SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS

G. D. LUDDEN

1. Introduction

Recently B. Smyth [6] has classified those complex Einstein hypersurfaces of a Kaehler manifold of constant holomorphic curvature. This paper was followed by the papers of Chern [2], Nomizu and Smyth [4], Kobayashi [3] and others researching this problem. Yano and Ishihara [7] have studied the analogous problem for Sasakian manifolds, i.e., they have studied invariant Einstein (or η-Einstein) submanifolds of codimension 2 of a normal contact manifold of constant curvature. The result of Smyth rests on the fact that the hypersurface is locally symmetric. We show in this paper that a normal contact manifold which is η-Einsteinian but not Einsteinian cannot be locally symmetric. Thus, since an invariant submanifold of codimension 2 in a normal contact manifold is itself a normal contact manifold, the η-Einstein case studied by Yano and Ishihara will not yield to a study similar to that of Smyth.
Let \bar{M} be a normal contact manifold or a cosymplectic manifold of constant $\tilde{\phi}$-sectional curvature, and M an invariant submanifold of codimension 2. The main purpose of this paper is to study the case where M is η-Einsteinian. In particular, we show that if \bar{M} is cosymplectic then M is locally symmetric. This suggests that a classification similar to that of Smyth may be obtained in this case.

2. Almost contact manifolds

Let \bar{M} be a C^{∞}-manifold and $\tilde{\phi}$ a tensor field of type $(1,1)$ on \bar{M} such that

$$
\tilde{\phi}^{2}=-I+\tilde{\xi} \otimes \tilde{\eta},
$$

where I is the identity transformation, $\tilde{\xi}$ a vector field, and $\tilde{\eta}$ a 1 -form on \bar{M} satisfying $\tilde{\phi} \tilde{\xi}=\tilde{\eta} \circ \tilde{\phi}=0$ and $\tilde{\eta}(\tilde{\xi})=1$. Then \tilde{M} is said to have an almost contact structure. It is known that there is a positive definite Riemannian metric \bar{g} on \bar{M} such that $\bar{g}(\tilde{\phi} X, Y)=-\bar{g}(X, \tilde{\phi} Y)$ and $\bar{g}(\tilde{\xi}, \tilde{\xi})=1$, where X and Y are vector fields on \bar{M}. Define the tensor $\tilde{\Phi}$ by $\tilde{\Phi}(X, Y)=\tilde{g}(X, \tilde{\phi} Y)$. Then $\tilde{\Phi}$ is a 2-form. If $[\tilde{\phi}, \tilde{\phi}]+d \tilde{\eta} \otimes \tilde{\xi}=0$, where $[\tilde{\phi}, \tilde{\phi}](X, Y)=\tilde{\phi}^{2}[X, Y]$ $+[\tilde{\phi} X, \tilde{\phi} Y]-\tilde{\phi}[\tilde{\phi} X, Y]-\tilde{\phi}[X, \tilde{\phi} Y]$, then the almost contact structure is said to be normal. If $\tilde{\Phi}=d \tilde{\eta}$, the almost contact structure is a contact structure.

Communicated by K. Yano, June 30, 1969.

A normal almost contact structure such that $\tilde{\Phi}$ is closed and $d \tilde{\eta}=0$ is called cosymplectic structure. It can be shown [1] that the cosymplectic structure is characterized by

$$
\begin{equation*}
\tilde{\nabla}_{X} \tilde{\phi}=0 \quad \text { and } \quad \tilde{\nabla}_{X} \tilde{\eta}=0 \tag{2.1}
\end{equation*}
$$

where \tilde{V} is the connection of \bar{g}. Henceforth, we assume \bar{M} possesses a normal contact (Sasakian) structure or a cosymplectic structure. We note here that in a Sasakian manifold

$$
\begin{equation*}
\left(\tilde{V}_{X} \tilde{\phi}\right) Y=\tilde{\eta}(Y) X-\tilde{g}(X, Y) \tilde{\xi} \tag{2.2}
\end{equation*}
$$

