}$ and $p \in M$ respectively. It is clear that M is of constant curvature 1 . It is easily seen that for any tangent vector $X^{*} \in M_{p^{*}}^{*}$ satisfying $X^{*} \in C_{p^{*}}$, we have $X^{*} \notin Q_{p^{*}}^{*}$, where $Q_{p^{*}}^{*}$ is the first conjugate locus in $M_{p^{*}}^{*}$. Then there is at least one tangent vector $Y^{*} \in C_{p^{*}}^{*}$ which satisfies $\exp _{p^{*}} X^{*}=\exp _{p^{*}} Y^{*} \in C\left(p^{*}\right)$. We shall prove that there is an isometric isomorphism ι of M_{p} onto $M_{p^{*}}^{*}$ such that $\iota\left(C_{p}\right)$ concides with $C_{p^{*}}^{*} \subset M_{p^{*}}^{*}$ as a set in $M_{p^{*}}^{*}$, and moreover the identifying structures of C_{p} under $\exp _{p}$ and $C_{p^{*}}^{*}$ under $\exp _{p^{*}}$ are quite equivalent under ι. That is to say, let $X, Y \in C_{p}$ and $\exp _{p} X=\exp _{p} Y \in C(p)$. Then we have $\exp _{p^{*} \iota \circ} \circ=$ $\exp _{p^{*} ८} \circ Y \in C^{*}\left(p^{*}\right)$. Hence $\exp _{p^{*} \circ ८ \circ \exp _{p}^{-1} \text { becomes a global isometry of } M}$ onto M^{*}.

As the first step, we study the tangent cut lous C_{p} of M. Theorem 3.3 and the hypothesis of M imply that M is of constant curvature 1. Then the universal covering manifold \bar{M} is S_{1}^{3}.

Lemma 5.2. Let M satisfy the assumptions of Theorem 5.1. Then $d(q, C(q))$ $=\pi / k$ for any point $q \in M$.

Putting $l=d(q, C(q))$, there is a closed geodesic segment Σ_{q} of length $2 l$ such that $\sigma_{q}(0)=\sigma_{q}(2 l)=q$. Then we have a great circle $\tilde{\Sigma}$ in $S_{1}^{3}=M$ satisfying $\pi \circ \tilde{\Sigma}=\Sigma_{q}$, on which we get $\pi\left(\check{\sigma}_{q}(0)\right)=\pi\left(\check{\sigma}_{q}(2 l)\right)=\cdots=\pi\left(\check{\sigma}_{q}(2 k l)\right)=q$. Hence we have $2 k l=2 \pi$. q.e.d.

We denote by Σ_{q} the closed geodesic at q with length $2 \pi / k$.
Lemma 5.3. $\operatorname{Max}\{d(q, x) \mid x \in M\}=\pi / 2$ for any point $q \in M$. In particular, $d(M)=\pi / 2$.

