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GRID MANIFOLDS

S. A. ROBERTSON

This paper is intended to correlate the work of several authors on
Riemannian manifolds on which there are defined systems of parallel fields of
tangent planes. The main facts in this area are the reducibility theorem of de
Rham [8] and the fibring theorems of Walker [14]. In order to make the
exposition as simple as possible, we introduce the concepts of local-product
and grid. Our principal result includes a 'grid' version of de Rham's theorem.

1. Almost-product and local-product structures

Let M be a smooth (i.e., C°°) m-manifold without boundary. An almost-
product-structure (or ΛP-structure) of type (m19 , mr) on M is a direct sum

r

decomposition τM = 0 ξt of the tangent bundle of M into smooth subbundles
ϊ = l

ξi of dimension mf > 0. Equivalently, an y4P-structure on M is an ordered set
(φu , φr) of mutually transverse smooth fields φi of tangent mΓplanes on
M, with J^nii — m (see [16]). Thus the rarplane φt(x) is the fibre of ξt at

If each tangent field φt of an y4P-structure Φ = (φl7 , φr) on M is
integrable, then we call Φ a local-product structure1 (or LP-structure) on M
of type (m1? ,ra r ), where as above d i m ^ = mt. Equivalently, an LP-
structure is an ordered set SF — ( J ^ , , J^r) of mutually transverse smooth
foliations J ^ with foil-dimension mt > 0, and with Σ mt = m. We denote
the foil of SFi through jceM by F^x), and call the ordered set F(x)
= (Fλ(x), , Fr(x)) the foil-sequence of 2F at x.

If Φ is an ^-s t ructure on M, then the pair (M, Φ) is called an ΛP-manifold.
Likewise (Λf, &) is an LP-manifold, where J^ is an LP-structure on M.
Suppose then that (M, Φ) and (N, Ψ) are ^4P-manifolds of types (m19 , mr)
and (w15 , ns) respectively. An ΛP-morphism from (M, Φ) to (M, Ψ) is a
pair (/, ζ), where /: M —• N is a smooth map, ζ: (1, , r) —> (1, , s) is
order-preserving ((i.e., / < / =̂> ζ(ί) < ζ(/)), and for all i — 1, , r, and all

C ψj(f(x)), where / = ζ(0 An LP-morphism from one LP-

Communicated by A. Nijenhuis, August 12, 1969.
1 This use of the term 'local-product structure' is slightly different from the usual one

in that we do not require that arbitrary sums of the fields φt be integrable. Thus our
concept might be more precisely termed a weak local product.
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manifold (M, &) to another (N, &) is an ^ίP-morphism from (M, &) to (N, &)
as y4P-manifolds.

We have now constructed the ^-category and the LP-category. Before
proceeding further, we give some simple examples of LP-manifolds which will
help to illuminate subsequent discussion.

(1) Let $Fλ be the foliation on M whose only foil is M itself. Then (M, J*0
is an LP-manifold of type (m), there & = ( # Ί ) .

(2) If M19 , Mr are smooth manifolds with dim Mt = mu then (M, 2F)
is an LP-manifold of type (m1? •• ,m r ) , where M = Xj^iAf* and F =
(iFu - -, J^ r) is the ordered set of foliations for which Ft(x) — {x^ X X
Mi x X {xr}. We call ?F the standard LP-structure on χMt.

(3) Let $FX be a smooth foliation of M, of codimension 1. Then any
Riemannian metric on M determines a unique orthogonal foliation J^2 of M
of codimension (m — 1). Thus ( J ^ , J^2) is an LP-structure of type (m — 1,1)
on M. An important special case of $Fλ is the Reeb foliation ([3], [7]) of the
real 3-sphere S3 by 2-dimensional foils. Another useful example of this
construction may be described as follows.