The curvature operator \tilde{R} of \bar{g} is defined by $\tilde{R}_{X Y} Z=\left[\tilde{V}_{X}, \tilde{V}_{Y}\right] Z-\tilde{V}_{[X, Y]} Z$ and the Ricci tensor \bar{S} is the trace of the mapping $X \rightarrow \tilde{R}_{X Y} W$. If X and Y form an orthonormal basis of a 2-plane of \bar{M}, the sectional curvature $\tilde{K}(X, Y)$ of this plane is given by $\tilde{g}\left(\tilde{R}_{X Y} X, Y\right)$. If X is a unit vector which is orthogonal to $\tilde{\xi}$, we say that X and $\tilde{\phi} X$ span a $\tilde{\phi}$-section. If the sectional curvatures $\tilde{K}(X)$ of all $\tilde{\phi}$-sections are independent of X, we say \bar{M} is of constant $\tilde{\phi}$-sectional curvature. It has been shown that in a normal contact manifold or a cosymplectic manifold of constant $\tilde{\phi}$-sectional curvature \bar{C},

$$
\begin{align*}
& \tilde{g}\left(\tilde{R}_{X Y} Z, W\right)=\alpha\{\tilde{g}(X, Z) \tilde{g}(Y, W)-\tilde{g}(X, W) \tilde{g}(Y, Z)\} \\
& \quad+\beta\{\tilde{\eta}(X) \tilde{\eta}(W) \tilde{g}(Z, Y)+\tilde{\eta}(Z) \tilde{\eta}(Y) \tilde{g}(X, W)-\tilde{\eta}(X) \tilde{\eta}(Z) \tilde{g}(Y, W) \\
& \quad-\tilde{\eta}(Y) \tilde{\eta}(W) \tilde{g}(X, Z)+\tilde{\Phi}(X, W) \tilde{\Phi}(Z, Y)-\tilde{\Phi}(X, Z) \tilde{\Phi}(W, Y) \tag{2.3}\\
& \quad+2 \tilde{\Phi}(X, Y) \tilde{\Phi}(Z, W)\},
\end{align*}
$$

where $\alpha=(\check{C}+3) / 4$ and $\beta=(\check{C}-1) / 4$ is the normal contact case and $a=\beta=\bar{C} / 4$ in the cosymplectic case. This formula was shown for the normal contact case by Ogiue [5] and for the cosymplectic case by D. E. Blair (unpublished). We also note that the Ricci tensor is given by

$$
\begin{equation*}
\bar{S}(X, Y)=\alpha^{*} \tilde{g}(X, Y)-\beta^{*} \tilde{\eta}(X) \tilde{\eta}(Y) \tag{2.4}
\end{equation*}
$$

where $\alpha^{*}=(n \alpha+\beta) 2$ and $\beta^{*}=2(n+1) \beta$ in the normal contact case and $\alpha^{*}=\beta^{*}=2(n+1) \alpha$ in the cosymplectice case. Here the dimension of \bar{M} is assumed to be $2 n+1$.

3. Invariant submanifolds

Let M be a submanifold of codimension 2 imbedded in \bar{M} by $i: M \rightarrow \bar{M}$. We will assume that M is invariant under $\tilde{\phi}$, i.e., for every tangent vector X of M there is a vector Y tangent to M such that $\tilde{\phi} i_{*} X=i_{*} Y$. Henceforth, we will use X, Y, \ldots to represent tangent vectors to either M or \bar{M}, the meaning being clear. Thus, there is a vector ξ tangent to M such that $i_{*} \xi=\tilde{\xi}$ (restricted
to $i(M))$. It is easy to show that there are tensors ϕ, η and g defined on M by $\tilde{\phi} i_{*} X=i_{*} \phi X, \tilde{\eta}\left(i_{*} X\right)=\eta(X)$ and $\tilde{g}\left(i_{*} X, i_{*} Y\right)=g(X, Y)$. Then

$$
i_{*}\left(\phi^{2} X\right)=\tilde{\phi} i_{*} X=\tilde{\phi}^{2} i_{*} X=-i_{*} X+\tilde{\eta}\left(i_{*} X\right) \tilde{\xi}=i_{*}(-X+\eta(X) \xi) .
$$

Also, $\eta(\xi)=\tilde{\eta}\left(i_{*} \xi\right)=\tilde{\eta}(\tilde{\xi})=1, i_{*}(\phi \xi)=\tilde{\phi} i_{*} \xi=\tilde{\phi} \tilde{\xi}=0$, and $\eta(\phi X)=\tilde{\eta}\left(i_{*} \phi X\right)$ $=\tilde{\eta}\left(\tilde{\phi} i_{*} X\right)=0$. We can then see that $g(\phi X, Y)=-g(X, \phi Y)$ and $g(\xi, \xi)=1$. Thus, we have the following theorem.

Theorem 3.1 (Yano \& Ishihara [7]). (ϕ, ξ, η) is an almost contact structure on M with g as an associated metric.