Proof. Putting $l=d(q, r)=\operatorname{Max}\{d(q, x) \mid x \in M\}$, there is a closed geodesic $\Sigma_{r}=\left\{\sigma_{r}(t)\right\}(0 \leq t \leq 2 \pi / k)$ such that $\sigma_{r}(0)=\sigma_{r}(2 \pi / k)=r$. By the assumption of $d(q, r)$, there are at least two shortest geodesic segments joining q to r, say Γ_{1} and Γ_{2}. Suppose that $\Varangle\left(\gamma_{1}^{\prime}(l), \gamma_{2}^{\prime}(l)\right)=\pi$. Since $l \leq d(M) \leq \pi /(2 \sqrt{\delta})$
$=\pi / 2$ and k is an odd prime, there exist at least $k+1$ points on S_{1}^{3} whose images under π are all q. Then we must have $\Varangle\left(\gamma_{1}^{\prime}(l), \gamma_{2}^{\prime}(l)\right) \neq \pi$, from which there is another shortest geodesic Γ_{3} from q to r such that $\left\langle\gamma_{1}^{\prime}(l)+\gamma_{2}^{\prime}(l),-\gamma_{3}^{\prime}(l)\right\rangle$ ≥ 0. Let $\tilde{q} \in \hat{M}$ be a fixed point such that $\pi(\tilde{q})=q$, and $\tilde{\Gamma}_{i}$ be defined by $\pi \circ \tilde{\Gamma}_{i}=\Gamma_{i}$ and $\tilde{\gamma}_{i}(0)=\tilde{q}(i=1,2,3)$. It is clear that the geodesic $\tilde{\Sigma}$ given by $\pi \circ \tilde{\Sigma}=\Sigma_{r}$ is a great circle on which lie the points $\tilde{\gamma}_{1}(l), \tilde{\gamma}_{2}(l)$ and $\tilde{\gamma}_{3}(l)$. Three geodesic triangles with vertices $\left(\tilde{q}, \tilde{\gamma}_{1}(l), \tilde{\gamma}_{2}(l)\right),\left(\tilde{q}, \tilde{\gamma}_{2}(l), \tilde{\gamma}_{3}(l)\right)$ and $\left(\tilde{q}, \tilde{\gamma}_{3}(l)\right.$, $\tilde{\gamma}_{1}(l)$) respectively become isosceles triangles whose base angles are all equal to $\pi / 2$. Therefore we must have $l=\pi / 2$ by the cosine rule of spherical trigonometry.

Lemma 5.4. Let $q, p \in M$ be a fixed pair of points such that $d(p, q)=\pi / 2$. Then there are shortest geodesics $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{k}$ from p to q satisfying the following:
(1) $\Varangle\left(\gamma_{i}^{\prime}(0), \gamma_{i+1}^{\prime}(0)\right)=\Varangle\left(\gamma_{i}^{\prime}(\pi / 2), \gamma_{i+1}^{\prime}(\pi / 2)\right)=2 \pi / k$ for all $i=1,2, \cdots$, $k,(\bmod k)$.
(2) There is a piece of totally geodesic surface \mathscr{F}_{i}^{+}of constant curvature 1 whose boundaries are Γ_{i}, Γ_{i+1} and Σ_{p}.
(3) It can be considered that \mathscr{F}_{i}^{+}is generated by the family of shortest geodesics $\left\{\Lambda_{t}\right\}(0 \leq t \leq 2 \pi)$ where each Λ_{t} starts from $\sigma_{p}(t)$ and ends at q with length $\mathscr{L}\left(\Lambda_{t}\right)=\pi / 2$. Moreover, we can consider that $\Lambda_{0}=\Gamma_{1}$ and $\Lambda_{2 \pi(k-1) / k}$ $=\Gamma_{k}$, and the vector field $t \rightarrow \lambda_{t}^{\prime}(0)$ is parallel along Σ_{p}.
(4) Putting $\pi \circ \tilde{\Gamma}_{i}=\Gamma_{i}$ such that $\tilde{\gamma}_{i}(\pi / 2)=\tilde{q}$ where $\pi(\tilde{q})=q$, each \mathscr{F}_{i}^{+}is covered by the face of geodesic triangle ($\left.\tilde{\Gamma}_{i}, \tilde{\Gamma}_{i+1}, \tilde{\Sigma}_{\tilde{p}} \mid[2 \pi(i-1) / k, 2 \pi i / k]\right)$ under the covering map π, where $\pi \circ \tilde{\Sigma}_{\tilde{p}}=\Sigma_{p} \tilde{\sigma}_{\tilde{p}}(0)=\tilde{p}$. In particular, $\mathscr{F}_{1}^{+} \cup \mathscr{F}_{2}^{+} \cup \cdots \cup \mathscr{F}_{k}^{+}$is the image of the two dimensional hemisphere with north pole \tilde{q} and equator $\tilde{\Sigma}_{\tilde{p}}$ under π.