(4) Let the Euclidean plane R2 be foliated by smooth curves as indicated
by the solid lines in Figure 1. This foliation ^ Ί , together with its orthogonal
complement ^ 2 (indicated by broken lines in the Figure), determines an LP-
structure ( ^ Ί , J s ) of type (1, 1) on R\

(5) Let M be a parallelisable m-manifold, and let X19 , Xm be linearly
independent smooth vector fields on M. Then any partition [m1? , rar] of
m determines an ;4P-structure Φ = (φl9 , φn) on M, the field φt being
generated by {Xa, , Z α + J , where a = mί_1 and s = m^ However, Φ need
not be an LP-structure except when mt = 1 (all / = 1, , r).

(6) An important special case of (5) is obtained by taking M = Tm =
XmS\ where Sι denotes the reals modulo 1. Any system of m mutually
transverse (maximal) families of parallel straight lines in Rm determines an
LP-structure of type (1, . , 1) on Tm.

We remark that if (/, ζ) : (M, &) —> (N, &) is an LP-isomorphism, then
/: M —> N is necessarily a diίϊeomorphism and J^, ^ are of the same type. The
converse statement, however, is false. For instance, Example (6) includes
infinitely many LP-manifolds (Γ m , J*") of type (1, , 1) which are not LP-
isomorphic. Again, the LP-manifold (R2, «^r) of Example (4) and the standard
LP-manifold (# 2 , &) = (R x R, &) are not LP-isomorphic. Nevertheless,
there is an obvious LP-monomorphism of (R2, 3F} -^ (R2, &), as indicated in
Figure 2.

2. Connexions and metrics

Suppose that (M, Φ) is an >4P-manifold, and a is an aίfine connexion on M.
A natural question is the following: is it possible to choose a in such a way
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that the fields φt of Φ are all parallel with respect to aΊ This question has been
settled by Walker [15] (see also Willmore [17], [18]) who showed that such
an a always exists.

On the other hand, if we ask that a should be the connexion of some
Riemannian metric p of M, the situation is quite different. Trivially, we can
choose p in such a way that the fields φt are mutually orthogonal. For let ξt

be the rarplane bundle with fibre φt(x) at each x e M, and ρt be any smooth
Riemannian metric for ξί7 Then a suitable choice of p is obtained by putting

But there need not exist a Riemannian metric with respect to which each φi is
parallel, as we shall see below. This motivates the notion of grid, which we
consider next.

3. Grid structures

Let 2F be an LP-structure on M, and p a smooth Riemannian metric for M.
We say that 3F and p are compatible if the foliations ^ of 3F are mutually
orthogonal and totally geodesic. This latter condition is equivalent to the
requirement that each of the associated fields φi of tangent rarplanes be
parallel with respect to p (see [8], [11] or [14]). A grid-structure or grid on
M is a pair Γ = ( J S p), where ?F is an LP-structure on M, and p is a
Riemannian metric for M compatible with $F. The pair (M, Γ) is called a
grid-manifold. If (M, Γ) and (N, Δ) are grid-manifolds, where Γ = ( J S p)
and J = (^, σ), then a grid-morphism from (M, Γ) to (N, Δ) is an LP-morphism
(/, ζ) : (M, &) -> (N, &) such that p = f*σ. In particular, / is a smooth
immersion. Also if (/, ζ) is a grid-isomorphism, then / is (global) isometry
from (M, p) onto (N, σ).

In what follows, most grid-morphisms (/, ζ) will be grid-epimorphisms, and
ζ is the identity map in these cases. Accordingly, we often abbreviate (/, ζ) to /.

A given LP-structure on M may be compatible with many Riemannian
metrics. For example, the standard LP-structure on XiMt is compatible with
the product Xipi of any Riemannian metrics ρt on Mt. On the other hand,
the LP-structure on S3 associated with the Reeb foliation in the manner of
Example (3) does not admit a compatible Riemannian metric.