If we let $\Phi(X, Y)=g(X, \phi Y)$, then $\tilde{\Phi}\left(i_{*} X, i_{*} Y\right)=\tilde{g}\left(i_{*} X, \tilde{\phi} i_{*} Y\right)=$ $\bar{g}\left(i_{*} X, i_{*} \phi Y\right)=g(X, \phi Y)=\Phi(X, Y)$. From the coboundary formula we see that $d \eta(X, Y)=d \tilde{\eta}\left(i_{*} X, i_{*} Y\right)$ and also that $d \Phi(X, Y, Z)=d \tilde{\Phi}\left(i_{*} X, i_{*} Y, i_{*} Z\right)$. From these identities we see that $d \tilde{\eta}=\tilde{\Phi}$ implies that $d \eta=\Phi$. It is also straightforward to show that $[\tilde{\phi}, \tilde{\phi}]\left(i_{*} X, i_{*} Y\right)=i_{*}[\phi, \phi](X, Y)$. Thus the following propositions are clear.

Proposition 3.2 (Yano \& Ishihara [7]). If $\tilde{\phi}$ is a normal contact structure on \bar{M}, then ϕ is a normal contact structure on M.

Proposition 3.3. If $\tilde{\phi}$ is a cosymplectic structure on \bar{M}, then ϕ is a cosymplectic structure on M.

Let C be a unit vector field defined on $i(M)$ such that $\bar{g}\left(C, i_{*} X\right)=0$ and $\tilde{g}\left(\tilde{\phi} C, i_{*} X\right)=0$ for all X. Since M is invariant, it follows that such a C can be found. Then we have

$$
\begin{equation*}
\tilde{V}_{i_{*} X}\left(i_{*} Y\right)=i_{*}\left(\nabla_{X} Y\right)+H(X, Y) C+K(X, Y) \tilde{\phi} C \tag{3.4}
\end{equation*}
$$

where ∇ is the covariant derivative with respect to g, and H and K are symmetric tensors of type $(0,2)$ on $M . H$ and K are called the second fundamental tensors of M. Furthermore, we may write

$$
\begin{align*}
\tilde{V}_{i_{*} X} C & =-i_{*}(h X)+s(X) \tilde{\phi} C, \\
\tilde{V}_{i_{*} X}(\tilde{\phi} C) & =-i_{*}(k X)-s(X) C, \tag{3.5}
\end{align*}
$$

where s is a 1 -form on $M, g(h X, Y)=H(X, Y)$, and $g(k X, Y)=K(X, Y)$.
Lemma 3.6. The following identities hold:
i) $H(X, Y)=K(X, \phi Y)$,
ii) $K(X, Y)=-H(X, \phi Y)$.

Proof.

$$
\begin{aligned}
\left(\tilde{\nabla}_{i_{*} X} \tilde{\phi}\right) i_{*} Y= & \tilde{V}_{i_{*} X}\left(\tilde{\phi} i_{*} Y\right)-\tilde{\phi}\left(\tilde{V}_{i_{*} X} i_{*} Y\right) \\
= & \tilde{V}_{i_{*}}\left(i_{*} \phi Y\right)-\tilde{\phi}\left(i_{*} \nabla_{X} Y+H(X, Y) C+K(X, Y) \tilde{\phi} C\right) \\
= & i_{*}\left(\nabla_{X} \phi Y\right)+H(X, \phi Y) C+K(X, \phi Y) \tilde{\phi} C-i_{*}\left(\phi \nabla_{X} Y\right) \\
& -H(X, Y) \tilde{\phi} C-K(X, Y)(-C)
\end{aligned}
$$

It can now be seen from (2.1) and (2.2) that $\left(\tilde{V}_{i_{*} X} \tilde{\phi}\right) i_{*} Y=i_{*} Z$ for some Z. The lemma then follows by noting that we have used the fact that $\tilde{\eta}(C)=0$.

The identities of Lemma 3.6 show that

$$
\begin{align*}
k & =\phi h \tag{3.7}\\
h \phi & =-\phi h \tag{3.8}
\end{align*}
$$

From this it follows that $\operatorname{tr} h=\operatorname{tr} k=0$. Here $\operatorname{tr} h$ denotes the trace of h. We also note that $H(X, \xi)=0$ and $K(X, \xi)=0$ for all X.

