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SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS

G. D. LUDDEN

1. Introduction

Recently B. Smyth [6] has classified those complex Einstein hypersurfaces
of a Kaehler manifold of constant holomorphic curvature. This paper was
followed by the papers of Chern [2], Nomizu and Smyth [4], Kobayashi [3]
and others researching this problem. Yano and Ishihara [7] have studied the
analogous problem for Sasakian manifolds, i.e., they have studied invariant
Einstein (or ^-Einstein) submanifolds of codimension 2 of a normal contact
manifold of constant curvature. The result of Smyth rests on the fact that the
hypersurface is locally symmetric. We show in this paper that a normal contact
manifold which is 37-Einsteinian but not Einsteinian cannot be locally sym-
metric. Thus, since an invariant submanifold of codimension 2 in a normal
contact manifold is itself a normal contact manifold, the ^-Einstein case studied
by Yano and Ishihara will not yield to a study similar to that of Smyth.

Let M be a normal contact manifold or a cosymplectic manifold of constant
^-sectional curvature, and M an invariant submanifold of codimension 2. The
main purpose of this paper is to study the case where M is ^-Einsteinian. In
particular, we show that if M is cosymplectic then M is locally symmetric.
This suggests that a classification similar to that of Smyth may be obtained in
this case.

2. Almost contact manifolds

Let M be a C°°-manifold and φ a tensor field of type (1, 1) on M such that

φ2 = -I + ξ®7) ,

where I is the identity transformation, f a vector field, and η a 1-form on M
satisfying φξ = ήoφ = 0 and ή(ξ) = 1. Then M is said to have an almost
contact structure. It is known that there is a positive definite Riemannian
metric g on M such that g(φX, Y) = -g(X, φY) and g ( | , f) = 1, where X
and Y are vector fields on M. Define the tensor φ by Φ(X, Y) = g(X, φY).
Then φ is a 2-foπn. If [φ, φ] + di)®ξ = O9 where [φ, φ](X, Y) = φ2[X, Y]
+ [φX, φY] — φ[φX, Y] — φ[X, φY], then the almost contact structure is said
to be normal. If Φ = dη, the almost contact structure is a contact structure.
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A normal almost contact structure such that Φ is closed and dή — 0 is called
cosymplectic structure. It can be shown [1] that the cosymplectic structure is
characterized by

(2.1) Vxφ = 0 and V XΊ) = 0 ,

where V is the connection of g. Henceforth, we assume M possesses a normal
contact (Sasakian) structure or a cosymplectic structure. We note here that in
a Sasakian manifold

(2.2) {Vxφ)Y = r)(Y)X - g(X, Y)ξ .

The curvature operator R of g is defined by RXYZ = [Fx, FY]Z — Vιx^γ^Z
and the Ricci tensor S is the trace of the mapping X —> ̂ X F ^ F . If X and Y
form an orthonormal basis of a 2-plane of M, the sectional curvature K(X, Y)
of this plane is given by g(RχγX, Y). If X is a unit vector which is orthogonal
to I, we say that X and 0X span a φ-section. If the sectional curvatures X(Z)
of all ^-sections are independent of X, we say M is of constant φ-sectional
curvature. It has been shown that in a normal contact manifold or a
cosymplectic manifold of constant ^-sectional curvature C,

g(RχγZ, W) = a{g(X, Z)i(Y, W) - g(X, W)g(Y, Z)}

, Y) + $(Z)$(Y)g(*, 00 - ^(Z)^(Z)g(Y, W)

(Y){W){X, Z) + Φ(X, W)Φ(Z, Y) - Φ(X9 Z)Φ(W, Y)

+ 2Φ(X, Y)Φ(Z, W)} ,

where a = (C + 3)/4 and ^ = ( C — l)/4 is the normal contact case and
a — β — CjAm the cosymplectic case. This formula was shown for the normal
contact case by Ogiue [5] and for the cosymplectic case by D. E. Blair
(unpublished). We also note that the Ricci tensor is given by

(2.4) S(X, Y) = a*g(X, Y) - β*r){X)η{Y) ,

where <x* = {na + β)2 and β* = 2{n + l)β in the normal contact case and
a* = β* = 2(« + 1)<* in the cosymplectice case. Here the dimension of M is
assumed to be 2n + 1.