We also observe that an LP-structure may admit a compatible Riemannian
metric, and yet fail to admit one which is complete. Example (4) illustrates
this fact: as we mentioned above, this LP-manifold (R2, 3F) can be LP-
embedded as an LP-submannifold (N, &\N) of the standard LP-manifold
(R X R,&). Referring to Figure 2, we note that a complete compatible metric
on N must assign an infinite length to the open line segment joining (0, 0) to
(0, 1), and a finite length to that joining (1, 0) to (1, 1). However, compatibility
requires that these lengths be equal, which is impossible.
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We now describe a method for constructing grid-manifolds. It will appear
in the next section that every complete grid-manifold is obtained in this way.

Let Mi be a smooth m rmanifold with a smooth Riemannian metric
pt (ί = 1, . . ., r). Then as above Γ = C ~̂, p) is a grid of type (m19 , mr)
on M = x ί M ί ? where 3F is the standard LP-structure on M and p = X t pt.
Suppose now that G is a discrete group of grid-automorphisms / of (M, Γ),
such that the isometries / act freely on M. Then Mf — M/G is a smooth
manifold having an obvious grid-structure Γ/G of type (mί9 , rar), with a
grid-epimorphism (M, Γ) —> (M/G, Γ/G). Moreover, if each M^ is complete,
then so is M/G.

We give two examples of this construction to illustrate the theorems which
follow.

(7) Let Z2 act on M = Sp x Rq by ζ(x,y) = ( — x,—y), where ζ is the
nontrivial element of Z2. If ^* = ( i s , J s ) is the standard grid on Sp X Rq,
where both 5 P and Rq have their standard metrics, then Z2 acts freely on
(M,^) as a group of grid-automorphisms. The quotient space Mr — M/Z2

has the homotopy-type of real projective &-space Pk. Although Mf is not
simply-connected, the foils FX(Z), F2(Z) at 'most' points of Mf are both simply-
connected, provided p > 1.

(8) Let Z2 act on Sp X Sq by ζ(x,y) = ( - * , / ) , where yi = y't for
y = 1, . . ., q and yr

q+1 = — v9+1. Thus ζ is reflexion in 0 for Sp and reflexion
in the equator for Sq. Again (M', ^"0 = (5^ x Sq/Z29 ^/ Z2) is a grid-manifold
of type (p,q). In this case, all foils of both foliations of M' are simply-
connected (although, of course, π^M') — Z2 as in (7)).

4. Structure of grid-manifolds

Let (M, &) be an LP-manifold, and F(x) = (F^x), , Fr(x)) be the foil-
sequence at xeM, and ViF^x) = ( + { Ft(x))/ +i{x} denote the wedge of
Fλ(x), '--,Fr(x)9 where + denotes topological sum. The inclusions
θi(x): Ft(x) C M induce a map ώ: V Ft(x) -+ M, and the injections πt: Ft(x)

-+ X Fi(x) given by πfy) = (y19 , yr), where yά = x (/ φ ϊ) and yt = y,

determine an injective map π: VF^x) —» x F ^ i ) .
Suppose now that p is a smooth Riemannian metric on M compatible with

SF. Then ( J s ^) = Γ is a grid on M, and p induces a Riemannian metric
^.(JC) = θf(x)ρ on Fi(x), and hence a standard grid Γ* on X F ^ J C ) . We can
now state our main theorem. The argument given by de Rham in [8] also
serves as a proof of this result. We therefore give only a sketch of the proof,
referring to [8] for full details. An alternative approach can be found in [6],

A foil sequence (Fίv , Fr) is said to be 1-connected if Ft is 1-connected
for all / = 1, , r.

Theorem A. Let (M, Γ) be a complete grid-manifold, and (F19 , Fr) be
a l-connected foil-sequence, and Γ* denote the grid induced by Γ on χFt.
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Then there is a grid-epimorphism f: (χFί9 Γ*) —> (M, Γ) such that

f
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XF, M

We now list some corollaries of Theorem A among these is the grid version

of de Rham's original theorem. We remark that if M is the universal covering

of M, then the projection p induces a grid Γ on M from any grid Γ on M.

Corollary 1. Under the hypothesis of Theorem A, there is a grid-

isomorphism h: (χFi9 Γ*) —> (M, Γ) such that p o h — f.