The following lemma is proved in [6].
Lemma 3.9. Let V be a $2 n$-dimensional real vector space with a complex structure J and a positive definite inner product g which is hermitian (i.e., $J^{2}=-I$ and $\left.g(J X, J Y)=g(X, Y)\right)$. If A is symmetric with respect to g and $A J=-J A$, there exists an orthonormal basis $\left\{e_{1}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}\right\}$ of V with respect to which the matrix of A is diagonal of the form

$$
\left[\begin{array}{llllll}
\lambda_{1} & & & & & \\
& \ddots & & & & \\
& & \lambda_{n} & & & \\
& & & -\lambda_{1} & & \\
& & & \ddots & \\
& & & & -\lambda_{n}
\end{array}\right]
$$

This lemma and equation (3.8) then show that at each point m of M there is an orthonormal basis $\left\{\xi, e_{1}, \cdots, e_{n-1}, \phi e_{1}, \cdots, \phi e_{n-1}\right\}$ of M_{m}, the tangent space of M at m, such that h at m is diagonal of the form

$$
\left[\begin{array}{cccccc}
\lambda_{1} & & & & & \tag{3.10}\\
& \ddots & & & & \\
\\
& \lambda_{n-1} & & & & \\
& & & -\lambda_{1} & & \\
& & & \ddots & & \\
& & & & & \\
& & & & -\lambda_{n-1} & \\
& & & & & 0
\end{array}\right]
$$

with respect to this basis.

4. Main Theorems

The following Gauss-Codazzi equation for the curvature operator of M is well-known and follows directly from equations (3.4) and (3.5).

$$
\begin{align*}
\tilde{R}_{i_{*} X i_{*} Y} i_{*} Z= & i_{*}\left[R_{X Y} Z-(H(Y, Z) h X-H(X, Z) h Y)\right. \\
& -(K(Y, Z) k X-K(X, Z) k Y)]+g\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X\right. \tag{4.1}\\
& -s(X) k Y+s(Y) k X, Z) C+g\left(\left(\nabla_{X} k\right) Y-\left(\nabla_{Y} k\right) X\right. \\
& +s(X) h Y-s(Y) h X, Z) \tilde{\phi} C .
\end{align*}
$$

From this it follows that

$$
\begin{align*}
S(X, Y)= & \check{S}\left(i_{*} X, i_{*} Y\right)+\operatorname{tr} h H(X, Y)-g(h X, h Y) \tag{4.2}\\
& +\operatorname{tr} k K(X, Y)-g(k X, k Y),
\end{align*}
$$

where S is the Ricci tensor on M. Because of Lemma 3.6, equation (4.2) simplifies to

$$
\begin{equation*}
S(X, Y)=\bar{S}\left(i_{*} X, i_{*} Y\right)-2 g\left(h^{2} X, Y\right) \tag{4.2}
\end{equation*}
$$

Lemma 4.3. If \hat{M} is a cosymplectic manifold of constant $\tilde{\phi}$-sectional curvature, then $\nabla_{X} h^{2}=0$ implies that $\nabla_{X} S=0$.

Proof. Using equation (2.4), equation (4.2)' simplifies

$$
S(X, Y)=\frac{(n+1) \grave{C}}{2}(g(X, Y)-\eta(X) \eta(Y))-2 g\left(h^{2} X, Y\right),
$$

from which the lemma follows.
If we assume \bar{M} is of constant $\tilde{\phi}$-sectional curvature, then (2.3) can be used to show that $\tilde{R}_{i_{*} X i_{*} Y} i_{*} Z$ is in fact tangent to M. Hence, the coefficients of C in (4.1) must vanish, i.e.,

$$
\begin{equation*}
\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X-s(X) k Y+s(Y) k X=0 . \tag{4.3}
\end{equation*}
$$

The vanishing of the coefficient of $\tilde{\phi} C$ adds nothing new. M is said to be totally geodesic if $H=K=0$.

Theorem 4.4. M is totally geodesic if and only if M is of constant ϕ-sectional curvature.

Proof. Let X be a vector orthogonal to ξ. Then from (4.1), we have that

$$
\begin{aligned}
g\left(R_{X \dot{ } X} X, \phi X\right)= & \tilde{g}\left(\tilde{R}_{i_{*} X \tilde{\phi} i_{*} X} \tilde{\phi} i_{*} X, i_{*} X\right)+H(\phi X, X) H(X, \phi X) \\
& +H(X, X) H(\phi X, \phi X)+K(\phi X, X) K(X, \phi X) \\
& +K(X, X) K(\phi X, \phi X) \\
= & \tilde{g}\left(\tilde{R}_{i_{*} X \widetilde{\phi} i_{*} X} \tilde{\phi} i_{*} X, i_{*} X\right)+2\left(H^{2}(X, X)+K^{2}(X, X)\right) .
\end{aligned}
$$

Now $\bar{g}\left(i_{*} X, \tilde{\xi}\right)=g(X, \xi)$ so that if X is orthogonal to ξ then $i_{*} X$ is orthogonal to $\tilde{\xi}$. Hence, $H=K=0$ implies that M is of constant ϕ-sectional curvature \tilde{c}.