Proof. Let $S^{2}(\tilde{q})$ be the totally geodesic hypersurface of S_{1}^{3}, which contains \tilde{q} and $\tilde{\Sigma}_{\tilde{p}}$, and $S_{+}^{2}(q)$ be the hemisphere with north pole \tilde{q}. For a geodesic segment Λ_{t} in $S_{+}^{2}(q)$ joining $\tilde{\sigma}_{\tilde{p}}(t)$ to \tilde{q} and the corresponding geodesic $\Lambda_{t}=\pi \circ \tilde{\Lambda}_{t}$ in M joining $\sigma_{p}(t)$ to q, making use of Rauch's comparison theorem we get the statements (2), (3) and (4). Since we have $\Varangle\left(\tilde{\gamma}_{i}^{\prime}(\pi / 2), \tilde{\gamma}_{i+1}^{\prime}(\pi / 2)\right)=\Varangle\left(\gamma_{i}^{\prime}(\pi / 2)\right.$, $\left.\gamma_{i+1}^{\prime}(\pi / 2)\right)=2 \pi / k$ for $i=2,3, \cdots, k-1$, we get $\Varangle\left(\gamma_{i}^{\prime}(0), \gamma_{i+1}^{\prime}(0)\right)=2 \pi / k$ by exchanging the situation of p for the one of q. q.e.d.

Let us put $\mathscr{F}^{+}=\mathscr{F}_{1}^{+} \cup \mathscr{F}_{2}^{+} \cup \cdots \cup \mathscr{F}_{k}^{+}$. Since $d\left(p, \sigma_{q}(\pi / k)\right)=\pi / 2$ holds, $\sigma_{q}(\pi / k)$ is able to take place for q in the Lemma 5.2-5.4. Then we have a piece of totally geodesic hypersurface \mathscr{F}_{i}^{-}of constant curvature 1 with boundaries $\Gamma_{i}\left|[-\pi / 2,0], \Gamma_{i+1}\right|[-\pi / 2,0]$ and Σ_{p} which is a prolongation of $\mathscr{F}_{i}{ }^{+}$. Putting $\mathscr{F}^{-}=\mathscr{F}_{1}^{-} \cup \mathscr{F}_{2}^{-} \cup \cdots \cup \mathscr{F}_{k}^{-}$, we get a compact totally geodesic hypersurface $\mathscr{F}^{q, p}=\mathscr{F}^{+} \cup \mathscr{F}-$ which is the image $\pi\left(S^{2}(q)\right)$ of $S^{2}(q) \subset S_{1}^{3}$ under the covering map π. It is clearly seen that $\mathscr{F}^{q, p}$ covers $\Sigma_{p} k$ times, and its tangent space $\left(\mathscr{F}^{q, p}\right)_{p}$ at p consists of k-sheeted planes $\left(\mathscr{F}_{1}^{+} \cup \mathscr{F}_{1}^{-}\right)_{p}, \cdots,\left(\mathscr{F}_{k}^{+} \cup \mathscr{F}_{k}^{-}\right)_{p}$ each of which contains $\sigma_{p}^{\prime}(0)$ and the angle between $\left(\mathscr{F}_{i}^{+} \cup \mathscr{F}_{i}^{-}\right)_{p}$ and $\left(\mathscr{F}_{i+1}^{+} \cup \mathscr{F}_{i+1}^{-}\right)_{p}$ is equal to $2 \pi / k$.

Lemma 5.5. The cut locus of the totally geodesic hypersurface $\pi\left(S^{2}(\tilde{q})\right)$ $=\mathscr{F}^{q, p}$ with respect to p consists of $\Lambda_{\pi / k}\left|[-\pi / 2, \pi / 2], \Lambda_{3 \pi / k}\right|[-\pi / 2, \pi / 2]$ and $\Lambda_{(2 k-1) \pi / k} \mid[-\pi / 2, \pi / 2]$, which is contained entirely in the cut locus $C(p)$ of M.

