
J . DIFFERENTIAL GEOMETRY
4 (1970) 509-513

ASYMPTOTIC BEHAVIOUR OF NON-PARAMETRIC
MINIMAL HYPERSURFACES

ERNST A. RUH

1. Introduction

The main result of this paper is Theorem II, which deals with the asymptotic
behaviour of non-parametric complete minimal hypersurfaces. In [2], Bombieri,
De Giorgi and Giusti showed that hypersurfaces of this type other than hyper-
planes exist for dimensions greater than seven. For lower dimensions Theorem
II is vacuous because, by theorems of Almgren [1], De Giorgi [6], and Simons
[7], the only hypersurfaces of this type are the hyperplanes. The proof of
Theorem II relies on Theorem I, which states that the Gauss map of a hyper-
surface with constant mean curvature is harmonic. A map of Riemannian
manifolds is called harmonic if it is an extremal of a certain energy integral
which generalizes the classical Dirichlet integral. An extensive study of harmonic
maps has been done by Eells and Sampson [3]. If the dimension of a minimal
surface is two, then the Gauss map is holomorphic; this is much stronger than
harmonic. We expect that the weaker property will still be useful in extending
to higher dimensions some of the theorems on 2-dimensional minimal surfaces
which are obtained through complex function theory. An example of this
method is the proof of Theorem II.

2. Harmonic maps

At this point we begin the discussion of Theorem I. A map /: Mλ —•> M2 of
Riemannian manifolds is called harmonic if / is an extremal of the integral

E(f)=JTrf*gdv,

where Trf*g denotes the trace of the pullback under / of the Riemannian
metric g on M2, and dv denotes the volume form on Mx. For our purposes,
the map in question will be the Gauss map n: M —> Sn which sends a point on
M into its unit normal vector. Now we are in aposition to state the first
theorem.

Theorem I. If i: M -+ En+ί is an isometric immersion of the n-dimensional
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manifold M as a hypersurface with constant mean curvature, then the Gauss
map n: M —> Sn is harmonic.

Note. The mean curvature at a point is the sum of the principal curvatures.
In the case of a minimal hypersurface, the mean curvature is zero.

Proof. lίf = n + εhisa variation of n: M -> Sn C En+ι, then the inte-
grand, Tr /*g, which occurs in the definition of a harmonic mapping can be
written as Tr ζF(n + εh), F(n + εh)y, where < , ) and F denote inner product
and covariant derivative respectively in En+1 or their restrictions to M. The
vector h, for a given point x e M, is in the tangent space of Sn at n(x). Since
the tangent spaces of M and Sn are parallel, h will be identified with a vector
of the same name in the tangent space of M. If we denote the derivative at
ε — 0 of the energy E(j) by E'(ή), then we have

E\ή) =

where dv denotes the volume form on M. We will show that the above integral
is zero for a variation which leaves the boundary fixed. In fact, we will show

( 1 ) E\n

where d denotes the exterior derivative, and * the star operator on exterior
forms on M.

An application of Stokes' theorem shows that the right hand side of (1) is
zero for variations with fixed boundary because /i = 0on the boundary.

Now we proceed to prove (1). Since the covariant derivative of <(, ) is
zero, we obtain (Fn,Fhy = FζFn,hy — ζFFn,hy. First we observe that
Tr FζFn, hydv = d*(Fn, hy. Second, TrζFFn, hy is shown to be zero as follows:
The Codazzi-Mainardi equations, together with the fact that (Fn, > is sym-
metric, imply that ζFFn, > is symmetric in all three arguments. For a proof
see Kobayashi and Nomizu [7, Corollary 4.4, p. 25]. Using this property we
obtain

TrζFFn, hy = Fh TrζFn, > = Fh H = 0 ,

where H denotes the mean curvature which is constant by assumption. This
completes the proof of Theorem I.

3. Main theorem

For Theorem II, which is the main theorem of this paper, the manifold M
is a non-parametric hypersurface, i.e., it is the graph of a real function of n
variables. We denote the angle of the normal vector to the manifold with the
{n + l)-st coordinate axis by φ. If the manifold is properly oriented, then
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0 < φ < π/2. We denote by M(t) the intersection of the image of M under
the map of En+1 into itself defined by x —> (l/t)x with the unit ball centered at
the origin in En+1. Now we state the main theorem.

Theorem II. // M is a complete non-parametric minimal hypersurface, then
M is either a hyperplane, or the limit of the average of ψ over M(t) as t tends
to infinity is equal to π/2.

For the proof of Theorem II, the concept of integral currents, introduced
by Federer and Fleming, will be adopted. Although the powerful theorems of
this theory are only used in a very weak form, this concept proves to be con-
venient. Integral currents are the natural "domains of integration" for the
integral theorems we plan to use.

Note. Readers not familiar with currents may substitute manifolds. This
does not change the essential arguments.