3. Invariant submanifolds

Let M be a submanifold of codimension 2 imbedded in M by /: M —• M.
We will assume that M is invariant under φ, i.e., for every tangent vector X
of M there is a vector Y tangent to M such that ^ Z = i^Y. Henceforth, we
will use X, Y, to represent tangent vectors to either M or M, the meaning
being clear. Thus, there is a vector ξ tangent to M such that i+ξ = ξ (restricted
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to i(M)). It is easy to show that there are tensors φ, η and g defined on M by
fax = i*φX, rjd^X) = η{X) and g(i+X, i+Y) = g(X, Y). Then

%X = -i+X + φ+X)ξ = i^-X + η{X)ξ)

Also, η(ξ) = r)(ij) = η(l) = 1, i^ψξ) = faξ = φξ = 0, and ̂  ^ ^
= η{faX) = 0. We can then see that g(0Z, Y) = -g(X, φY) and ̂ (f, f) = 1.
Thus, we have the following theorem.

Theorem 3.1 (Yano & Ishihara [7]). (φ, ξ, η) is an almost contact
structure on M with g as an associated metric.

If we let Φ(X, Y) = g(X, φY), then Φ(i*X, i*Y) = g(i*X, faY) =
g(i*X,i*φY) = g(X,φY) = Φ(X, Y). From the coboundary formula we see
that dη(X, Y) = dή(i*X, i*Y) and also that dΦ(X, Y, Z) = dΦ(i*X, i+Y, i^Z).
From these identities we see that dη — Φ implies that dη = Φ. It is also
straightforward to show that [φ, φ](i*X, i*Y) = i*[φ, φ](X, Y). Thus the
following propositions are clear.

Proposition 3.2 (Yano & Ishihara [7]). // φ is a normal contact structure
on M, then φ is a normal contact structure on M.

Proposition 3.3. // φ is a cosymplectic structure on M, then φ is a cosym-
plectic structure on M.

Let C be a unit vector field defined on i(M) such that g(C, i*X) — 0 and
g(φC, i%X) = 0 for all X. Since M is invariant, it follows that such a C can
be found. Then we have

(3.4) rwo;y) = U(VXY) + mx, Y)C + κ(x, γ)φc ,

where V is the covariant derivative with respect to g, and H and K are
symmetric tensors of type (0, 2) on M. H and K are called the second
fundamental tensors of M. Furthermore, we may write

FUXC *{) + s(X)φC ,

FAΦO i(kX) s(X)C ,

where s is a 1-form on M, g(hX, Y) = H(X, Y), and g(kX, Y) = K(X, Y).
Lemma 3.6. The following identities hold:

ii) K(X,Y)= -H(X,φY)
Proof.

, Y)C + K(X, Y)φC)

, φY)C + K(X, φYYφC -

-H(X,Y)φC-K(X,Y)(-C) .
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It can now be seen from (2.1) and (2.2) that (Fuxφ)i^Y = i*Z for some Z.
The lemma then follows by noting that we have used the fact that r){C) = 0.

The identities of Lemma 3.6 show that

(3.7)

(3.8)

k =

hφ = —φh .

From this it follows that tr h = tr k = 0. Here tr h denotes the trace of h. We
also note that H(X, f) = 0 and K(X, ξ) = 0 for all X.

The following lemma is proved in [6].
Lemma 3.9. Let V be a 2n-dimensional real vector space with a complex

structure J and a positive definite inner product g which is hermίtian (i.e.,
P = —I and g(JX, JY) = g(X, Y)). // A is symmetric with respect to g and
AJ = —JA, there exists an orthonormal basis {e19 , en, Je19 , Jen) of V
with respect to which the matrix of A is diagonal of the form

This lemma and equation (3.8) then show that at each point m of M there
is an orthonormal basis {ξ, eί7 , en_19 φeλ, , φen_^ of M m , the tangent
space of M at m, such that h at m is diagonal of the form

(3.10)
* 7 l - l

with respect to this basis.