Now assume that M is of constant ϕ-sectional curvature. Then $S(X, Y)=$
$\bar{\alpha}^{*} g(X, Y)-\bar{\beta}^{*} \eta(X) \eta(Y)$ for constants $\bar{\alpha}^{*}$ and $\bar{\beta}^{*}$ by (2.4). Thus, by (4.2)',

$$
\begin{equation*}
h^{2}=a I+b \xi \otimes \eta \tag{4.5}
\end{equation*}
$$

for appropriate constants a and b. Since $h \xi=0$, we see that $a+b=0$. Let $X=\left(e_{i}+\phi e_{j}\right) / \sqrt{2}$, where $i \neq j$ and the e_{i} 's are from the basis for M_{m} mentioned after Lemma 3.9. Then $g(X, X)=1$ and it can be shown that $g\left(R_{X \phi X} X, \phi X\right)=\tilde{c}$. This shows that $H(X, X)=0$ and $K(X, X)=0$ for all X. However, since H and K are symmetric, we have that $H=K=0$ and the proof is finished.

Definition 4.6. Let (ϕ, ξ, η, g) be an almost contact metric structure on a manifold M. Then M is said to be η-Einsteinian if $S=a g+b_{\eta} \otimes \eta$ for some a and b, necessarily constants, where S is the Ricci tensor of M.

Definition 4.7. A manifold M is locally symmetric if $V_{X} R=0$ for all X.
Proposition 4.8. If M is a normal contact η-Einsteinian but not Einsteinian manifold, then M is not locally symmetric.

Proof. Certainly if $\nabla_{X} R=0$ then $\nabla_{X} S=0$. However, from Definition 4.6,

$$
\left(\nabla_{X} S\right)(Y, Z)=b\left(\nabla_{X} \eta\right)(Y) \eta(Z)+b_{\eta}(Y)\left(\nabla_{X} \eta\right)(Z) .
$$

Therefore, since $\left(\nabla_{X} \eta\right)(Y)=d \eta(X, Y)$ and $d \eta(\xi, X)=0$ for all X, we have that

$$
\left(\nabla_{X} S\right)(Y, \xi)=b d \eta(X, Y) \neq 0
$$

Note that if M is of constant ϕ-sectional curvature 1 , then M is in fact of constant curvature. Thus, we have the following crollary.

Corollary 4.9. If M is a normal contact manifold of constant ϕ-sectional curvature $\neq 1$, then M is not locally symmetric.

We now proceed to prove our main theorem.
Theorem 4.10. If \bar{M} is a cosymplectic manifold of constant $\tilde{\phi}$-sectional curvature and M is an invariant submanifold of codimension 2 of \bar{M} which is η-Einsteinian, then M is locally symmetric.

Lemma 4.11.

$$
\nabla_{X} h=s(X) k
$$

Proof of Lemma 4.11. By (4.3) we have that

$$
\left(\nabla_{\xi} h\right) Y-\left(\nabla_{Y} h\right) \xi-s(\xi) k Y=0
$$

However, $\left(\nabla_{Y} h\right) \xi=\nabla_{Y}(h \xi)-h \nabla_{Y} \xi=0$. Thus $\nabla_{\xi} h=s(\xi) k$. If X is orthogonal to ξ, the proof of Proposition 7 of [6] and the fact that $\left(\nabla_{X} h\right) \xi=0$ show that $\nabla_{X} h=s(X) k$.

Now, since $k=\phi h$, we see that

$$
\nabla_{X} k=\nabla_{X}(\phi h)=\phi \nabla_{X} h=s(X) \phi k=s(X) \phi^{2} h=-s(X) h .
$$

The following lemma is proved in [6].
Lemma 4.12. If M is an arbitrary Riemannian manifold with metric g, then the tensor field P defined on M by

$$
P(X, Y, Z, W)=g(B X, Z) g(B Y, W)
$$

where B is a tensor field of type $(1,1)$ on M, has covariant derivative given by

$$
\left(\nabla_{V} P\right)(X, Y, Z, W)=g\left(\left(\nabla_{V} B\right) X, Z\right) g(B Y, W)+g(B X, Z) g\left(\left(\nabla_{V} B\right) Y, W\right)
$$