XF, M

M

Corollary 2. Let (M,Γ) be a complete grid-manifold, and (Fi9 « , F r )

any foil-sequence. Then there is a grid-isomorphism h: χFt —> M such that

pohoπ = ώo \Zpt, where pt: Ft -+ Ft is the universal covering map.

M

Corollary 3. // (M, Γ) is a complete grid-manifold of type (m1? , mr),

then for all i — 1, , r and all x, y e M, Ft(x) is (globally) isometric to F^y).
Corollary 4 (de Rham). Any 1-connected complete grid-manifold (M,Γ)

is globally isometric to χ F ί ? where (F19 , Fr) is any foil-sequence of Γ.
Corollary 5. Any complete grid-manifold (M,Γ) of type (m1? ,m r ) is

I I r \ \

grid-isomorphic to([χ MA / G , Γ''/G), where each Mt is a completeRieman-

nian mΓmanifold, Γf is the standard grid, and G is a freely acting discrete
group of grid-automorphisms.

Since any such quotient is a grid-manifold, Corollary 5 characterises
complete grid-manifolds. We now outline a proof of Theorem A.

Proof of Theorem A. We remark first that in view of Examples (7) and
(8) above, M itself need not be 1-connected, and there may be some y eM
and some i = 1, , r for which Ffy) is not 1-connected. However, each foil
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of SFi is totally geodesic in M and everywhere orthogonal to each foil of
^j (i φ /). In fact, for all y e M, Ft(y) is a complete Riemannian m rmanifold
with respect to the 'intrinsic' topology determined by the exponential map of
M and the metric pfy).

Consider the foil-sequence (F19 , Fr) at xeM. By definition, there exist
open neighbourhoods Ut of x in Ft (i = 1, , r) and a grid-monomorphism
fu- (xUi,Γ') -> (M, Γ) such that fΌo πυ = ώϋ9 where πυ: V Ut -> X Ft and
ώΌ\ V t/i —> M are the natural maps, and Γf is the standard grid.

Now let v\ I -• χFt be an arc with v(0) e U. De Rham [8, § 6] shows that
the grid-monomorphism fυ can be extended to a grid-map fυ: UV—*M, where
Uv = U U W and W is some open neighborhood of v(I) in χ F i t Here Uv is
given the grid induced from Γf by the inclusion. Moreover, the induced map

Tv(χFi) — ζ - TZM of tangent spaces, where y = v(l) and z = fu(y), depends
only on the homotopy class of v (rel. end-points) in χF{.

It follows that if Ft is 1-connected for all / = 1, , π, then fΌ extends
uniquely to a grid-map /: χFt^ M, which is an epimorphism in view of the
completeness of M and Fi9 and /o π = ώ as required.

5. Irreducible and normal grids

We now express the group /(M, p) of isometries of a Riemannian manifold
(M, |θ) in terms of certain LP-structures on M compatible with the metric p.

Let LP(M, p) denote the set of all LP-structures , f on M which are
compatible with p. We define a partial ordering < on LP(M, p) by putting
^ < & if there is an LP-morphism (1M, ζ) : (M, ^) -> (M, ^ ) . If ^ is a
minimal element of (LP(M, p), < ) , then we say that 3F is irreducible and that
JH = (J^, ô) is an irreducible grid on M. It is shown in [8] that if £F =
(J*Ί, , J^r) a n < i ^ = (^u •? ̂ s ) a r ^ irreducible LP-structures on M
(compatible with p) of types (m1? , m r) and (w1? , πs) respectively, then
r = 5*, and there is a permutation p : {1, , r] —> {1, , r) such that for all
/ = 1, ,r, m^ = n p ( ί ) , and if mt > 1, then ^ = ^ p ( ί ) also. Thus any
irreducible LP-structure on (M, p) is unique up to the order of its foliations of
dimension > 1 , and up to the choice of its 1-dimensional foliations.