4. Main Theorems

The following Gauss-Codazzi equation for the curvature operator of M is
well-known and follows directly from equations (3.4) and (3.5).
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RUXUYi*Z = i*[RzτZ - (H(Y,Z)hX - H(X,Z)hY)

- (K(Y, Z)kX - K(X, Z)kY)] + g((Fxh)Y - (FYh)X

- s(X)kY + s(Y)kX, Z)C + g{{Fxk)Y - (Fγk)X

+ s(X)hY - s(Y)hX, Z)φC .

From this it follows that

S(X, Y) = S(i*X9 i*Y) + tr h H(X, Y) - g(hX, hY)

+ trkK(X,Y)-g(kX,kY) ,

where S is the Ricci tensor on M. Because of Lemma 3.6, equation (4.2)
simplifies to

(4.2)' S(X, Y) = S(i*X, iJT) - 2g(h2X, Y) .

Lemma 4.3. // M is a cosymplectic manifold of constant φ-sectional
curvature, then Fxh

2 = 0 implies that FXS = 0.
Proof. Using equation (2.4), equation (4.2)7 simplifies

S(X, Y) = (n + 1)C (g(X, Y) - η{X)η{Y)) - 2g(h2X, Y) ,

from which the lemma follows.
If we assume M is of constant ^-sectional curvature, then (2.3) can be used

to show that RUXUYi*Z is in fact tangent to M. Hence, the coefficients of C
in (4.1) must vanish, i.e.,

(4.3) {Fxh)Y - {Fγh)X - s(X)kY + s(Y)kX = 0 .

The vanishing of the coefficient of φC adds nothing new. M is said to be
totally geodesic if H = K = 0.

Theorem 4.4. M is totally geodesic if and only if M is of constant
φ-sectional curvature.

Proof. Let X be a vector orthogonal to ξ. Then from (4.1), we have that

g(RXφXX,φX) = g(RUχϊuχφi*XJ*X) + H(φX,X)H(X,φX)

+ H(X, X)H(φX, φX) + K(φX, X)K(X, φX)

+ K(X, X)K(φX, φX)

φi*X,i*X) + 2(H\X,X) + K2(X,X)) .

Now g(i*X, I) = g(X, ξ) so that if X is orthogonal to ξ then ί*X is orthogonal
to f. Hence, H = K = 0 implies that M is of constant ^-sectional curvature c.

Now assume that M is of constant ^-sectional curvature. Then S(X, Y) =
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a*g(X, Y) - β*η(X)η(Y) for constants a* and β* by (2.4). Thus, by (4.2)',

(4.5) h2 = al + bξ®η

for appropriate constants a and b. Since hξ = 0, we see that a + b = 0. Let
X — {et + φej)/y/ 2 , where z =£ / and the e/s are from the basis for Mm

mentioned after Lemma 3.9. Then g(Z, Z) = 1 and it can be shown that
g(RχΦχX, φX) = c. This shows that H(X, X) = 0 and K(X, X) = 0 for all X.
However, since H and K are symmetric, we have that H = K = 0 and the
proof is finished.

Definition 4.6. Let (φ, ξ, η, g) be an almost contact metric structure on a
manifold M. Then M is said to be ψEinsteinίan if 5 = ag + bη(g)η for some
a and ί>, necessarily constants, where S is the Ricci tensor of M.

Definition 4.7. A manifold M is locally symmetric if ΓX7? = 0 for all X.
Proposition 4.8. // M is a normal contact ψEinsteinian but not

Eίnsteinian manifold, then M is not locally symmetric.
Proof. Certainly if VXR — 0 then VXS = 0. However, from Definition 4.6,

(FXS)(Y,Z) = b(yxrj)(Y)η{Z) + bv(YXFxV)(Z) .

