ON A THEOREM OF F. SCHUR

RAVINDRA S. KULKARNI

Let (M, g) be a C^4 Riemann manifold, $G_2(M)$ the Grassmann bundle of 2-planes on M, and $K: G_2(M) \to R$ the sectional curvature function. Let $\pi: G_2(M) \to M$ denote the canonical projection. Recall the theorem of F. Schur: if dimension $M \ge 3$, and $K|_{\pi^{-1}(p)} = \psi(p)$ for some $\psi: M \to R$, then (M, g) is of constant curvature. We shall view this theorem in the following setting:

Definition 1. Two Riemann manifolds (M, g), $(\overline{M}, \overline{g})$ are called *homo-curved* if there exist a 1-1 onto diffeomorphism $F: M \to \overline{M}$ and a function $\phi: M \to R$ such that for every $p \in M$ and $\sigma \in \pi^{-1}(p)$ we have

$$K(\sigma) = \psi(p) \overline{K}(F_*\sigma) ,$$

where \overline{K} denotes the sectional curvature function of $(\overline{M}, \overline{g})$.

Definition 2. Homocurved manifolds are called homothetic (resp. *strongly homothetic*) if the corresponding $\phi \equiv \text{constant}$ (resp. *F* is a homothety).

'Strongly homothetic' clearly implies 'homothetic'. Converse is not true in general, e.g., consider the nonhomothetic conformal maps of constant curvature spaces. Schur's theorem says that a Riemann manifold of dimension ≥ 3 which is homocurved to a manifold of constant curvature is homothetic to it. A well-known fact about Einstein spaces is that a manifold homocurved to an Einstein manifold is homothetic to it.

Now we ask: *does "homocurved" imply "homothetic" in general?* We shall show that *generically* the answer to this question is yes.

Henceforth our standard situation will be the one described in Definition 1. Throughout we shall use the notation and conventions of [2].

Proposition 1. Suppose that (M, g) is of dimension ≥ 3 and nowhere of constant curvature, i.e., on no nonempty open subset of $M, K \equiv \text{constant}$. Then $(M, g), (\overline{M}, \overline{g})$ are conformal.

Proof. This follows immediately from the general theorem of $[2, \S 2]$.

Proposition 2. Suppose that (M, g) is of dimension ≥ 4 and nowhere conformally flat (cf. [2, § 3]). Then $\overline{R} = F_* R$, where \overline{R} denotes the curvature tensor of $(\overline{M}, \overline{g})$.

Proof. Identify M with \overline{M} via F and consider the corresponding conformal deformation of the metric: $g \to F^*\overline{g} =$ (which we again denote by) $\overline{g} = f \cdot g$ where $f: M \to R$ is a positive real-value function. "Homocurved" implies

Communicated by S. Sternberg, September 26, 1969.

RAVINDRA S. KULKARNI

$$\langle R(X, Y)X, Y \rangle = \frac{\psi}{f} \langle \overline{R}(X, Y)X, Y \rangle$$

for all vector fields X, Y. It easily follows that

$$R = \frac{\psi}{f} \overline{R}$$

(cf. [1, Proposition 3.1]).

Considering the conformal curvature tensor C and noting that it is a conformal invariant, we see that

$$\overline{C} = C = rac{\psi}{f} \, \overline{C} \; .$$

Since (M, g) (and hence $(\overline{M}, \overline{g})$) is nowhere conformally flat of dimension ≥ 4 , it follows from the well known theorem of Weyl that $\overline{C} \neq 0$ on a dense subset of M. So $\phi \equiv f$, and hence $\overline{R} = R$.

Corollary 1. Under the hypothesis of the proposition, ϕ is necessarily positive real-valued.

We set $\phi = f = e^{2\phi}$, and use the notation of [2, § 7]). In particular, $G = \text{grad } \phi$, and $Q(X, Y) = XY\phi - (\nabla_X Y)\phi - X\phi Y\phi$.

Corollary 2. Under the hypothesis of the proposition, for any vector field X on M we have

(1)
$$Q(X,X) + \frac{\|X\|^2}{2} \|G\|^2 = 0$$
.

Proof. Since $\overline{R} = R$, we have $\overline{R} - R = T = 0$ (cf. [2, §7]). Let X, Y, Z be mutually orthogonal. Then

$$0 = T(X, Y)Z = Q(Y, Z)X - Q(X, Z)Y$$

It follows that for any two orthogonal vector fields X, Y, Q(X, Y) = 0. Hence, if ||X|| = ||Y||, then Q(X, X) = Q(Y, Y).