Proof. By the construction of $\mathscr{F}^{q, p}$, the first statement is evident. Suppose that there is a shortest geodesic of M from p to $\lambda_{\pi / k}(s) \in \mathscr{F}^{q, p}$ which is not contained in $\mathscr{F}^{q, p}$. Then there are at least $k+1$ points in S_{1}^{3} whose images under π are $\lambda_{\pi / k}(s)$. Hence p and $\lambda_{\pi / k}(s)$ can be joined by shortest geodesics of M which lie in $\mathscr{F}^{q, p}$. q.e.d.
By exchanging q (north pole) and Σ_{p} (equator) for p and Σ_{q} respectively, we get a compact totally geodesic surface $\mathscr{F}^{p, q}$ instead of $\mathscr{F}^{q, p}$ whose tangent space $\left(\mathscr{F}^{p, q}\right)_{p}$ at p is the plane in M_{p} orthogonal to $\sigma_{p}^{\prime}(0)$. Therefore we get the family of compact totally geodesic hypersurfaces $\left\{\mathscr{F}^{\left.{ }^{q} q^{(t), p}\right\}}(0 \leq t \leq 2 \pi)\right.$, and M can be considered to be constructed by this family of hypersurfaces.

Lemma 5.6. Let $\left(e_{1}, e_{2}, e_{3}\right)$ be an orthonormal basis for M_{p} such that $e_{1}=$ $\sigma_{p}^{\prime}(0)$ and $e_{2}=\gamma_{1}^{\prime}(0)$. Then for any $X \in C_{p}$ given by

$$
\begin{aligned}
& X /\|X\|=e_{1} \cos \alpha+e_{2} \sin \alpha \cos \beta+e_{3} \sin \alpha \sin \beta \\
& \quad(0 \leq \alpha \leq 2 \pi, 0 \beta \leq 2 \pi)
\end{aligned}
$$

we have $\|X\|=\cot ^{-1}(\cos \alpha \cot \pi / k)$. Let $X_{1} \in C_{p}$ be defined by $\exp _{p} X_{1}=$ $\exp _{p} X \in C(p)$, where X is given by the above equation and $\alpha \neq \pi / 2$. Then we have

$$
\begin{gathered}
X_{1}=\cot ^{-1}(\cos \alpha \cot \pi / k)\left[e_{1}\right. \\
\cos (\pi-\alpha)+e_{2} \sin (\pi-\alpha) \cos (\beta+2 \pi / k) \\
\left.+e_{2} \sin (\pi-\alpha) \cos (\beta+2 \pi / k)\right]
\end{gathered}
$$

Hence the identifying structure of C_{p} under $\exp _{p}$ is completely known.
Proof. Since $d\left(p, \sigma_{q}(t)\right)=\pi / 2$ holds for all $t \in[0,2 \pi]$, there exist t_{0} and the compact totally geodesic hypersurface $\mathscr{F}^{\left(t_{0}\right), p}$ a sheet of whose tangent planes at p is spanned by e_{1} and $e_{2} \cos \beta+e_{3} \sin \beta$. Then we find $t_{0}=\beta$, and also see that $\mathscr{F}^{0}{ }^{(\beta), p}$ is obtained by $\pi\left(S^{2}(\tilde{\sigma}(\beta))\right)$. There is a geodesic triangle on $S^{2}\left(\tilde{\sigma}_{\tilde{q}}(\beta)\right)$ with vertices $\exp _{\tilde{p}} \tilde{X}, \tilde{p}$ and $\tilde{\sigma}_{\tilde{p}}(2 \pi / k)$ satisfying $\Varangle\left(\exp _{\tilde{p}} \tilde{X}, \tilde{p}, \tilde{\sigma}_{\tilde{p}}(2 \pi / k)\right)=$ $\Varangle\left(\exp _{\tilde{p}} \bar{X}, \tilde{\sigma}_{\tilde{p}}(2 \pi / k), \tilde{p}\right)=\alpha$, where we define $d \pi(\bar{X})=X, \bar{X} \in \bar{M}_{\tilde{p}}$. Then the cosine rule of spherical trigonometry implies that $\|X\|=\cot ^{-1}(\cos \alpha \cot \pi / k)$. It is easily seen that $\Varangle\left(X_{1}, \sigma_{p}^{\prime}(0)\right)=\pi-\Varangle\left(\exp _{\tilde{p}} \bar{X}, \tilde{\sigma}_{\tilde{p}}(2 \pi / k), \tilde{p}\right)=\pi-\alpha$ because π is a local isometry.