The proof of Theorem II is divided into three steps. In step one, formula
(1) in the proof of Theorem I is applied to a distance increasing variation of
the Gauss map. In step two, this formula is used to obtain an estimate for a
certain curvature measure of M(t) for large t. In step three, the estimate
obtained in step two is used to prove the alternative asserted in Theorem II.

Step 1. The variation of the Gauss map mentioned above will be defined
in terms of a canonical coordinate system exp: B —> H c Sn, where B is a
ball of radius π/2 in En and H is a hemisphere containing the image of the
Gauss map. The map exp sends lines through the center of B into great circles
through the pole of H. The variation of the Gauss map n in terms of this
coordinate system is described by the map B —> B which sends y into (1 + ε)y.
This variation is distance increasing on H. Consequently, the rate of increase

of the energy integral can be given by I K dv, where the integrand K is non-

negative on M(t). The properties of K will be further discussed in step three.

According to Theorem I, the Gauss map n is harmonic, and we can apply

equation (1) in the proof of Theorem I. For the variation defined above, the

term 2(Fn, /z> is equal to dφ2, where φ is the angle introduced in Theorem II

and d is the exterior derivative. Therefore we obtain

ΪKdv = fd*dφ2 .

If T(t) denotes the current defined by integration of n-forms in En+1 over M(t),
then the above formula can be written as follows:

dv = T(t)(d*d ψ2) = dT(f){*dφ2) ,

where d denotes the boundary operator and the form *dφ2, originally defined
on M(i), has been extended arbitrarily to a form on En+1 for which the same
symbol is used.
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Step 2. To obtain the curvature estimate mentioned in the outline, the

derivative φ'(f) of the function Φ(t) = I ψ2 dv will be estimated. The integration

is over M(t) and ψ is the angle introduced earlier. The manifold M(t + Δt)
can be interpreted as a normal variation of M(f). Since M(t) is minimal, the
rate of change in area will consist of a boundary integral alone. This boundary
integral is positive because, as shown in [5], the area of M(t) is non-decreasing.
This simplifies the computation of Φ'(t). In fact, Φf(t) can be expressed as the
sum of the integral (I/O <grad φ2, Xs) over M(t), where x e En+1 denotes the co-
ordinate of a point p e M(t), and a boundary integral which is positive because
the area of M(t) is increasing. The first summand reflects the fact that the first
order displacement of a point is given by {Δtjt)x. Instead of <grad^2, xydv on
M we write r*dφ2 A dr where r = \x\, and obtain the following formula:

( 3 ) Φ\t) > — [r*d ψ2 Λdr= — T(t)(r*d ψ2 A dr) .

Using a formula which deals with slicing of currents, we will replace the right
hand side of equation (3). The formula is trivial if the slices are represented
by smooth manifolds but this may not be the case here. In the following, T(t, r)
will denote the restriction of T(t) to a ball of radius r centered at the origin.
Equation (3) of Corollary 3.6 in Federer [4] yields

( 4 ) Γ(ί)(r*d ψ2 A dr) = j\dT(t9 r)(r*dΨ

2)]dr .
0

Combining formulas (2), (3), and (4) we obtain

(5) Φ'(t)>—Crίj Kdvdr,
0 M(t,r)

where M(t, r) is the restriction of M(t) to a ball of radius r.

Since Φ(t) is bounded and I K dv is continuous in l/t, equation (5) implies

that the limit of I K dv, as t tends to infinity, is zero. This will be used in step

three.
Step 3. The variation introduced in step 1 was chosen because the rate

of increase of the energy integral denoted by I Kdv can be estimated easily.

In fact, K > Hgradyήl2 holds as well as K > a(ψ)K2, where K2 denotes the
sum of squares of the principal curvatures and a{ψ) is equal to sin ψ cos
ψ. The first inequality and the result of step 2 imply that the integral
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I ||grad ψ\\2 dv tends to zero as / tends to infinity. This in turn implies that there

exists a number φ0 = φo(t) such that I \ψ — φo\dv is arbitrarily small for large

t. The reference is to Morrey [8, Theorem 3.6*5]. In other words, φ is arbi-

trarily close to φQ except possibly for a set of small measure on M(f). To com-

plete the proof of Theorem II we show that either <p0 is in any neighborhood

of π/2 for large enough t or M is a hyperplane. If lim^0(ί) ψ π/2 for some

sequence tn —> oo, then the second inequality K > a(φ)K2 implies either

j K2 dv —» 0, or lim φ0 = 0.

One way to conclude the proof is with a second application of the argument

involving the reference to Morrey [8] which shows that the image of the Gauss

map is arbitrarily close to a point n0 e Sn except possibly for a set of small

measure. This then implies that M is a hyperplane. A shorter proof can be

obtained by using the fact that a subsequence of T(t) converges to a cone, see

Fleming [5]. The above conditions on M{t) then imply that the cone is a

hyperplane.
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