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ON A THEOREM OF F. SCHUR

RAVINDRA S. KULKARNI

Let (M, g) be a C4 Riemann manifold, G2(M) the Grassmann bundle of
2-ρlanes on M, and K: G2(M) —> R the sectional curvature function. Let
π: G2(M)^M denote the canonical projection. Recall the theorem of F. Schur:
if dimension M > 3, and K\π-Hp) — ψ(p) for some ψ: M -* R, then (M,g) is
of constant curvature. We shall view this theorem in the following setting:

Definition 1. Two Riemann manifolds (M, g), (M,g) are called homo-
curved if there exist a 1 — 1 onto diffeomorphism F: M -^ M and a function
ψ: M -^ R such that for every p e M and σ € π~ι(p) we have

K(σ) = ψ(p)K(F*σ) ,

where J£ denotes the sectional curvature function of (M, g).
Definition 2. Homocurved manifolds are called homothetic (resp. strongly

homothetic) if the corresponding ψ = constant (resp. F is a homothety).
'Strongly homothetic' clearly implies 'homothetic'. Converse is not true in

general, e.g., consider the nonhomothetic conformal maps of constant
curvature spaces. Schur's theorem says that a Riemann manifold of dimension
> 3 which is homocurved to a manifold of constant curvature is homothetic
to it. A well-known fact about Einstein spaces is that a manifold homocurved to
an Einstein manifold is homothetic to it.

Now we ask: does "homocurved" imply "homothetic" in general! We shall
show that generically the answer to this question is yes.

Henceforth our standard situation will be the one described in Definition 1.
Throughout we shall use the notation and conventions of [2].

Proposition 1. Suppose that (M, g) is of dimension > 3 and nowhere of
constant curvature, i.e., on no nonempty open subset of M, K = constant.
Then (M, g), (M, g) are conformal.

Proof. This follows immediately from the general theorem of [2, § 2].
Proposition 2. Suppose that (M, g) is of dimension > 4 and nowhere

conformally flat (cf. [2, §3]). Then R = F* R, where R denotes the curva-
ture tensor of (M, g).

Proof. Identify M with M via F and consider the corresponding conformal
deformation of the metric: g —> F*g = (which we again denote by) g = f g
where /: M —> R is a positive real-value function. "Homocurved" implies
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<R(X, Y)X, Y> = ^ <R{X, Y)X, Y>

for all vector fields X, Y. It easily follows that

R = ±R

(cf. [1, Proposition 3.1]).
Considering the conformal curvature tensor C and noting that it is a con-

formal invariant, we see that

c = c = c.

Since (M, g) (and hence (M, g)) is nowhere conformally flat of dimension >4,
it follows from the well known theorem of Weyl that C Φ 0 on a dense subset
of M. So φ = f, and hence R = R.

Corollary 1. Under the hypothesis of the proposition, ψ is necessarily
positive real-valued.

We set ψ = f = e2φ, and use the notation of [2, § 7]). In particular, G —
grad φ, and Q(X, Y) = XΓ<£ - (FxY)φ - XφYφ.

Corollary 2. Under the hypothesis of the proposition, for any vector field
X on M we have

( 1 )

Proof. Since R = R, we have R- R = T = 0 (cf. [2, § 7]). Let Z, Y, Z
be mutually orthogonal. Then

0 = T(Z, Y)Z = β(Y, Z)Z - β(Z, Z) Y .

It follows that for any two orthogonal vector fields X, Y, Q(X, Y) = 0. Hence,
if | |Z | | = ||Y||, then Q(X,X) = Q(Y,Y).

Let X, Y be orthogonal, and suppose that | |Z | | = || Y||. Then

0 = <T(X, Y)X, Y> - ~{Q(X,X) + β ( y , Y) + \\X\\2\\Gf} ,

and Corollary 2 is now clear.
Theorem 1. Lei (M,g), (M, g) be homocurved, and suppose that (M,g)

is complete, nowhere conformally flat and of dimension > 4. Then (M, g),
(M, g) are strongly homothetic.

Proof. Since φ satisfies (1), as in [2, Proposition 10.1] we see that the
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trajectories of G are (pointsetwise) geodesies. By applying the argument of
case i) in [2, Proposition 10.4], we thus obtain that G = 0.

Despite this global result, it is clear however that even locally, at least
generically the theorem, ought to hold, which we now proceed to show.

Proposition 3. Under the hypothesis of Proposition 2, suppose GpΦθ at
p <= M. Then for every 2-plane σ at p containing Gp we have K(σ) = 0.

Proof. Let £ c y c l denote the cyclic sum over X, Y, Z. Since T — 0,
Proposition 7.7 of [2] implies that

( 2 ) Σcyci {<R(X, Z)W, G}X + <X, W}R(Y, Z)G} = 0 .

The argument of [2, § 9, Propositions 3 and 4] applied to (2) shows that there
exists a constant c such that for any 2-ρlane σ at p containing Gp we have
K(σ) = c. Now in (2) set Yp = Wp, Zp = GP/\\GP\\ and Xp, Yp,Zp to be
orthonormal, and take inner product with Xp. We get

<R(YP,GP)YP,GP} + <R(Gp,Xp)Gp,Xpy = 0 ,

from this it clearly follows that c — 0. q.e.d.
The following theorem is now obvious:
Theorem 2. Let (M, g), (M, g) be homocurved. Suppose that the dimension

of M is n> 4, and that (M, g) is nowhere conformally flat. Then (M, g), (M, g)
are strongly homothetic if

(A) The set {p e M\ K\π-1{p) does not take the value 0} is dense in M.
Remark. The condition (A) may be replaced by
(A') The set {p <ε M\ if σ is a 2-plane at p such that K(σ) = 0, then σ is

not a critical point of K\π-1(p) of nullity > n — 2}
is dense in M. This is due to the observations in [2, Theorem 9.5].

Remark. Instead of (A) we may impose certain analytic conditions under
which Theorem 2 is valid. For instance, Proposition 3 shows that R(X, G) = 0
for any vector field X on M. So Theorem 2 holds if (A) is replaced by

(B) The set {p e M\ There do not exist linearly independent XP,YP€ TP(M)
such that R(XP, Yp) = 0}

is dense in M.
Finally, we may impose some conditions on the diίϊeomorphism F. We have

already seen F^R = JR. In the spirit of Nomizu and Yano's formulation of
the equivalence problem (cf. [3]) we contend: Theorem 2 is valid if (A) is
replaced by

(C) F^(FR) — FR, where F, F denote the corresponding covariant
derivations.

This condition is fulfilled, e.g., when M and M are symmetric spaces.
Indeed, using Proposition 3 and [2], Proposition 7.6, we see that

0 = (FZR)(Y,Z)G - (FXR)(Y,Z)G = \\G\\2R(Y,Z)X .
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Hence, if G ^ 0, then R = 0 on a subset of M with nonempty interior this
contradicts the hypothesis that (M, g) is nowhere conformally flat.
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