Remark. As for a vector $X=(\pi / 2)\left(e_{2} \cos \beta+e_{3} \sin \beta\right)$, putting $X_{i}=$ $(\pi / 2)\left\{e_{2} \cos (\beta+2 \pi i / k)+e_{3} \sin (\beta+2 \pi i / k)\right\}, i=1,2, \cdots, k$ we have $\exp _{p} X_{i}$ $=\exp _{p} X$.

As the final step, we shall study the tangent cut locus $C_{p^{*}}^{*}$ of the lens space $M^{*}=L(1, k)$. The universal covering manifold of M^{*} is S_{1}^{3}. Let $\mathrm{g} \in G$ be the generator of the cyclic group G of order k, where k is an odd prime.

For arbitrary point $\tilde{x} \in S_{1}^{3}$, we have $\sum_{i=1}^{k} g^{i}(\tilde{x})=0$, from which the points $g(\tilde{x})$,
$\cdots, g^{k}(\tilde{x})=\tilde{x}$ lie on a great circle of S_{1}^{3} and divide the great circle into equal parts of length $2 \pi k$. Putting $x^{*}=\pi(\tilde{x})$, there is a closed geodesic in M^{*} with length $2 \pi / k$ which starts at x^{*} and is obtained from the image of the great circle containing $g^{i}(x)$ under π. We also see that $\operatorname{Max}\left\{d\left(x^{*}, y^{*}\right) \mid y^{*} \in M\right\}=\pi / 2$.

Let (u, v, w) be a local coordinate system of S_{1}^{3} defined by

$$
\begin{aligned}
x(u, v, w)= & \cos u \cos v \cdot E_{1}+\sin u \cos v \cdot E_{2} \\
& +\cos w \sin v \cdot E_{3}+\sin w \sin v \cdot E_{4}
\end{aligned}
$$

where $\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ is the orthonormal basis for R^{4}. A totally geodesic hypersurface $S^{2}(\tilde{q})$ is expressed locally by $w=w_{0}$ which is a two-sphere in S_{1}^{3} with the north pole \tilde{q} given by $q=\cos w_{0} \cdot E_{3}+\sin w_{0} \cdot E_{4}$ and the equator given by $u \rightarrow \cos u \cdot E_{1}+\sin u \cdot E_{2}$. Since $S^{2}(\tilde{q})$ is of constant curvature 1 and π is a local isometry, $\pi\left(S^{2}(\tilde{q})\right)$ is also compact and of constant curvature 1 with self intersection in such a way that the image of equator is a closed geodesic of length $2 \pi / k$ and is covered k times by the equator $u \rightarrow \cos u \cdot E_{1}+\sin u \cdot E_{2}$. We see that any other point on $\pi\left(S^{2}(q)\right)$ has no intersection.