Therefore, since (Fxη)(Y) = dη(X, Y) and dη(ξ, X) = 0 for all X, we have
that

(FXS)(Y, ξ) = bdv(X, Y)ΦO.

Note that if M is of constant ^-sectional curvature 1, then M is in fact of
constant curvature. Thus, we have the following crollary.

Corollary 4.9. // M is a normal contact manifold of constant φ-sectional
curvature Φl, then M is not locally symmetric.

We now proceed to prove our main theorem.
Theorem 4.10. // M is a cosymplectic manifold of constant φ-sectional

curvature and M is an invariant submanifold of codimension 2 of M which is
ψEinsteinian, then M is locally symmetric.

Lemma 4.11.

Fxh = s(X)k .

Proof of Lemma 4.11. By (4.3) we have that

(Fξh)Y - {Fγh)ξ - s(ξ)kY = 0 .

However, (Fγh)ξ = Fγ(hξ) — hFγξ = 0. Thus Fξh = s(ξ)k. If X is orthogonal
to ξ, the proof of Proposition 7 of [6] and the fact that (Fxh)ξ — 0 show that
Fxh = s(X)k.

Now, since k = φh, we see that

Fxk = Fx(φh) = φFxh = s(X)φk = s{X)φ2h = -s(X)h .
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The following lemma is proved in [6].
Lemma 4.12. // M is an arbitrary Rίemannίan manifold with metric g,

then the tensor field P defined on M by

P(X, Y, Z, W) = g(BX, Z)g(BY, W) ,

where B is a tensor field of type (1,1) on M, has covariant derivative given by

(FVPXX, Y, Z, W) = g((FvB)X, Z)g(BY, W) + g(BX, Z)g((FvB)Y, W) .

Proof of Theorem 4.11. Now let R(X,Y,Z,W) = g(RxγZ,W). By
equation (2.3), we see that (FVR)(X, Y, Z, W) = 0 since FVΦ = 0 and Fxη = 0.
Let

D(X, Y, Z, W) = g(hX, W)g(hY, Z) - g(hY, W)g(hX, Z)

+ g(kX, W)g(kY, Z) - g(kY, W)g(kX, Z) ,

so that R(i*X, i*Y, i*Z, i+W) = i*(R(X, Y, Z, W) - D(X, Y, Z, W)). Hence,
by Lemma 4.12,

(FyDXX, Y, Z, W) = g((Fvh)X, W)g(hY, Z) + g{hX, W)g((Fvh)Y, Z)

- g((Fvh)Y, W)g(hX, Z) - g(hY, W)g((Fvh)X, Z)

+ g((Fvk)X, W)g(kY, Z) + g(kX, W)g((Fvk)Y, Z)

- g((Fvk)Y, W)g(kX, Z) - g(kY, W)g((Fvk)X, Z)

= s(V){g(kX, W)g(hY, Z) + g(hX, W)g(kY, Z)

- g(kY, W)g(hX, Z) - g(hY, W)g(kX, Z)

- g(hX, W)g(kY, Z) - g{kX, W)g(hY, Z)

+ g(hY, W)g(kX, Z) + g(kY, W)g(hX, Z)}

= 0 .

Thus, the proof is finished.
Assume now that M is a normal contact manifold. Again we have that

Ά(i*X, i*Y, i*Z, i*W) = i*(R(X, Y, Z, W) - D(X, Y, Z, W)). If M is of
constant curvature, then FVR — 0. (If we merely assume that M is of constant
^-sectional curvature then FVR can be computed. It turns out to be a rather
long expression involving the Φ, η and g. Since we are interested in
(FuvR)(i^X, i*Y, i*Z, i*W), this can be expressed in terms of Φ, η and g.) If
M is Einsteinian, then (4.2)' shows that g(h2X, Y) = λg(X, Y) for some λ.
However, since hξ — 0, we have h2 = 0 and hence h = 0. Also k = 0 so
that M is totally geodesic and hence D = 0. Thus, FVR = 0 (see [7]). It is
slightly more complicated to consider the case where M is 37-Einsteinian. In this
case we have that FVR Φ 0 (see [7]).
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