Let X, Y be orthogonal, and suppose that ||X|| = ||Y||. Then

$$0 = \langle T(X, Y)X, Y \rangle = -\{Q(X, X) + Q(Y, Y) + \|X\|^2 \|G\|^2\},\$$

and Corollary 2 is now clear.

Theorem 1. Let (M, g), $(\overline{M}, \overline{g})$ be homocurved, and suppose that (M, g) is complete, nowhere conformally flat and of dimension ≥ 4 . Then (M, g), $(\overline{M}, \overline{g})$ are strongly homothetic.

Proof. Since ϕ satisfies (1), as in [2, Proposition 10.1] we see that the

454

trajectories of G are (pointsetwise) geodesics. By applying the argument of case i) in [2, Proposition 10.4], we thus obtain that $G \equiv 0$.

Despite this global result, it is clear however that even *locally*, at *least* generically the theorem ought to hold, which we now proceed to show.

Proposition 3. Under the hypothesis of Proposition 2, suppose $G_p \neq 0$ at $p \in M$. Then for every 2-plane σ at p containing G_p we have $K(\sigma) = 0$.

Proof. Let \sum_{cycl} denote the cyclic sum over X, Y, Z. Since T = 0, Proposition 7.7 of [2] implies that

(2)
$$\sum_{\text{cycl}} \{ \langle R(Y,Z)W,G \rangle X + \langle X,W \rangle R(Y,Z)G \} = 0 .$$

The argument of [2, §9, Propositions 3 and 4] applied to (2) shows that there exists a constant c such that for any 2-plane σ at p containing G_p we have $K(\sigma) = c$. Now in (2) set $Y_p = W_p$, $Z_p = G_p / ||G_p||$ and X_p, Y_p, Z_p to be orthonormal, and take inner product with X_p . We get

$$\langle R(Y_p,G_p)Y_p,G_p \rangle + \langle R(G_p,X_p)G_p,X_p \rangle = 0 ,$$

from this it clearly follows that c = 0. q.e.d.

The following theorem is now obvious:

Theorem 2. Let (M, g), $(\overline{M}, \overline{g})$ be homocurved. Suppose that the dimension of M is $n \ge 4$, and that (M, g) is nowhere conformally flat. Then (M, g), $(\overline{M}, \overline{g})$ are strongly homothetic if

(A) The set $\{p \in M | K|_{\pi^{-1}(p)} \text{ does not take the value } 0\}$ is dense in M.

Remark. The condition (A) may be replaced by

(A') The set $\{p \in M | \text{ if } \sigma \text{ is a 2-plane at } p \text{ such that } K(\sigma) = 0, \text{ then } \sigma \text{ is not a critical point of } K|_{\pi^{-1}(p)} \text{ of nullity } \geq n-2\}$

is dense in M. This is due to the observations in [2, Theorem 9.5].

Remark. Instead of (A) we may impose certain analytic conditions under which Theorem 2 is valid. For instance, Proposition 3 shows that R(X, G) = 0 for any vector field X on M. So Theorem 2 holds if (A) is replaced by

(B) The set $\{p \in M | \text{ There do not exist linearly independent } X_p, Y_p \in T_p(M) \text{ such that } R(X_p, Y_p) = 0\}$

is dense in M.

Finally, we may impose some conditions on the diffeomorphism F. We have already seen $F_*R = \overline{R}$. In the spirit of Nomizu and Yano's formulation of the equivalence problem (cf. [3]) we contend: *Theorem 2 is valid if* (A) *is replaced by*

(C) $F_*(\nabla R) = \overline{\nabla}\overline{R}$, where ∇ , $\overline{\nabla}$ denote the corresponding covariant derivations.

This condition is fulfilled, e.g., when M and \overline{M} are symmetric spaces. Indeed, using Proposition 3 and [2], Proposition 7.6, we see that

$$0 = (\nabla_X R)(Y, Z)G - (\bar{\nabla}_X \bar{R})(Y, Z)G = ||G||^2 R(Y, Z)X$$

RAVINDRA S. KULKARNI

Hence, if $G \neq 0$, then $R \equiv 0$ on a subset of M with nonempty interior; this contradicts the hypothesis that (M, g) is nowhere conformally flat.

References

- [1] R. S. Kulkarni, Curvature and metric, Ann. of Math., to appear.
- [2] —, Curvature structures and conformal transformations, J. Differential Geometry, 4 (1970) 425-451.
- [3] K. Nomizu & K. Yano, *Equivalence problem in Riemannian geometry*, Proc. U.S.-Japan Sem. in Differential Geometry, Kyoto, Japan, 1965, 95-100.

JOHNS HOPKINS UNIVERSITY