Let $\tilde{\Sigma}_{\tilde{p}}=\left\{\tilde{\sigma}_{\tilde{p}}(u)\right\}(0 \leq u \leq 2 \pi)$ be defined by $\tilde{\sigma}_{\tilde{p}}(u)=\cos u \cdot E_{1}+\sin u \cdot E_{2}$ where we put $\tilde{p}=(1,0,0,0)$ or $\tilde{p}(u, v, w)=(0,0,0)$, and $\pi(\tilde{p})=p^{*}$. We see that the cut locus of $\pi\left(S^{2}(\tilde{q})\right)$ with respect to $p^{*} \in \pi\left(S^{2}(\tilde{q})\right)$ is contained entirely in the cut locus $C^{*}\left(p^{*}\right)$ of M^{*}. Putting $\tilde{\Lambda}_{u}=\left\{\tilde{\lambda}_{u}(v)\right\}(0 \leq v \leq \pi / 2), \tilde{\lambda}_{u}(0)=$ $\tilde{\sigma}_{\tilde{p}}(u)$ and $\tilde{\lambda}_{u}(\pi / 2)=\tilde{q}, \pi \circ \tilde{\Sigma}_{\tilde{p}}=\sum_{p^{*}}^{*}, \sigma_{p^{*}}^{*}(0)=p^{*}$ and $\pi \circ \tilde{\Lambda}_{u}=\Lambda_{u}^{*}, \lambda_{u}^{*}(0)=$ $\sigma_{p^{*}}^{*}(u)$, the cut locus of $\pi\left(S^{2}(\tilde{q})\right)$ with respect to $p^{*}=\sigma_{p^{*}}^{*}(0)$ is the set $\left\{\Lambda_{u}^{*}|[-\pi / 2, \pi / 2]| u=(2 i-1) \pi / k, i=1,2, \cdots, k\right\}$. Denoting by $\tilde{\Gamma}_{i}$ the geodesic in S_{1}^{3} joining $\tilde{\sigma}_{\tilde{p}}(2 \pi i / k)$ to \tilde{q}, i.e., $\tilde{\Gamma}_{i}=\tilde{\Lambda}_{2 \pi i / k}$, we see the angle between $g^{j} \circ \tilde{\Gamma}_{i}$ and $g^{j+1} \circ \tilde{\Gamma}_{i-1}$ at \tilde{p} is equal to $2 \pi / k$ for every $j, i=1,2, \cdots, k(\bmod k)$. This fact shows that the angle between Γ_{i}^{*} and Γ_{i+1}^{*} at p^{*} is equal to $2 \pi / k$ for $i=$ $1, \cdots, k$. We also see that the angle between $\Sigma_{p^{*}}^{*}$ and Γ_{i}^{*} is equal to $\pi / 2$.

Denoting $\mathscr{F} q^{*}, p^{*}=\pi\left(S^{2}(\tilde{q})\right)$, where $q^{*}=\pi(\tilde{q})$, we have the same arguments for the tangent space $\left(\mathscr{F}^{q^{*}, p^{*}}\right)_{p^{*}}$ at p^{*} as those of $\mathscr{F}^{q, p}$, and the family $\left\{\mathscr{F}^{\left.o^{*} q^{*}(t), p^{*}\right\}}\right.$ $(0 \leq t \leq 2 \pi)$ generates M^{*}. Then we have the same argument as that in Lemma 5.6 for $C_{p^{*}}^{*} \subset M_{p^{*}}^{*}$.

References

[1] M. Berger, Les variétés riemanniennes à courbure positive, Bull. Soc. Math. Belgique 10 (1958) 89-104.
[2] -, Sur les variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960) 57-71.
[3] -Les variétés riemanniennes (1/4)-pincées, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960) 161-170.
[4] ——, On the diameter of some Riemannian manifolds, Technical report, University of California at Berkeley, 1962.
[5] -_, Sur les variétés à courbure positive de diamètre minimum, Comment. Math. Helv. 35 (1961) 28-34.
[6] M. W. Hirsch \& J. Milnor, On curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964) 372-377.
[7] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. 69 (1959) 654-666.
[8] ——Úber Riemannsche Mannigfaltigkeit mit positive Krümmung, Comment. Math. Helv. 35 (1961) 47-54.
[9] ——, Über Riemannsche Mannigfaltigkeiten mit nach oben beschrankter Krümmung, Ann. Mat. Pura Appl. 60 (1963) 49-59.
[10] G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960) 603-611.
[11] H. Rauch, A contribution to differential geometry in the large, Ann. of Math. 54 (1951) 38-55.
[12] M. Sugimoto, On riemannian manifolds with a certain closed geodesics, Tôhoku Math. J. 22 (1970) 56-64.
[13] V. A. Toponogov, Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl. (2) 37 (1964) 291-336.
[14] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.
Tokyo Institute of Technology

[^0]: Communicated by W. P. A. Klingenberg, October 13, 1969.
 ${ }^{1}$ Added in Proof. Recently J. Cheeger proved this theorem completely.