Proof of Theorem 4.11. Now let $\tilde{R}(X, Y, Z, W)=\bar{g}\left(\tilde{R}_{X X} Z, W\right)$. By equation (2.3), we see that $\left(\tilde{V}_{V} \tilde{R}\right)(X, Y, Z, W)=0$ since $\tilde{V}_{V} \tilde{\Phi}=0$ and $\tilde{V}_{X} \tilde{\eta}=0$. Let

$$
\begin{aligned}
D(X, Y, Z, W)= & g(h X, W) g(h Y, Z)-g(h Y, W) g(h X, Z) \\
& +g(k X, W) g(k Y, Z)-g(k Y, W) g(k X, Z)
\end{aligned}
$$

so that $\tilde{R}\left(i_{*} X, i_{*} Y, i_{*} Z, i_{*} W\right)=i_{*}(R(X, Y, Z, W)-D(X, Y, Z, W))$. Hence, by Lemma 4.12,

$$
\begin{aligned}
\left(\nabla_{V} D\right)(X, Y, Z, W)= & g\left(\left(\nabla_{V} h\right) X, W\right) g(h Y, Z)+g(h X, W) g\left(\left(\nabla_{V} h\right) Y, Z\right) \\
& -g\left(\left(\nabla_{V} h\right) Y, W\right) g(h X, Z)-g(h Y, W) g\left(\left(\nabla_{V} h\right) X, Z\right) \\
& +g\left(\left(\nabla_{V} k\right) X, W\right) g(k Y, Z)+g(k X, W) g\left(\left(\nabla_{V} k\right) Y, Z\right) \\
& -g\left(\left(\nabla_{V} k\right) Y, W\right) g(k X, Z)-g(k Y, W) g\left(\left(\nabla_{V} k\right) X, Z\right) \\
= & s(V)\{g(k X, W) g(h Y, Z)+g(h X, W) g(k Y, Z) \\
& -g(k Y, W) g(h X, Z)-g(h Y, W) g(k X, Z) \\
& -g(h X, W) g(k Y, Z)-g(k X, W) g(h Y, Z) \\
& +g(h Y, W) g(k X, Z)+g(k Y, W) g(h X, Z)\} \\
= & 0 .
\end{aligned}
$$

Thus, the proof is finished.
Assume now that \bar{M} is a normal contact manifold. Again we have that $\tilde{R}\left(i_{*} X, i_{*} Y, i_{*} Z, i_{*} W\right)=i_{*}(R(X, Y, Z, W)-D(X, Y, Z, W))$. If \vec{M} is of constant curvature, then $\tilde{V}_{V} \tilde{R}=0$. (If we merely assume that \tilde{M} is of constant $\tilde{\phi}$-sectional curvature then $\tilde{V}_{V} \tilde{R}$ can be computed. It turns out to be a rather long expression involving the $\tilde{\Phi}, \tilde{\eta}$ and \tilde{g}. Since we are interested in $\left(\tilde{V}_{i_{*} V} \tilde{R}\right)\left(i_{*} X, i_{*} Y, i_{*} Z, i_{*} W\right)$, this can be expressed in terms of $\tilde{\Phi}, \eta$ and g.) If M is Einsteinian, then (4.2) shows that $g\left(h^{2} X, Y\right)=\lambda g(X, Y)$ for some λ. However, since $h \xi=0$, we have $h^{2}=0$ and hence $h=0$. Also $k=0$ so that M is totally geodesic and hence $D=0$. Thus, $\nabla_{V} R=0$ (see [7]). It is slightly more complicated to consider the case where M is η-Einsteinian. In this case we have that $\nabla_{V} R \neq 0$ (see [7]).

References

[1] D. E. Blair, The theory of quasi-Sasakian structure, J. Differential Geometry 1 (1967) 331-345.
[2] S. S. Chern, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Differential Geometry 1 (1967) 21-31.
[3] S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Differential Geometry 1 (1967) 369-370.
[4] K. Nomizu \& B. Smyth, Differential geometry of complex hypersurfaces. II, J. Math. Soc. Japan 20 (1968) 498-521.
[5] K. Ogiue, On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kōdai Math. Sem. Rep. 16 (1964) 223-232.
[6] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967) 246-266.
[7] K. Yano \& S. Ishihara, On a problem of Nomizu-Symth for a normal contact Riemannian manifold, J. Differential Geometry 3 (1969) 45-58.

Michigan State University