These observations motivate the following definition. We say that ?F —
( # Ί , , J^ r) e LP(M, p) of type (m1? , mr) is normal on (M, p) if m^ > 1
for / = 1, , r — 1 and there is an irreducible LP-structure ^' =
(&Ί, "-, J S -i, &'» --, ^Lr) (necessarily of type (m1? , mr_19 1, , 1))
such that £Fr < J^, or if ?F itself is irreducible and mt > 1 for all / = 1, , r.

Remark. In the former case, each foil Fr(x) of ?Fr is a flat mr-manifold,

and Fr(x) = Rmr. For further details of such spaces, see [1], [2] or [19].
If ?F is normal on (M, p), then we say that («^, p) is a normal grid on M.

We denote the set of normal LP-structures on (M, p) by JV(M, p). Now the
isometry group /(M, ̂ o) of (M, ^) acts on LP(m, p) as a group of permutations,
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as follows. Let ^ = ( J ^ , , &r) e LP(M, p), and let geI(M,p). Then
g.^=& = (&19 . . ., &r)eLP(M, p), where for all i e M , G«(g(jc)) = *(F«(JC)).
Thus the set Jf(M, p) of normal LP-structures on (M, p) is setwise invariant
under this action of /(M). Further, if g e /(M) and ^ e Jί(M, p) are such that
g.g; — j r ? then g-&' — 3F' for all &' eJ^(M, p). Hence the group of all
grid-automorphisms of any normal grid Γ = ( J s p) on M is independent of
^ zJf(M, p), and coincides with the subgroup Γ(M) of I(M) which acts
trivially on Jί{M, p). We observe that Γ(M) is a normal subgroup of I(M).

To sum up, the isometry group /(M, p) of any Riemannian manifold is the
group of all grid-isomorphisms between normal grid-manifolds (M, Γ), where
Γ is of the form ( J s p). In particular, if there is a normal grid Γ = (J^, p)
on M of type (m15 , m r), where mf ^ rrij for all z =̂  /, then every isometry
of (M, p) is a grid-automorphism of (M, Γ) .

6. Related structures

The special class of grids ((J%, « 2̂)> ι°) o n (^? ι°) f° r which at least one of
the foliations 3Fi fibres M have been studied by Walker [14] and Reinhart [9]
(see also Hermann [4]). We mention some other natural lines of development.

One may try to extend the above ideas to pseudo-Riemannian manifolds,
studying parallel fields of tangent planes on these spaces. Unfortunately, the
local-product structures on which the theory of grids is based do not survive
this generalisation. A local analysis of the situation has been made by Walker
[12], [13], while Wu [20] has obtained a partial extension of de Rham's
theorem to the pseudo-Riemannian case. An 'affine analogue' of the de Rham
theorem appears in [5].

Again, suppose that (M, Γ) is a grid-manifold, with Γ = ( J s p) and ?F —
(J^Ί, , jF r ) . Let G be a discrete group of freely-acting isometries of M
such that for all geG, all xeM and all / = 1, , r, giF^x)) = F/JC) for
some j = 1, , r. Then M/G has a natural Riemannian structure, and each
foil Ft of each 3Fι is immersed in M/G by the projection M —> M/G as a
totally geodesic immersed submanifold whose self-intersections are either
tangent or normal.

The resulting structure is called a twisted grid on M/G. A simple illustration
of this idea may be described as follows.

Consider the discrete group G of isometries of the standard flat grid manifold
R X R, generated by the translation P and the glide-reflexion Q given by
P(x, y) = (*, y + 1) a n d Q(χ> y) = (x+l,—y). Thus (RχR)/Gis isometric
to the standard flat Klein bottle K. The grid on R x R is not equivariant under
the projection R x R —> K, but carries down to a twisted grid on K. This
produces a situation in which K is covered by a family of parallel lines
each of which is also orthogonal to every member of the family, including itself
(see Figure 3). By using the group generated by Q alone, one gets an analogous
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Fig. 1 Fig. 2

Fig. 3. A twisted grid on the flat Klein bottle

situation on the Mobius band. Twisted grids will be studied in more detail in
[10].
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